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Abstract: A method for prediction of properties of rubber materials utilizing electron microscope
images of internal structures taken under multiple conditions is presented in this paper. Electron
microscope images of rubber materials are taken under several conditions, and effective conditions for
the prediction of properties are different for each rubber material. Novel approaches for the selection
and integration of reliable prediction results are used in the proposed method. The proposed method
enables selection of reliable results based on prediction intervals that can be derived by the predictors
that are each constructed from electron microscope images taken under each condition. By monitoring
the relationship between prediction results and prediction intervals derived from the corresponding
predictors, it can be determined whether the target prediction results are reliable. Furthermore, the
proposed method integrates the selected reliable results based on Dempster–Shafer (DS) evidence
theory, and this integration result is regarded as a final prediction result. The DS evidence theory
enables integration of multiple prediction results, even if the results are obtained from different
imaging conditions. This means that integration can even be realized if electron microscope images
of each material are taken under different conditions and even if these conditions are different
for target materials. This nonconventional approach is suitable for our application, i.e., property
prediction. Experiments on rubber material data showed that the evaluation index mean absolute
percent error (MAPE) was under 10% by the proposed method. The performance of the proposed
method outperformed conventional comparative property estimation methods. Consequently,
the proposed method can realize accurate prediction of the properties with consideration of the
characteristic of electron microscope images described above.

Keywords: rubber materials; property prediction; electron microscope images; Dempster–Shafer
evidence theory

1. Introduction

Materials informatics has been attracting attention recently as an important research
area for the development of high-performance materials. Modern materials science and
engineering research produce a large amount of heterogeneous data, and analyzing the
stored data by computational approaches discovers new knowledge for researchers [1–4].
Among many existing materials, rubber materials’ ability to resist permanent deformation
and fracture is well suited for many applications [5]. We can easily list many applications
using rubber materials: tires, vibration isolators, seals, hoses, belts, structural bearings,
impact bumpers, medical devices, and footwear. These applications involve large static and
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time-varying strains over long periods. To enhance the performance of the applications,
the materials informatics technology for rubber materials is necessary [6,7].

When a rubber material is used for a long time, it usually hardens and degrades
and loses its performance. This deterioration is mainly due to heat caused by hysteretic
loss, which affects not only the material properties but also the rubber materials’ service
life. The performance of such rubber materials can be evaluated by measuring their
physical properties through various experiments. Generally, numerical data for various
properties of rubber materials such as friction resistance and tensile strength are needed
to design and develop rubber materials; however, measurement of the properties is a
time-consuming task [8]. If these properties can be determined without measurement
procedures, the time required to design and produce high-performance rubber materials
can be shortened. Hence, the prediction of rubber material properties has become an
important research topic [9].

Methods for prediction of rubber material properties have been intensively studied [10–12].
These popular methods use mix proportions or mixing process information for the predic-
tion of properties. It is well known that properties of rubber materials are strongly related to
their mixing process information. For example, Liu et al. proposed methods for prediction
of Mooney viscosity of rubber materials using mixing process information [11,12]. Mooney
viscosity is an evaluation index for the processability, moldability, and flowability of rubber
materials, and it can be measured with a specialized device called a viscometer. Mixing
temperature, energy, power, pressure, and duration in the chamber of an internal mixer
are used as mixing process information for the prediction of Mooney viscosity in those
methods. However, some mixing process information such as the order of addition of raw
materials in the chamber cannot be quantified.

The mixing process information is reflected in the internal structure of the material
and can be visually confirmed. Hence, observation by electron microscope is one of the
most important steps in the development phase. Specifically, images of internal structures
taken by an electron microscope contain mixing process information regardless of whether
the information can be quantified or not. Thus, material property prediction approaches
using images of microstructure have been proposed [13–16]. Machine learning models such
as a neural network [17] and relevance vector machines [18] are used in these models, and
prediction of material properties is realized with consideration of the internal structures.
The advantage of using image information for property estimation is that it allows us to
contrast the performance of a material with the structural information of the material that
we can intuitively, or visually, understand from electron microscope images.

