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Abstract

Original Article

IntroductIon

Radiomic analysis is an approach to improve personalized 
medicine by extracting quantitative features from medical 
images through the use of advanced computational 
methods.[1,2] In recent years, it has gained significant attention, 
particularly in the field of oncology. In addition to improving 
tumor diagnosis, staging, and survival, radiomic models can 
predict treatment response and side effects.[2-4]

Radiomic features describe the aspects of an image 
range, including intensity, shape, texture, and spatial 
relationships.[2] They can be analyzed based on signal 
intensity and incorporating adjacent voxel intensity can reveal 

microstructural changes in the tissue and be used to quantify 
image heterogeneity and complexity. This procedure leads 
to a more objective and comprehensive analysis of tissue 
characteristics.[2,3,5]

Background: Despite extensive research on various brain diseases, a few studies have focused on radiomic feature distribution in healthy 
brain images. The present study applied a novel radiomic framework to investigate the robustness and baseline values of radiomic features in 
normal brain magnetic resonance imaging (MRIs) regions. Materials and Methods: Analyses were performed on T1 and T2 images including 
276 normal brains and 14 healthy volunteers were scanned with three scanners using the same protocols. The images were divided into 1024 
three-dimensional nonoverlap patches with the same pixel size. Seven patches located in the thalamus, putamen, hippocampus and brain stem 
were selected as volume of interest (VOI). Eighty-five radiomic features were generated. To investigate the variation of features across VOIs, 
the analysis of variance was performed and coefficient of variation (COV) and intraclass correlation coefficient (ICC) were explored to examine 
the features repeatability. Results: Thalamus (right and left) and hippocampus (left) resulted in more stable features (COV ≤ 6%) in T1 and 
T2 images, respectively. The inter-scanner ICC analysis demonstrated the features of T2 sequences represented more repeatable results and 
the brain stem and thalamus (both T1 and T2) showed particularly high repeatability (higher ICC values). Robust results (ICC ≥ 0.9) were 
identified for energy and range features of the first order class and several textures features across different brain regions. Conclusion: Our 
results indicated the baselines of the repeatable texture features in healthy brain structural MRI highlighting inter-scanner stability. According 
to the findings, MRI sequencing and VOI location impact feature robustness and should be considered in brain radiomic studies.
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In the field of brain research, several studies have 
demonstrated the potential of radiomic features in identifying 
subtle changes in brain morphology and function that may 
not be visible to the naked eye.[3,5] A variety of radiomics 
applications have been used in psychiatry, including 
classification, prediction, and treatment selection.[6,7] The 
examples include schizophrenia,[7,8] attention hyperactivity 
disorder,[7,9] and bipolar disorder.[7,10] The magnetic resonance 
imaging (MRI) modalities were used in these applications 
such as structural imaging (T1, T2 and FLAIR weighted), 
diffusion tensor imaging (DTI), functional MRI, and arterial 
spin labelling.[7] Cui et al. represented a radiomic approach 
by using thalamic features derived from MRI to classify 
schizophrenia patients from healthy controls.[11] Their 
classifier accurately indicated patients, with an accuracy 
of 68%. The features were further confirmed in predicting 
treatment response by random forest, with an accuracy of 
75%.[11] In this context, radiomics has demonstrated intriguing 
applications within the field of neurology, showcasing 
promising outcomes, particularly in differential diagnosis.[12] 
In addition to neurooncological and psychiatric benefits, 
radiomic features also were used to investigate the quantify 
the strength and complexity of functional connectivity of 
the brain.[13] For instance, da Silveira et al. employed Gray 
level Cooccurrence Matrix (GLCM) texture features to 
characterize healthy subjects and generate brain networks 
based on the structural properties of MRI.[14]

Similar to common imaging biomarkers, the robustness of 
radiomic features, including reproducibility and repeatability, 
is important and considered as a challenging issue.[15] As 
defined by Raunig et al., repeatability refers to the variability 
of an imaging biomarker when repeated measurements are 
performed on the same experimental unit under identical 
or very similar conditions, while reproducibility refers to 
variability in image biomarker measurements caused by the use 
of the imaging instrument in the real-world clinical settings that 
are affected by a variety of external factors that are not all easily 
controllable.[16] Several original and review research addressed 
the reproducibility and repeatability under intra-individual 
test-retest scans, different image-acquisition techniques, 
multi-scanner, and image reconstruction parameters in clinical 
or phantoms images.[4,7,15-24] One of the major challenges 
in translating radiomic studies into clinical decisions is 
examining the robustness of radiomic-based models and 
their potential generalizability across multiple datasets from 
different institutions and scanners. Different institutions 
commonly acquire scans with different settings (e.g., scanner 
manufacturer, slice thickness, and signal-to-noise ratio) 
according to mostly self-defined imaging protocols, adding 
unwanted variations in the radiomic features which are not 
related to disease phenotypes. As a result, a feature that is useful 
on one dataset may lose its value on another, since it may be 
sensitive to different acquisition methods.[8,25]

Despite the numerous literature on brain radiomics 
investigations, a few studies worked on how radiomic features 

are distributed in healthy brain images.[7,26,27] Radiomics analysis 
of normal brain MRI images can provide valuable insights into 
the underlying structural and functional characteristics of the 
brain. It can be used to identify subtle alterations in brain 
morphology and function and could potentially be used as the 
biomarkers for various neurological conditions. The present 
study aims to evaluate the robustness of radiomic features and 
explore the distribution and mean values of robust features in 
different normal brain regions across different MRI scanners.

MaterIals and Methods

The workflow of the main steps of study is shown in Figure 1.

Study setup and dataset
In the present study, in order to evaluate the inter-individual 
robustness of features, analysis was performed on T1- and 
T2-weighted images of 276 adult normal brains (including 
133 [48%] female and 143 [52%] male) selected from April 
1, 2021 to April 30, 2024 using the local picture archiving 
and communication system in three different hospitals. 
Study inclusion criteria included age between 20 and 
50 years (mean ± standard deviation [SD] =39.2 ± 4.86 years), 
no diagnosis of any disease (the images were examined and 
diagnosed by two neuroradiologist with more than 10 years 
of experience), and availability of MRI sequences for each 
person that included T1 and T2 sequences. In addition, in 
order to evaluate the inter-scanner repeatability of features, 
14 healthy subjects (mean age ± SD = 34 ± 2.71 years, 
6 Female/8 Male) were scanned on the same three scanners 
within a week using the same protocols for T1-weighted TR/
TE: 400/10 ms; pixel size: 0.5 × 0.5; flip angle: 90 and for 
T2-weighted TR/TE: 5400/100 ms; pixel size: 0.5 × 0.5; and 
flip angle: 90. The field-of-view was 240 mm; reconstructed 
matrix size = 512 × 512 and slice thickness was 5 mm. All 
volunteers were questioned in detail to learn whether they 
were systemically healthy. No subjects have known central 
nervous system abnormalities or neurological/neuropsychiatric 
disorders. All participants’ rights were protected and written 
informed consent was obtained from all volunteers.

Image acquisition and preprocessing
T1- and T2-weighted brain images were scanned using three 
1.5 Tesla scanners: SIGNA™, SIGNA LX (GE Medical 
System, USA) and MAGNETOM Symphony (Siemens, 
Germany). Following standard local protocols of each 
healthcare institution, the acquisition parameters were 
detailed in Table 1. As image reprocessing procedures, due 
to the great variability in brain anatomy between individuals 
the spatial normalization was performed with Montreal 
Neurological Institute (MNI) 152 (182 × 218 × 182) to 
transform the images of each individual subject to a standard 
brain or brain template.[28] According to the MNI, a series of 
images similar to the Talairach brain were created based on 
the average of many normal MRI scans.[28]

Spatial normalization and skull stripping were carried out 
using the DeepBraTumIA package.[29] For the purpose of 
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study, after spatial normalization, spatial rescaling was down 
to 256 × 256 matrix size to divide them to 1024 equal pixel 
size patches or volume of interests (VOIs).

In addition, for intensity outlier filtering the most used method 
was applied to calculate the mean µ and SDs of gray levels 
within the ROI/VOI and to exclude gray levels outside the 

range of µ ±3SD. Furthermore, resampled pixel spacing 
considered 1 × 1 × 1 in (x, y, z) plane and for intensity 
discretization the fixed bin number = 64 bin was considered 
as recommended discretization method for MRI data.[1,30]

Image segmentation and feature extraction
In order to explore the robust features across different 
brain tissues, we performed a patch-based segmentation. 
Patch-based segmentation is a common approach in 
training artificial networks. Patched-based classification 
technique in deep learning involves dividing an image 
into smaller sections, known as patches (with same or 
different sizes), and using neural networks to classify 
them independently to capture detailed information from 
different parts of the image.[31,32] This approach can improve 
classification accuracy and is the most commonly used 
in image segmentation, image recognition, and object 
detection.[32,33] Several study sampled nonoverlap patches 
from whole images to train deep learning models for 
the variety purpose including: segmentation specially 
brain regions,[33,34] real-time object tracking, [32] train 
the patch-level classification and segmentation models 
for pancreatic ductal adenocarcinoma,[35] producing a 
voxel-based irregularity age map for brain MRI to identify 
white matter hyperintensities on scans with mild vascular 
pathology,[36] hippocampus localization on MRI images,[37] 

Figure 1: The workflow of main steps of study. MRI: Magnetic resonance imaging, MNI: Montreal Neurological Institute, 3D: Three‑dimensional, 
SD: Standard deviation, GLCM: Gray level cooccurrence matrix, GLDM: Gray level dependence matrix, GLRLM: Gray level run‑length matrix, GLSZM: Gray 
level size zone matrices, NGTDM: Neighboring gray tone difference matrix, COV: Coefficient of variation, ICC: Intraclass correlation coefficient

Table 1: Technical characteristics and imaging protocol 
details

Characteristics T1 T2
SIGNA™ (GE medical 
system)

123 (45%) subjects
(68 females/55 males)

SIGNA LX (GE medical 
system)

103 (37%) subjects
(47 females/56 males)

MAGNETOM 
symphony (Siemens)

50 (18%) subjects
(18 females/32 males)

TR, median (range) 400 ms (345–560) 5490 ms (5231–7271)
TE, median (range) 10 ms (9–13) 102 ms (98.1–104.6)
Pixel size 0.5×0.5 0.5×0.5
Flip angle 90° 90°
FOV 240 mm 240 mm
Reconstructed matrix size 512×512 512×512
Slice thickness 5 mm with 

6.5 mm gap
5 mm with 6.5 mm 

gap
FOV: Field-of-view, TR: Repetition time, TE: Echo time
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and extraction MRI intracranial cavity.[38] Alquhayz et al. 
designed three networks to segment ischemic stroke lesions 
on brain MRI images. They divided all extracted stroke 
slices into overlapping patches (8 × 8) and carried them 
to the network to classify the patches comprised of stroke 
lesions.[31]

In the present study, we used a nonoverlapping patching 
approach to segment MRI images. Every single slice 
was divided into 1024 patches (32 × 32 = 1024 patches) 
nonoverlapping grid-patches, each containing 64 pixels. 
1024 (three-dimensional [3D]) patches (VOIs) were created 
by arranging the same divided sections (patches) of the slices 
one after another and display the same regions of different 
brains for extraction 3D features. The chosen patch size 
of 64 pixels strikes a balance between capturing sufficient 
detail and maintaining the stability of radiomic features. 
With the patch size of 64 pixels, we could capture sufficient 
detail while maintaining radiomic features’ stability. Smaller 
patch sizes led to higher variability in feature extraction, 
while larger patch sizes, led to features averaging out. In 
addition, the selection of patch sizes was according to the 
region’s dimension, voxel dimensions and spatial resolution 
of the images and corresponded to an optimal region for 
capturing relevant features without losing important spatial 
information.