Electron microscope images of rubber materials are generally taken under differ-
ent conditions such as different magnifications and imaging conditions, as shown in
Figure 1. Effective imaging conditions for prediction differ depending on the rubber ma-
terial. However, only electron microscope images taken under the same conditions have
been used in previous methods, and differences in conditions have not been considered.
For realization of accurate prediction, it is desirable to construct a predictor with many
rubber material samples. Therefore, electron microscope images taken from multiple obser-
vations should be used for the prediction of rubber material properties. We should focus
on electron microscope images taken under different imaging conditions.

In this paper, we propose a method for prediction of rubber material properties using
electron microscope images of internal structures taken under multiple imaging condi-
tions. First, the proposed method selects reliable prediction results from multiple results
obtained by predictors that are each constructed from electron microscope images taken
under the same condition. This selection process utilizes the prediction interval of the
prediction results, which can take into account the accuracy of prediction results [19]. As a
result, the proposed method uses only prediction results obtained from electron microscope
images taken under beneficial conditions for the subsequent integration. Next, the pro-
posed method integrates these reliable results based on a Dempster–Shafer (DS) evidence
theory [20], and this integration result is regarded as a final prediction result. The DS
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evidence theory has been used to integrate data from multiple information sources, and
this theory has been used in many studies as a method for decision level fusion [21–24].
In the proposed method, information sources of the prediction results are different for
each material sample since reliable results are different for each material sample. The DS
evidence theory enables successful integration of multiple prediction results, even if the
information sources from rubber material samples are different. Consequently, accurate
prediction of the properties of rubber materials can be realized by the proposed method.

(a) Magnification ×5000 (Mode 1) (b) Magnification ×20,000 (Mode 1)

(c) Magnification ×5000 (Mode 2) (d) Magnification ×20,000 (Mode 2)

Figure 1. Examples of electron microscope images taken under different conditions: images in (a,b) were taken with the
same imaging condition and images in (c,d) were also taken with the same imaging condition.

The contributions of this paper are summarized as follows:

• Our new robust material property prediction method considering different imaging
conditions has a wide applicability not only to rubber materials but also to other
materials.

• Only reliable prediction results are automatically selected and integrated based on the
prediction interval and the DS evidence theory.

This paper is organized as follows. In Section 2, we describe our method for prediction
of rubber material properties. In Section 3, experimental results are shown to verify the
effectiveness of our method.

2. Method for Prediction of Rubber Material Properties

In this section, we describe the details of the proposed method. An overview of
the proposed method is shown in Figure 2. Our method consists of three Steps (1–3):
training of predictors, selection of reliable results, and integration of prediction results.
In Step 1, we construct a predictor for each imaging condition of electron microscope
images based on the simplest regression model, support vector regression (SVR) [25] using
images and mix proportions to obtain multiple prediction results from the predictors. Next,
in Step 2, the proposed method selects reliable results from prediction results obtained
by these SVR predictors based on prediction intervals [26]. In step 3, basic probability
assignment (BPA) functions [27] of these reliable prediction results are determined, and
these BPA functions are integrated on the basis of the DS evidence theory to calculate the
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pignistic probability from these results. Finally, the final prediction result can be simply
calculated based on the DS evidence theory.

Electron microscope images

Mix property information

x5,000
Mode 1

x10,000
Mode 1

x5,000
Mode 2

・
・
・

・
・
・

・
・
・

Step 1: 
Material property prediction
based on SVR Predictors (1-M)

If prediction interval is small, the 
variance of the prediction results is 
also small.

mix proportion values

Step 2: 
Selection of reliable prediction
results based on prediction interval

Step 3: 
Integration of realiable results
based on DS evidence theory 

Prediction interval

Selected prediction results (1-S) 

・・・

・・・

・・・

BPA function

Integrated BPA function

Pignistic probability

Average

Trained SVR modelFeature

Final
prediction 
result

Figure 2. Overview of the proposed method. The proposed method selects S (<M) reliable prediction results from M
support-vector-regression (SVR)-based prediction results based on the prediction interval and integrates the reliable results
based on the Dempster–Shafer (DS) evidence theory.

This section is organized as follows. In Section 2.1, the property prediction method
using SVR is explained as Step 1. The process for selection of reliable prediction results in
Step 2 is described in Section 2.2. Finally, integration of the selected results based on the
DS evidence theory in Step 3 is explained in Section 2.3.

2.1. Step 1: Property Prediction for Each Imaging Condition

The proposed method constructs the predictors for each imaging condition based
on SVR using the electron microscope images and mix proportions to obtain multiple
prediction results. First, the proposed method calculates numerical feature vectors from
the electron microscope images and mix proportions. In the electron microscope images,
the variation and distribution of luminance change according to the mix proportions and
mixing process. Imaging conditions affect the luminance and colors in images. In this
study, we have two different image conditions: Mode 1 and Mode 2, as shown in Figure 1.
It is common in material development for images to be captured in different conditions
and at different magnifications. Therefore, it is necessary to construct a robust method
for estimating properties using image information. Therefore, the proposed method uti-
lizes three kinds of numerical features—co-occurrence matrix-related features [28], Gabor
wavelet-based features [29] and adaptive local binary patterns [30]—to obtain the visual
feature vector by concatenating the above visual features. In the field of general image
recognition, although deep-neural-network-based features have been proposed [31], hand-
crafted features are still useful since the number of electron microscope images is limited
and their characteristics are different from those of a pretrained network. The mix propor-
tion feature vectors are each represented as a vector whose elements are mix proportion
values. In this way, features for property prediction can be extracted from the set of train-
ing images and their corresponding mix proportion information. Since obtained features
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have high-dimensional vectors, this can easily cause the “curse of dimensionality” when
available samples are small. To solve this problem, we utilize the RReliefF algorithm [32]
as a feature selection method. The RReliefF algorithm is used to calculate the contribution
of each feature to the recognition task, and this also contributes to the dimensionality
reduction. We obtain the sophisticated features through the RReliefF algorithm feature
selection method. The proposed method obtains a feature vector x by concatenating the
visual and mix proportion feature vectors.

Next, the proposed method constructs the predictors based on SVR. In the proposed
method, accurate prediction of rubber material properties becomes feasible since SVR
enables effective prediction by nonlinear regression even if the number of training samples
is small. The SVR calculates the prediction result ŷ as follows:

ŷ = β>p Φ(x) + bp, (1)

where βp is a weighted vector in the property prediction and Φ(·) denotes a nonlinear
projection function. In addition, bp is a bias parameter in the property prediction. Nonlinear
regression is an extension of linear regression that can be used with large and more general
class classification tasks. Unlike linear regression, it can flexibly represent complicated data
via a kernel function adopted in the projection function. The SVR determines the optimal
weighted vector βp by solving the following constrained optimization problem:

βp = arg min
βp

{
1
2
||βp||2 + C

N

∑
i=1

(ξi + ξ∗i )

}
,

s.t. yi − β>p Φ(xi)− bp ≤ ε + ξi,

β>p Φ(xi) + bp − yi ≤ ε + ξ∗i ,

ξi, ξ∗i ≥ 0,

(2)

where C (≥0) is a trade-off parameter and ξi and ξ∗i are slack variables. Furthermore,
yi is an actual property value of the ith (i = 1, 2, . . . , N; N being the number of training
samples) training sample, ε is a margin of tolerance, and xi is a feature vector of the ith
training sample. In this way, we train the M SVR predictors for each image condition and
magnification that can provide property prediction results. Namely, in the test phase, we
can obtain M property prediction results in Step 1.