Four important anatomical brain tissues were considered 
for the features extraction and further investigation 
including thalamus (left and right), putamen (left and 
right), hippocampus (left and right), and brain stem 
ultimately resulting in a total of VOIs. These areas are 
commonly involved in various important neurological 
conditions, including tumor (glioma),[39,40] neurodegenerative 
disorders,[41] Alzheimer, [12,42] Parkinson, [43] and other 
neurological diseases and making them important targets for 
studying disease-related changes and radiomic analysis.[44]

Two neuroradiologists independently (with more than 
10 years’ experience) reviewed the patches and scored them 
based on the study criteria. These criteria were as follows: (1) 
A patch must be located entirely within the anatomical region 
of interest. (2) Select the central patch if there were multiple 
patches in the region of interest. (3) For each brain region of 
interest, right-hemisphere selected patches must correspond 
to left-hemisphere selected patches. The patches were scored 
by each neuroradiologists according to these criteria. If a 
patch met each of criteria, it was scored 1; otherwise, it was 
scored 0. In the end, the patches were selected which received 
a score of three from both neuroradiologists. In cases where 
there was disagreement between the two radiologists, a third 
radiologist was consulted for a final decision.

Overall, 85 features were generated from 7 VOIs of each 
T1 and T2 images which have been categorized in six 
feature classes as follows: 11 first order statistics-based 
features (histogram), 24 GLCM symmetrical calculation, 
14 Gray Level Dependence Matrix (GLDM), 16 Gray Level 

Run-Length Matrix (GLRLM), 15 Gray Level Size Zone 
Matrices (GLSZM), and 5 Neighboring Gray Tone Difference 
Matrix (NGTDM) by using PyRadiomics platform (v 3.0.1) 
implemented in Python (v. 3.7.9). GLCM and GLRLM 
features were computed at zero (0°) direction. Feature 
definitions are in compliance with the Imaging Biomarker 
Standardization Initiative.[45]

Statistical analysis
Descriptive statistics were represented in the form 
of mean ± SD. The repeated-measures analysis of 
variance (ANOVA) performed to investigate the statistical 
differences among each class of features in different VOIs. 
Each VOI in the right hemisphere of brain was compared 
to the corresponding VOI in left brain. Based on the 
homogeneity test of data, Game-Howell test was performed 
as a post hoc test to explore the differences between multiple 
groups, particularly left and right VOIs. In order to indicate 
the inter-individual variation of features in each VOI, the 
coefficient of variation (COV) was reported, defined as:

 ( )  100
 ( )

 
= × 

 

std VOICOV
mean VOI

where std (VOI) and mean (VOI) represent the SD and mean 
for the computed radiomic features. The features were divided 
into three ranges based on the results of COV percent. These 
ranges included low range (COV ≤ 6%), moderate range (6% 
< COV ≤ 20%), and high range (COV > 20%).

Intraclass correlation coefficient (two-way random effect with 
absolute agreement model) (ICC) was calculated to assess the 
stability and repeatability of radiomic features across three 
scanners and different VOI. The feature repeatability was 
classified as excellent (ICC ≥ 0.9), good (0.75 ≤ ICC < 0.9), 
moderate (0.5 ≤ ICC < 0.75), and poor (ICC < 0.5) when the 
calculated ICC and its 95%CI were both within the thresholds 
according to Koo and Li.[46] If the 95% CI of the calculated 
ICC was located across two or more ranges, the corresponding 
feature was categorized as lowest repeatability.[47] According 
to COV and ICC classification, radiomics features with 
excellent repeatability were identified for each VOI and 
sequence. The significant level was considered under 
0.05 (P < 0.05) and all statistical analyses were performed 
using R-Studio 2021.09.2 (RStudio, Boston, MA, USA).

results

The six most used classes to subdivide radiomic features 
roughly in order of complexity (first order, GLCM, GLDM, 
GLRLM, GLSZM, and NGTDM features) were studied in 
seven 3D VOIs of T1 and T2 brain MRI images. The result 
of each features class is summarized below:

The variation of features across different brain VOIs
The ANOVA test results in T1 and T2 sequences showed 
significant difference (P < 0.05) in the half of first order 
features, 5 out of 11 (45%), among all VOIs in T1 
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sequence and all 11 (100%) features represented significant 
differences (P < 0.05) among all VOIs in T2 image. Post hoc 
Games Howell test displayed except of Entropy and Kurtosis 
features in T1 sequences and Entropy, Median, Kurtosis, and 
Variance features in T2 sequences, for other first order features, 
there is no significant difference (P > 0.05) between bilateral 
hemisphere corresponding VOIs [Table 2].

Generally, among texture classes features, the majority 
of GLCM features, 20 out of 24 (83%) features, showed 
significant differences among all VOIs in T1 sequence and 24 
out of 24 (100%) features had significant differences (P < 0.05) 
among 16 VOIs in T2 image. The post hoc test showed 
that in T1 sequences, there is no significant difference for 
GLCM features (P > 0.05) between corresponding VOIs 
of left and right brain. However, for T2 images, three 
features included cluster tendency, contrast, and difference 
variance features represented dispersed results and revealed 
significant differences (P = 0.001) between left and right 
brain corresponding VOIs. Other 21 GLCM features in T2 
images displayed no significant differences (P > 0.05) between 
corresponding VOIs [Table 2]. The 9 out of 14 (64.28%) 
GLDM features and 12 out of 16 (75%) GLRLM features 
had significant differences (P = 0.01) among all 3D VOIs in 
T1 sequence and 11 out of 14 (78.6%) GLDM features and 
15 out of 16 (93.7%) GLRLM features represented significant 
differences (P = 0.01) among T2 images. Moreover, in T1 
and T2 sequences, the results represented no significant 
differences (P > 0.05) between bilateral hemisphere 
corresponding VOIs for both classes [Table 2]. On the other 
hand, the minority of GLSZM features (6 out of 16) (37.5%) 
and 2 out of 5 (40%) NGTDM features showed significant 
differences (P = 0.01) among all 3D VOIs in T1 sequence 
and for T2 images the majority of GLSZM features 15 out of 
16 (93.7%) and 4 out of 5 (80%) NGTDM features represented 
significant differences (P = 0.01) among VOIs. Furthermore, 
in both T1 and T2 sequences, the results indicated disperse 
results between corresponding and noncorresponding 3D 
VOIs [Table 2].

Inter‑individual stability of radiomics features
Figure 2 represents the percentage of features with different 
ranges of COV in thalamus, putamen, hippocampus (left 
and right), and brain stem regions. In general, most of the 
features represented a high range of COV in all VOIs. In 
T1 images, features extracted from thalamus (right and left) 
resulted in more stable features than other regions which 
categorized in low or moderate ranges of COV, 9.4% and 
8% of all extracted features, respectively. However, for T2, 
image hippocampus (left) and putamen (right) represent 
more percentages of stable features with percentages of 
12.3% and 9.7%, respectively. Among all extracted features 
GLCM_Inverse Difference Moment Normalized (Idmn) 
represented COV ≤ 6 in most of the VOIs in T1W images 
and GLCM_ Informational Measure of Correlation 1 and 
2 (Imc1 and Imc2) showed low COV (COV ≤ 6) in most of 
the brain region across T2W image.

Of the 85 features computed, in T1W sequence for the 
left and right thalamus regions, 8 features had low range 
of COV including range from first order class, GLCM_
Idmn, GLCM_Imc 1, GLCM_Imc 2, GLCM_Inverse 
Difference Normalized (Idn), GLDM_Dependence Entropy, 
GLRLM_Gray Level Nonuniformity and GLRLM_ 
RunLengthNonUniformity, 31 had moderate COV 
(6 < COV ≤ 20%) and 46 had high COV (COV > 20%). For 
T2W sequence 5 features including GLCM_Idn, GLCM_Imc2, 
GLRLM_ RunLengthNonUniformity, GLDM_ Dependence 
Entropy and GLSZM_Large Area Emphasis had low range of 
COV, 21 had moderate COV and 59 had high COV over the 
left and right Thalamus VOIs.

In the left and right putamen across T1W, GLCM_Idmn, 
GLCM_Idn, GLCM_Imc2, GLCM_MCC, GLCM_Joint 
Entropy, GLDM_ Dependence Entropy and GLRLM_Gray 
Level Nonuniformity (7 features) represented low range 
of COV, 16 had moderate COV and 62 had high COV. For 
T2W GLCM_Idmn, GLCM_Idn, GLCM_Imc1 and Imc2, 
GLCM_MCC, GLDM_ Dependence Entropy, GLRLM_Gray 
Level Nonuniformity and GLSZM_ High Gray Level Zone 
Emphasis (9 features) showed low range of COV, 15 features 
showed moderate COV and 61 had high range of COV across 
all subjects.

In the left and right hippocampus regions of T1W image 4 
features including GLCM_Idn, GLCM_Idmn, GLRLM_Run 
Entropy and GLSZM_Zone Entropy represented low range of 
COV, 13 had moderate COV and 68 had high COV. In T2W 
image 11 features including GLCM_Id, GLCM_Idm, GLCM_
Idmn, GLCM_Idn, GLCM_Imc1, GLCM_Imc2, GLDM_
Dependence Entropy, GLDM_ Large Dependence Low Gray 
Level Emphasis, GLRLM_ Short Run Emphasis, GLRLM_ Gray 
Level Nonuniformity Normalized and NGTDM-Coarseness 
showed low range of COV, 23 features showed moderate and 51 
represented high range of COV across all subjects.

In brain stem region over T1W, GLCM_IDMN, GLCM_Idn 
and GLRLM_Run Entropy (3 features) had low COV, 17 

Table 2: The number of features with no significant 
differences between corresponding left and right volume 
of interests (regions) of normal brain over T1 and T2 
images in each features class (post hoc game Howell 
test results)

Features classes T1 sequence (P) T2 sequence (P)
Fiest order class 9/11 (>0.05) 7/11 (>0.05)
GLCM class 24/24 (>0.05) 21/24 (>0.05)
GLDM class 14/14 (>0.05) 14/14 (>0.05)
GLRLM class 16/16 (>0.05) 16/16 (>0.05)
GLSZM class 0/15 (>0.05) 0/15 (>0.05)
NGTDM class 2/5 (>0.05) 1/5 (>0.05)
NGTDM: Neighboring gray tone difference matrix, GLSZM: Gray level 
size zone matrices, GLRLM: Gray level run-length matrix, GLDM: Gray 
level dependence matrix, GLCM: Gray level cooccurrence matrix
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features represented moderate COV and 65 represented 
high range of COV. For T2W 6 features including GLCM_
Idmn, GLCM_Idn, GLDM_ High Gray Level Emphasis, 
GLDM_ Low Gray Level Emphasis, GLRLM_ High Gray 
Level Run Emphasis and GLRLM_ Low Gray Level Run 
Emphasis had low COV, 21 features represented moderate, 
and 58 features represented high range of COV between 
subjects. Tables 3 and 4 summarize the features with low 
range of COV in the different regions across T1 and T2 
sequences. Additionally, in first order and other texture 
classes features (GLRLM, GLSZM and NGTDM) the results 
of COV were in the high range (upper than 20 percent or 
in some cases upper than 50 percent) in most of the VOIs. 
Tables 3 and 4 represented the list of features with a low 
range of COV and ICC in each region across T1 and T2 
images, respectively.

Inter‑scanner repeatability of radiomics features
Figure 3 illustrated the inter-scanner ICC plot of radiomics 
features in different brain tissue VOIs of T1 and T2 sequences. 
Findings showed the features extracted from T2 sequences 
delighted more repeatable results than T1 sequences among 
all VOIs of brain tissues across different scanners. Based 

on our results, the features extracted from brain stem and 
thalamus VOIs represented more repeatable behaviors with 
higher ICC values compared to other VOIs with ICC values 
of 0.54 ± 0.07, 0.55 ± 0.12 for T1 and 0.62 ± 0.02 and 
0.59 ± 0.01 for T2, respectively.