2.2. Step 2: Selection of Reliable Prediction Results

We can obtain M property prediction results through the processing in Step 1. How-
ever, since the SVR is constructed for each imaging condition and magnification, not all the
predictions are reliable. In other words, the obtained results include a mixture of reliable
and unreliable ones. Therefore, the proposed method adopts the prediction intervals for
the selection of reliable prediction results in Step 2. The prediction interval in the regression
analysis can take the accuracy of prediction results into account [26]. Specifically, if the
prediction interval is small, this means that the variance of the prediction results is also
small. Therefore, prediction results for which prediction intervals are smaller than those of
other results can be regarded as reliable prediction results.

First, the proposed method calculates the prediction error ei of the ith training sample
as follows:

ei = ŷi − yi, (3)

where ŷi is a prediction value of the ith training sample. Next, the proposed method applies
the fuzzy c-means algorithm [33] to the above prediction errors. The proposed method
constructs an empirical distribution function, as shown in Figure 3, to calculate lower and
upper values of the prediction interval in each cluster.
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Prediction Error

Attribute probability in cluster k

Figure 3. Overview of the empirical distribution function for calculating lower and upper values of
the prediction interval in cluster k.

Specifically, let µik be the ith training sample’s attribute probability to the cluster k (=
1, 2, . . . , K; K being the number of clusters). ẽi and µ̃ik are obtained by sorting ei and µik in
ascending order, respectively. We denote PICk and PICk as the lower and upper values,
respectively, of the prediction interval in cluster k. PICk and PICk under the trust rate
100× (1− α)% (0 ≤ α ≤ 1) are calculated as follows:

PICk = ẽq, (4)

PICk = ẽr, (5)

where q (≤N) and r (≤N) are maximum values to satisfy the following conditions:

q

∑
i=1

µ̃ik < α/2
N

∑
i=1

µik, (6)

r

∑
i=1

µ̃ik < (1− α/2)
N

∑
i=1

µik. (7)

The lower and upper values of the ith training samples’ prediction result PIi and PIi
are calculated as follows:

PIi = yi +
K

∑
k=1

µikPICk, (8)

PIi = yi +
K

∑
k=1

µikPICk. (9)

The proposed method calculates the prediction interval of the test samples’ prediction
result by utilizing the above prediction intervals of the training samples. Specifically, the
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prediction interval P̂I of the test sample is calculated by SVR utilizing the training sample’s
prediction intervals PIi = PIi − PIi as follows:

P̂I = β>PIΦ(x) + bPI, (10)

where βPI is an optimal weighted vector calculated from PIi and bPI is a bias parameter.
Then, S reliable prediction results for which the prediction intervals are smaller than those
of the other results are selected as reliable results from M prediction results in our method.

2.3. Step 3: Integration of Reliable Results Based on DS Evidence Theory

First, the proposed method determines BPA functions of reliable prediction results
that have been obtained as described in the previous section. Then, the proposed method
integrates the above BPA functions using the DS evidence theory to calculate the pignistic
probability from the integrated result. Finally, the final prediction result can be simply
estimated by an average of the selected prediction results for which the values of pignistic
probability are higher than a predefined threshold.

Xu et al. proposed a method for determining BPA functions for classification prob-
lems [27]. In the proposed method, we extend this determination method to a regression
version. First, the property values of the training samples are assigned to T clusters using
the k-medoids algorithm [34]. We define the range in the property domain of cluster t (=
1, 2, . . . , T) as It = [Lt − c× Rt, Ut + c× Rt], where Lt and Ut are, respectively, the lowest
value and the highest value of the training samples’ property values belonging to cluster t,
Rt = Ut − Lt, and c ∈ [0, 1]. Next, the probability density function (PDF) of each cluster
is calculated. Specifically, the proposed method discretizes the property domain of each
cluster into V segments. Then, let ptv (v = 1, 2, . . . , V) be the probability density of the
vth discretization domain in cluster t, and pt = [pt1, pt2, · · · , ptV ]

> ∈ RV . The vector pt is
calculated by solving the following constrained optimization problem:

pt = arg max
p̃t

Nt

∏
l=1

f (ytl |p̃t),

s.t. p̃tv ≥ 0, v = 1, 2, · · · , V,

f (y|p̃t) ≥ 0, ∀y ∈ It,∫
f (y|p̃t)dy = 1,

(11)

where p̃t = [ p̃t1, p̃t2, · · · , p̃tV ]
> ∈ RV , ytl (l = 1, 2, . . . , Nt; Nt being the number of training

samples belonging to cluster t) is the property value of the lth training sample in cluster t
and f (ytl |p̃t) = p̃tv if ytl belongs to the vth discretization domain in cluster t. We solve this
constrained optimization problem using a genetic algorithm in the same manner as [35].