Overall, across brain regions and considering first order 
features, the range and energy features showed high stability 
while the skewness and uniformity features represented 
the lowest ICC values. According to brain’s VOIs, the 
highest repeatable first order feature of thalamus region was 
range (T1), energy (T2) and lowest repeatable features were 
uniformity (T1 and T2) with ICC values of 0.901 ± 0.03 and 
0.90 ± 0.05, 0.45 ± 0.02 and 0.43 ± 0.01, respectively. For 
putamen, the highest and lowest repeatable first order features 
were energy (T1 and T2), skewness (T1) and uniformity (T2) 
with ICC values of 91.3 ± 0.02, 0.88 ± 0.062, 0.43 ± 0.5 and 
0.40 ± 0.031, respectively. For hippocampus, the highest 
and lowest ICC calculated in range (T1), entropy (T2), 
skewness (T1 and T2) features with values of 0.92 ± 0.03, 
0.0902 ± 0.01, 0.42 ± 0.032 and 0.40 ± 0.001, respectively. 
For brain stem region, the highest repeatable features were 
total energy (T1) and energy (T2) with the ICC values of 

Figure 2: The percentage of radiomics features in different ranges of coefficient of variation (low, moderate and high ranges) across different brain 
regions in (a) T1 and (b) T2 images. COV: Coefficient of variation

b

a
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91.3 ± 0.01 and 0.903 ± 0.02, respectively. In addition, 
the lowest ICC values were obtained for skewness (T1) 
0.44 ± 0.05 and uniformity (T2) 0.41 ± 0.01 in brain stem 
VOI.

Figure 4 illustrates the heat map of inter-scanner ICC values 
distribution for all texture features from GLCM, GLDM, 
GLRLM, GLSZM, and NGTDM classes over seven VOIs in T1 
and T2 sequences. The results demonstrated that the GLRLM 
class features exhibited the highest repeatability compared to 
other texture features, particularly in the T2 sequence across 
all VOIs. The highest inter-scanner repeatable features of 
this class were GLRLM_Gray Level Nonuniformity in T1 
and T2 sequences with ICC 0.94 ± 0.02 (brain stem) and 
0.94 ± 0.14 (brain stem), respectively. The highest repeatable 
GLCM features were GLCM_Imc1, GLCM_Imc2, and 
GLCM_Idmn across most brin regions and T1 and T2 images. 
The lowest repeatable feature in this class was GLCM_Joint 
energy with ICC 0. 37 ± 0.03 for T1 (Thalamus_L) and 
GLCM_Id (Inverse Difference or Homogeneity 1) with 
an ICC of 0.35 ± 0.06 for T2 (putamen_L). Our finding 
represented the highest repeatable feature was GLDM_Gray 

Level Nonuniformity (T1) and GLDM_ Large Dependence 
Low Gray Level Emphasis (T2) with an ICC values of 
0.94 ± 0.11 (Brain stem) and 0.88 ± 0.16 (Hippucampus 
left), respectively. The highest repeatable feature was 
GLSZM_ Size Zone Nonuniformity (T1 and T2) with an 
ICC of 0.86 ± 0.13 (Brain stem) and 0.90 ± 0.05 (Thalamus 
left), respectively. The highest repeatable feature was 
NGTDM_Coarseness in T1 and T2 with an ICC of 
0.92 ± 0.12 (brain stem) and 0.88 ± 0.04 (hippocampus 
left), respectively. The means of selective repeatable 
features (mean ± SD) with low range of COV and high ICC 
in both left and right brain regions are represented in Table 5 
for T1 and T2 images.

dIscussIon

In the present study, we investigated the stability, distribution, 
and reference values of radiomic features across individuals 
and various regions of normal brain MRI images, with respect 
to different MRI scanners. Many studies focused on robustness 
and reproducibility of radiomics features.[4,7,17,18,20,22,23,48] 
Nevertheless, the robustness and reproducibility of 

Table 3: The list of features with low range of Coefficient of Variation and interscanner mean ICC over seven regions of 
normal brain in T1 images

Feature class Feature name Thalamus _L Thalamus _R

COV (%) ICC COV (%) ICC
First order Range 1.52 0.93 4.89 0.88
GLCM Idmn* 1.45 0.91 1.57 0.92

Idn 2.34 0.90 1.89 0.88
Imc2 4.75 0.93 2.36 0.92
Imc1 3.15 0.93 4.31 0.94

GLDM Dependence Entropy 4.39 0.91 3.11 0.90
GLRLM Gray Level Nonuniformity - - 3.23 0.91

Run Length Nonuniformity 3.64 0.90 4.73 0.93

Hippocampus _L Hippocampus _R
GLCM Idn 1.33 0.91 1.45 0.89

Idmn 2.40 0.93 2.2 0.91
GLRLM Run Entropy 4.57 0.87 - -
GLSZM Zone Entropy 1.44 0.81 - -

Putamen _L Putamen _R
GLCM Idmn 1.36 0.91 1.77 0.93

Idn 4.12 0.89 2.08 0.86
Imc2 3.15 0.94 4.99 0.91
MCC - - 5.41 0.87
Joint Entropy 1.9 0.90 - --

GLDM Dependence Entropy 3.67 0.92 3.256 0.90
GLRLM Gray Level Nonuniformity 4.37 0.94 3.67 0.91

Brain stem
GLCM Idmn 3.466 0.94

Idn 2.10 0.91
GLRLM Run Entropy 1.06 0.81
*Features with best performance including COV ≤6% and ICC ≥0.9 in each matrix class for both left and right brain VOIs were bolded. ICC: Intraclass 
correlation coefficient, COV: Coefficient of variation, VOI: Volume of interest, NGTDM: Neighboring gray tone difference matrix, GLSZM: Gray level 
size zone matrices, GLRLM: Gray level run-length matrix, GLDM: Gray level dependence matrix, GLCM: Gray level cooccurrence matrix, GLNU: Gray 
level nonuniformity, DE: Dependence entropy, RLNU: Run length nonuniformity, MCC: Maximal correlation coefficient
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radiomic features, especially in MRI, remain a controversial 
issue.[2,4,7,17,18,20,22,23,47-50] On the other hand, the evaluation of 
robust radiomic features in normal brain MRI images has 
the potential to provide valuable insights into the underlying 
homogeneity or heterogeneity texture, structural, and 
functional characteristics of the brain and help determine 
whether certain features can reliably distinguish normal from 
the pathological conditions. Robust features can be tracked 
to determine whether they correlate with normal cognitive 
functions or even early signs of disease in different brain 
regions.[26,51] In addition, they can be used to identify subtle 
alterations in brain morphology and functions that are not 
visible to the radiologist’s eyes.[14]

In radiomic studies, extracting features from specific clinical 
or phantom image segmentation is common and accurate 
and efficient segmentation is one of the primary challenges 
in extracting robust quantitative imaging features.[52] 
Patch-based segmentation is a commonly powerful tool in 
medical image analysis, particularly in machine learning 
and deep learning where an image is divided into smaller, 
localized regions called “patches.”[32] Each patch is processed 
individually, often using deep learning algorithms, to classify 
or segment the image based on its features.[32] Through this 
approach, local variations in image content can be captured 
in detail in smaller regions.[33,53] It is especially useful 
when dealing with large, complex images, as it focuses on 

Table 4: The list of features with low range of Coefficient of Variation and inter‑scanner mean ICC over seven regions of 
normal brain in T2 images

Feature class Feature name Thalamus _L Thalamus _R

COV (%) ICC COV (%) ICC
GLCM Idn* 2.75 0.91 4.56 0.90

Imc2 2.36 0.96 4.2 0.92
GLRLM Run Lengt Nonuniformity 4.75 0.90 - -
GLDM Dependence Entropy 4.67 0.91 4.50 0.92
GLSZM Large Area Emphasis - - 2.85 0.82

Hippocampus _L Hippocampus _R
GLCM Id 3.55 0.89 - -

Idm 1.38 0.79 - -
Idmn 2.47 0.91 2.23 0.90
Idn 2.17 0.90 1.07 0.83
Imc1 3.78 0.91 3.53 0.92
Imc2 4.01 0.92 3.45 0.91

GLDM Dependence Entropy 3.43 0.90 2.88 0.92
Large Dependence Low Gray Level Emphasis - - 4.73 0.88

GLRLM Short Run Emphasis 3.29 0.85 - -
Gray Level Nonuniformity 4.71 0.90 3.09 0.90

NGTDM Coarseness 3.66 0.88 - -

Putamen _L Putamen _R
GLCM Idmn 1.87 0.90 2.24 0.89

Idn 4.36 0.87 3.02 0.81
JointEntropy 3.93 0.92 - -
MCC 4.02 0.90 - -
Imc1 3.24 0.90 1.52 0.94
Imc2 4.01 0.91 2.56 0.93

GLDM Dependence Entropy - - 2.70 0.89
GLRLM Gray Level Nonuniformity 4.90 0.90 3.76 0.91
GLSZM High Gray Level Zone Emphasis 3.09 0.87 - -

Brain stem
GLCM Idmn 3.30 0.93

Idn 1.22 0.88
GLDM High Gray Level Emphasis 2.77 0.91

Low Gray Level Emphasis 4.40 0.90
GLRLM High Gray Level Run Emphasis 3.15 0.81

Low Gray Level Run Emphasis 3.54 0.78
*Features with best performance including COV ≤6% and ICC ≥0.9 in each matrix class for both left and right brain VOIs were bolded. ICC: Intraclass 
correlation coefficient, COV: Coefficient of variation, VOI: Volume of interest, NGTDM: Neighboring gray tone difference matrix, GLSZM: Gray level 
size zone matrices, GLRLM: Gray level run-length matrix, GLDM: Gray level dependence matrix, GLCM: Gray level cooccurrence matrix, GLNU: Gray 
level nonuniformity, HGLE: High gray level emphasis, DE: Dependence entropy, LGLE: Low gray level emphasis, MCC: Maximal correlation coefficient
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localized features, while reducing computational demands by 
processing smaller portions independently.[54] This method 
of segmentation is fast, reduces inter-and intra-observer 
variability, eliminates human bias, ensures that large datasets 
are segmented consistently, and resulting in more reliable 
and reproducible results for studies involving multiple 
cases.[54] Moreover, capturing subtle differences in the region’s 
microenvironment that would otherwise be missed by manual 
segmentation, can improve the ability to detect and analyze 
heterogeneity of regions, leading to better predictive models 
and prognostics.[33,53] According to the advantages mentioned 
and to decrease the effects of segmentation methods and 
inter-observer variability of volume segmentation on feature 
values, the present study used fast automated nonoverlapping 
patch-based segmentation. This is the first radiomic 
framework, to our knowledge, that applied new patch-based 
segmentation and divided each slice of T1 and T2 images 
into nonoverlapping grid patches which allowed extracting 
features of the normal brain regions and VOIs with same size 
and same shape independently of their function.

Our results reconfirmed that radiomic features extracted from 
T2 sequences had more repeatable (high ICC) results than T1 
sequences among all VOIs of brain tissues across different 
scanners. Lee et al. also showed that the overall repeatability 
of T2-weighted images (41 radiomics features were highly 
reproducible) was slightly upper than of T1-weighted 
images (39 highly reproducible radiomic features) for the 

volunteer in several scans with various scanning protocol 
parameters. T1-weight images are often used for anatomical 
detail and can be enhanced with contrast agents to highlight 
abnormalities. The repeatability of radiomic features in T1W 
can be affected by physiological processes and thermal noise, 
which might lead to a variability. In other hand, T2-weighted 
images are useful for detecting edema, inflammation, and 
fluid accumulation. The repeatability of radiomic features 
in T2 images might be more consistent since T2 values are 
less susceptible to physiological fluctuations and thermal 
noise compared to T1. However, T2 values can be influenced 
by magnetic susceptibility effects, which might introduce 
variability in certain contexts.

In addition, we found out features extracted from brain stem 
and thalamus VOIs (T1 and T2) represented more repeatable 
behaviors with higher ICC values compared to other VOIs 
and also thalamus (T1) and hippocampus (T2) demonstrated 
more percentages of inter-individual stable features with 
low COV. Low values of COV and high ICC suggest that 
these brain regions have consistent imaging characteristics 
across different subjects and different scanners and were less 
affected by scanner-induced variations that may more reliably 
represent the tissue characteristics of these areas. Clinically, 
this stability indicates that the radiomic features derived 
from these regions can be reliably used for diagnostic or 
prognostic purposes, and it may reflect the texture similarity 
and functional significance of these regions between subjects, 
that play crucial roles in cognitive processes, memory, and 
sensory integration. Stable radiomic features in these regions 
can help improve the accuracy of assessing brain pathology 
and monitoring disease progression. However, further 
research is needed to confirm the exact relationship between 
COV and ICC values and the texture characteristics.