We calculate the PDF of each cluster by utilizing the interpolation based on Gaussian
process regression (GPR) [36] using the above probability densities pt. In the GPR, it is
assumed that the available function values represent a particular realization of a Gaussian
process. Let gtv be a representative value of segmentation v into cluster t. The PDF of the
tth cluster Prt(y) is constructed as follows:

Prt(y) =


1√

2πσ2
t

exp
(
− (y−et)

2

2σ2
t

)
if y ∈ It

0 otherwise
, (12)

where et and σ2
t are prediction means and variance of cluster t, respectively.

The proposed method calculates the test sample’s probability density using the pre-
diction results. Let ρst be the sth (s = 1, 2, . . . , S) prediction result’s probability density for
cluster t obtained by the PDF. We calculate the probability density ρst as follows:

ρst = Prr(ŷs), (13)
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where ŷs is the sth prediction result of the test sample.
Finally, we determinate the BPA function of each prediction result obtained by SVR

as described in the previous section. Let θt denote the tth identifiable object and let
Θ ∈ {θ1, θ2, · · · , θT} be a frame of discernment. Let ρ̃s1, ρ̃s2, · · · , ρ̃sT be sorted results
in decreasing order of ρst, and Cst ∈ Θ is the identifiable object that ρ̃st belongs to. If
∃ρ̃st 6= 0 (t = 1, 2, . . . , T), the BPA function of the sth prediction result ms(·) is determined
as follows:

ms({Cs1}) = ρ̃s1,

ms({Cs1, Cs2}) = ρ̃s2,
...

ms({Cs1, Cs2, · · · , CsT}) = ρ̃sT .

(14)

On the other hand, if ∀ρ̃st = 0 (t = 1, 2, . . . , T), ms(·) is determined as follows:

ms({θt}) = exp(−bt), (15)

bt =

{
at/ ∑T

t′=1 at′ if max(at) > 1
at otherwise

, (16)

at =
1
S

S

∑
s=1
|ỹs − ut|, (17)

where ut is the representative value of cluster t. Then, the proposed method normalizes
the obtained BPA function ms(·) to satisfy the following conditions:

∑
Q∈{{Cs1},{Cs1,Cs2},··· ,{Cs1,Cs2,··· ,CsT}}

ms(Q) = 1, (18)

ms(Φ) = 0, (19)

where Φ denotes a null set. Therefore, the proposed method normalizes the obtained
BPA functions.

Next, the proposed method calculates the final prediction result by integrating the
above BPA functions based on the DS evidence theory. The power set of Θ is the set
containing all 2T possible subsets of Θ represented by P(Θ) defined as

P(Θ) = {Φ, {θ1}, · · · , {θT}, {θ1, θ2}, · · · , Θ}. (20)

According to Dempster’s orthogonal rule [20], we have

m(Y)=m1(Z1)⊕m2(Z2)⊕ · · · ⊕mS(ZS)

=

∑
Z1∩Z2∩···∩ZS=Y

m1(Z1)m2(Z2) · · ·mS(ZS)

1− ∑
Z1∩Z2∩···∩ZS=Φ

m1(Z1)m2(Z2) · · ·mS(ZS)
,

(21)

where Zs is the subset of P(Θ) for the sth information source and ⊕ is an operator that
represents the integration of BPA functions.
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The proposed method calculates the pignistic probability Prpig(θt) (t = 1, 2, . . . , T)
based on the above integrated BPA function m(·) as follows:

Prpig(θi) = ∑
D⊆Θ

|{θi} ∩ D| ×m(D)

|D| , (22)

where |D| is the number of singleton elements in set D.
Then, the final prediction result of the proposed method is calculated as the average

of reliable prediction results belonging to the cluster that is assigned maximum pignistic
probability. Specifically, the proposed method calculates the average value of prediction
results belonging to the cluster for which the pignistic probability is higher than those of
the other clusters. Let ys′ be the s′th (= 1, 2, . . . , S′; S′ being the number of prediction results
belonging to the cluster having the maximum values of pignistic probability) prediction
result obtained by SVR, and γs′ ∈ Θ is the cluster that ys′ belongs to. The final prediction
result ŷfinal is calculated as follows:

ŷfinal =
1
S′

S′

∑
s′=1

ys′ . (23)

Since the pignistic probability denotes the confidence of the prediction result, the
proposed method enables accurate property prediction.

3. Experimental Results

In this section, we show the experimental results to verify the effectiveness of the pro-
posed method. In this experiment, we conducted prediction of rubber material properties
using electron microscope images and mix proportions. We used electron microscope im-
ages and mix proportions of 75 rubber material samples as the data set. The data set in this
experiment consisted of electron microscope images taken under eight different conditions,
and the number of samples and electron microscope images in each condition are shown
in Table 1. As shown in Table 1, each sample is taken under several conditions, but not all
of the conditions are satisfied. Hence, the number of samples and the number of images of
each condition are different in the experimental data set. Each electron microscope image
was eight-bit grayscale, and its size was 1536 × 1024 pixels.

Table 1. Numbers of samples and electron microscope images in each condition.

Condition Magnification & Mode Number of Samples Number of Images

Condition 1 × 5000, Mode 1 71 71
Condition 2 × 10,000, Mode 1 72 152
Condition 3 × 20,000, Mode 1 72 156
Condition 4 × 40,000, Mode 1 56 118
Condition 5 × 2500, Mode 2 19 19
Condition 6 × 5000, Mode 2 19 38
Condition 7 × 10,000, Mode 2 19 52
Condition 8 × 20,000, Mode 2 19 57

The proposed method is a novel approach for prediction of properties using electron
microscope images of internal structures taken under multiple conditions, and this is the
first time that a prediction method using multiple kinds of electron microscope images has
been proposed. We compared our method with many conventional methods, including a
recently proposed convolutional-neural-network (CNN) [37]-based method. The details
of comparative methods used in this experiment are shown in Table 2. According to
the proposed method, the kernel function of SVR used in the proposed method and
these comparative methods was the Gaussian kernel, and each parameter of the SVR
was determined by a practical selection approach in the same manner as the paper [38].
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Furthermore, the parameters used in calculation of the prediction interval and the DS
evidence theory were determined on the basis of prediction error of the final results. The
performance of each method was evaluated via leave-one-out cross-validation. In the
leave-one-out cross-validation, a sample was extracted from the 75 samples, the extracted
sample was allocated to the test sample, and the other 74 samples were allocated to the
training samples. We trained our models using those 74 training samples and estimated
the label of the test sample. We repeated this step 75 times to evaluate all samples and
calculated the prediction performance.

In order to evaluate the accuracy of the property prediction, we utilized mean absolute
error (MAE) and mean absolute percent error (MAPE) shown in the following equations:

MAE =
1
H

H

∑
h=1
|yh − ŷh|, (24)

MAPE =
1
H

H

∑
h=1

|yh − ŷh|
yh

× 100 (%), (25)

where H (= 75) is the number of test samples.

Table 2. Comparative methods used in the experiment.

Method Overview

CM1 The final prediction result is obtained by integration of reliable results using the DS evidence theory.
Reliable results are selected from prediction results obtained by an SVR predictor that do not consider
different imaging conditions.

CM2 The final prediction result is calculated by integration of reliable results using the DS evidence theory.
Reliable results are selected from prediction results obtained by the predictor of each condition using
only visual features.