When assessing the inter-individual stability of MRI-based 
radiomic features, first order was the least inter-individual 
robust classes of all feature classes. Notably, only one 
first-order feature (range for the thalamus regions in T1W) 
exhibited a low COV compared to the other features. 
Interestingly, the inter-scanner repeatability findings 
delighted with three first order features of 12 first order 
features represented high ICC (ICC ≥ 0.90). Our results 
showed the high repeatability for range (T1), total energy (T1) 
and energy (T2) for all VOIs across different scanners which 
is in consist with other studies.[7,17-20,22] In addition, our 
findings of clinical images dedicated poor ICC for skewness 
and moderate ICC for kurtosis features (ICC = 0.42 and 
0.68, respectively) in T1 and moderate stability for these 
features in T2 sequences (ICC = 0.57 and 0.71, respectively). 
In comparison with our findings, an inter-scanner phantom 
based study has been shown that the range feature was the 
highest repeatable first-order feature with a mean ICC of 
0.93 ± 0.2 across all phantom models and the lowest repeatable 
first-order feature was uniformity with a mean ICC of 
0.46 ± 0.26. Furthermore, they have reported that first-order 

Figure 3: Inter‑scanner intraclass correlation coefficient plot of radiomics 
features across different brain regions in (a) T1 and (b) T2 images. 
ICC: Intraclass correlation coefficient

b
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Figure 4: The heatmap of inter‑scanner intraclass correlation coefficient (ICC) for texture features across different brain volume of interests (VOIs) 
in (a) T1W and (b) T2W sequences. gray level run‑length matrix and gray level cooccurrence matrix classes showed more stable features with higher 
values of ICC across different seven brain VOIs compared to other texture classes in both magnetic resonance imaging sequences. GLCM: Gray 
level cooccurrence matrix, GLDM: Gray level dependence matrix, GLRLM: Gray level run‑length matrix, GLSZM: Gray level size zone matrices, 
NGTDM: Neighboring gray tone difference matrix

b
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features were the most robust with eight of 12 features having 
ICCs > 0.8 in MRI images.[25] First orders characterize the 
frequency distribution of voxels within VOIs. More complex 
features, such as skewness and kurtosis, provide insights into 
the shape of the intensity distribution. Skewness indicates 
the asymmetry of the distribution curve relative to the mean, 
while kurtosis describes the tail of the distribution compared 
to a Gaussian distribution, often influenced by outliers. 
Other features encompass histogram entropy and uniformity, 
also referred to as energy.[21] According to the mixed results 
obtained, such radiomics data should be used with caution.

With regard to both robust parameters ICC and COV, our 
results showed that the robustness of the MRI radiomics 
features across the different scanners and different subjects 
varies depending on radiomics features. The present results 
showed only seven textural features in T1W and 8 textural 
features in T2W from GLCM, GLDM, and GLRLM 
classes represented stability across inter-scanners and 
inter-individual with ICC ≥ 0.9 and COV ≤ 6% in both left 
and right brain regions. These selected features included 
Idmn, Idn, Imc1 and Imc2 (all in T1 and T2) of GLCM 
class, Dependence Entropy (T1 and T2), Low Gray Level 
Emphasis (T2) and high Gray Level Emphasis (T2) features 
from GLDM and Gray Level Nonuniformity (T1 and T2), Run 
Length Nonuniformity (T1) of GLRLM class. The majority of 
selected features are the same between T1 and T2 sequences. 
In consist of our results, Lee et al. has been reported high 
ICC for Imc1 (T2), and Idmn (T2) in healthy volunteer 
images across different MRI scanning setting in T1 and T2 

images.[19] In another study, Pandey et al. demonstrated poor 
inter-scanner reproducibility for most of the radiomic features 
in FLAIR images, with ICC < 0.5 for 82% gray matter and 
78.5% white matter features.[27]

From GLCM class, Idmn and Idn are measures of the local 
homogeneity of an image, indicating how uniform or smooth 
the texture is. Higher values suggest more uniform textures, 
while lower values indicate greater heterogeneity,[45,55] Imc1 
and 2 features quantified the complexity of the texture and 
the degree of correlation between neighboring pixels.[45,55] In 
GLDM class, Low Gray Level Emphasis and high Gray Level 
Emphasis calculate the distribution of low gray-level values 
and higher gray-level values in image, respectively.[45,55] 
In GRLM class, Gray Level Nonuniformity measures 
the similarity of gray-level intensity values in the image, 
Run Length Nonuniformity calculate the similarity of run 
lengths throughout the image, with a lower value indicating 
more homogeneity among run lengths in the image.[55] The 
majority of these features indexes the homogeneity (or 
heterogeneity) of brain tissue over the brain regions.[56] Our 
results are consistent with other studies that resulted that 
most of our selected features were found to be moderate and 
high robustness in MRI images.[18,19,21,22,30] Rai et al. showed 
decreased stability of textures features with increasing the 
shape complexity of the models. As they suggested some 
texture parameters may be less robust for textures with 
complex shapes and therefore its crucial to consider in an 
MRI-based radiomic.[25] Furthermore, according to the effect 
of location VOIs on textures results it is suggested to consider 

Table 5: The mean values and standard deviation (mean±standard deviation) of robust features with low coefficient of 
variation and excellent intraclass correlation coefficient in both left and rigt hemispheres over seven volume of interests 
of normal brain in T1 and T2 images

Brain regions (VOIs) (n=290 subjects) Brain 
stemThalamus_L Thalamus_R Putamen_L Putamen_R Hippocampus_L Hippocampus_R

T1 sequences
GLCM_Idmn 0.986±0.06 0.990±0.005 0.978±0.002 0.988±0.006 0.984±0.01 0.986±0.08 0.992±0.01
GLCM_Idn 0.939±0.021 0.991±0.001 - - - - 0.953±0.05
GLCM_Imc1 0.1611±0.021 0.1624±0.001 - - - - -
GLCM_Imc2 0.542±0.021 0.537±0.001 0.524±0.001 0.593±0.009 - - -
GLDM_DE 5.593±0.021 5.635±0.001 5.511±0.001 5.646±0.009 - - -
GLRLM_RLNU 500.43±0.02 472.80±0.1 - - - - -
GLRLM_GLNU - - 273.71±0.02 254.54±0.011 - - -