CM3 The final prediction result is obtained by the SVR predictor using only mix proportion features. Each
rubber material sample is assumed to have a single mix proportion. Therefore, CM3 does not apply
selection and integration of prediction results.

CM4 The final prediction result is calculated by the average of the multiple prediction results.

CM5 The final prediction result is obtained by weighted average of the prediction results. CM5 utilizes
prediction interval as the weight.

CM6 The final prediction result is obtained by selection of a reliable result from multiple prediction results
using prediction intervals.

CM7 The final prediction result is calculated by the average of reliable results selected from the prediction
results obtained by the predictor of each condition using visual and mix proportions features.

CM8 The final prediction result is calculated by integration of multiple prediction results based on the DS
evidence theory.

CM9 The final prediction result is calculated by selection and integration of prediction results obtained by a
convolutional neural network (CNN) [37]. Specifically, CM9 utilizes Xception [39] that is fine-tuned for
property prediction using electron microscope images.

The experimental results are shown in Table 3. It should be noted that the MAE results
provided in Table 3 are the average values of estimated properties for each sample. Namely,
the results for 75 test samples are averaged in a single value. From the obtained results, we
can confirm that the proposed method realizes the most accurate prediction. Therefore,
the effectiveness of the proposed method was verified. A comparison of the results of
the proposed method and the results of CM1 shows the effectiveness of using electron
microscope images taken under several conditions. We can also confirm that the prediction
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method using electron microscope images and mix proportions enables accurate prediction
of the properties of rubber materials by comparing the results of the proposed method and
those of CM2 and CM3. A comparison of the results of the proposed method and those
of CM4 and CM5 shows that integration based on the DS evidence theory is effective for
prediction of properties of the rubber materials. This is because the pignistic probability
denotes the accuracy of each prediction result obtained by the predictor, and successful
prediction was realized by integration using these probabilities. Furthermore, we can
confirm that the prediction method utilizing selection and integration of reliable results
enables accurate prediction of the properties by comparing the results of the proposed
method and those of CM6, CM7, and CM8. Finally, we can also confirm that the proposed
method enables more accurate prediction than the approaches based on the CNN-based
method by comparing the results of the proposed method and those of CM9. This is
because the SVR enables accurate prediction even if the number of training sample is small.
Considering that the measurement error of the material is always a few percent, it is not
too much to say that the proposed method can estimate the properties with high accuracy
(less than 10% error).

Table 3. Mean absolute error (MAE) and mean absolute percent error (MAPE) of prediction results obtained by the proposed
method and the comparative methods.

PM CM1 CM2 CM3 CM4 CM5 CM6 CM7 CM8 CM9

MAE 2.68 4.14 3.77 3.17 2.93 3.04 3.17 2.93 2.69 3.80
MAPE 9.64% 15.4% 12.3% 11.7% 11.2% 11.5% 11.7% 11.2% 10.4% 13.7%

There are several limitations in this paper. First, although our method can be applied
to other materials, we have not confirmed the effectiveness of our method in other materials
due to the data restriction. Samples used in this experiment are still small to verify the
potential of the proposed method for real-world applications. These concerns should be
considered for the next step of our study.

Our rubber material property prediction method is versatile and can be applied not
only to rubber materials but also to other materials. In addition, our method is different
from the conventional methods in that it can estimate the properties of materials even
when the image capturing conditions are not available. In future works, we will improve
the accuracy of property estimation by enhancing the image feature extraction methods.

4. Conclusions

In this paper, we have proposed a method for prediction of rubber material properties
using electron microscope images of internal structures taken under multiple imaging
conditions. The proposed method selects reliable prediction results from multiple results
obtained by SVR predictors constructed from electron microscope images taken under each
condition. The selection utilizes the prediction interval of the prediction results. Then, the
proposed method integrates the reliable results based on the DS evidence theory, and this
integration result is regarded as the final prediction result. The results of an experiment
showed the effectiveness of the proposed method by comparing the results obtained by
comparative methods.
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