T2 sequences
GLCM_Idmn - - - - 0.989±0.01 0.990±0.05 0.994±0.23
GLCM_Idn 0.929±0.021 0.9306±0.001 - - - - -
GLCM_Imc1 - - 0.246±0.001 0.212±0.009 0.250±0.08 0.3804±0.05 -
GLCM_Imc2 0.578±0.021 0.569±0.001 0.870±0.001 0.782±0.009 0.825±0.002 0.976±0.03 -
GLDM_DE 6.126±0.021 6.253±0.001 - - 6.158±0.01 6.55±0.03 -
GLDM_HGLE - - - - - 1.97±0.04
GLDM_LGLE - - - - - 0.913±0.01
GLRLM_GLNU - - - - 26.326±0.41 26.928±0.6 -

Idmn: Inverse difference moment normalized, Idn: inverse difference normalized, Imc1: Informational measure of correlation 1, Imc2: Informational 
measure of correlation 2, DE: Dependence entropy, RLNU: Run length nonuniformity, GLNU: Gray level nonuniformity, HGLE: High gray level 
emphasis, LGLE: Low gray level emphasis, VOI: Volume of interest
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spatial location of tumor and other regions of interest and 
choose similar spatial locations of segmentation consistently 
for all the subjects under consideration in MRI-based 
radiomic study of brain.[27]

Low COV and high ICC obtained in these textural features 
showed they are stable and reliable texture features across 
different brain regions. High ICC Indicates good consistency 
across scanners, suggesting the features were robust against 
scanner-specific variations, these features may be less affected 
by noise or variations in imaging parameters. Furthermore, 
a low COV indicated that the features do not vary much 
across different samples or within the same sample under 
different conditions and reliably represented the underlying 
tissue characteristics.

It was challenging to compare the features obtained from 
GLSZM and NGTDM in the current study because different 
preprocessing analyses have been shown to affect feature 
values like bin size and resolution. Because of these 
differences, it might not be possible to replicate these 
values.[25,56,57] These features require further investigation into 
a huge sample size to prove the performance of them across 
different protocol settings or image processing.

Generally, different scanner hardware, software, and 
acquisition parameters (e.g., field strength and voxel size) 
can result different contrast, noise, and spatial resolution and 
consequently inconsistent segmentation of brain structures 
by affecting the ability to accurately define boundaries 
between adjacent structurer.[58] Voxel intensity values can 
also be affected by these differences, possibly hiding or 
simulating pathological alterations in the healthy tissue.[59] 
It can be challenging to standardize voxel intensities across 
scanners due to variations in hardware calibrations and 
settings, which can introduce systematic biases into radiomics 
analyses.[60] In radiomics, the effects of inter-scanner 
differences in intensity measures (e.g., mean) and in texture 
measures (e.g., contrast) can lead to instability in feature 
values. High-sensitivity features may not generalize well 
across datasets, potentially reducing robustness and model 
prediction accuracy. It is important to evaluate the robustness 
of features across different scanners to make them more 
clinically useful.[61] The results of Stamoulou et al. suggested 
normalization techniques such as histogram matching, z-score 
normalization, or ComBat harmonization in multicenter 
studies can further reduce inter-scanner variability and 
improve radiomic analysis reliability for MRI, which is 
characterized by an absence of a standard intensity scale and 
well-defined units.[62]

Overall, the strength of our radiomics approach is raised 
from the analysis of different regions of brain tissue 
including thalamus, putamen, hippocampus, and brain stem 
in clinical routine MRI images despite one single site VOI 
and potentiality of robust radiomic features to capture the 
brain structures. Indeed, our results proposed the selective 
inter-individual and inter-scanner repeatable texture features 

across healthy brain structural MRI images and showed their 
baselines and reference values in healthy brain different 
left and right VOIs which can help in identifying key 
characteristics that can aid in the diagnosis of neurological 
conditions or diseases.

The limitations of our study included a relatively small 
sample size and the size of VOI patches. The small sample 
size may restrict the generalizability of the results and 
increase the risk of type II errors. In addition, the effects of 
different sizes of VOIs and functional-based segmentation 
were not considered in this study, which potentially affects 
the features distributions. These results were obtained by 1.5 
T MRI machine and should not be compared with the result of 
3T MRI machine. Future studies should point out the robust 
radiomic feature distribution and baselines in the related 
to age, sex, different segmented anatomical and functional 
regions of the brain and the correlation of reference feature 
values to image acquisition and protocols to provide further 
insight into the clinical relevance of normal brain radiomic 
findings. Finally, it must be noted that the results obtained 
in this study are specific to normal brain MRI images. 
Pathological conditions, such as tumors and lesions or even 
functional disorders, may exhibit distinct shape, first order 
and textural feature values that can aid in their identification 
and characterization. Therefore, the findings of this study 
should not be generalized to abnormal brain MRI images.

conclusIon

Our novel radiomics approach has been used to assess the 
robustness, distribution, and reference values of T1 and T2 
MRI radiomic features over the various VOIs of healthy 
brains. We focused on the extraction features from the same 
nonoverlap 3D patches and the same acquisition parameters 
to investigate the difference between inter-and intra-feature 
classes in left and right-healthy brains to improve our 
understanding of brain structure. The outcomes of the present 
study illustrate the varied distribution of features across 
different categories within various healthy brain regions. 
Notably, among the six feature classes, six features of the 
GLCM, GLRLM, and GLDM classes exhibited more robust 
and consistent outcomes, and the mean value of these features 
was reported as a baseline for normal brains. Our results 
dedicated the importance of spatial location of regions of 
interest in the repeatability of MRI-based radiomic features. 
Understanding the stable features and their distribution in a 
normal brain could serve as a baseline or reference point for 
comparison with abnormal or diseased regions, optimizing 
treatment strategies while minimizing the impact on normal 
tissue, developing predictive models, and customizing 
assessments for different patients to personalized approach 
for accurate diagnosis and treatment planning.
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