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Abstract: Reactive oxygen species (ROS) are molecules involved in signal transduction pathways
with both beneficial and detrimental effects on human cells. ROS are generated by many cellular
processes including mitochondrial respiration, metabolism and enzymatic activities. In physiological
conditions, ROS levels are well-balanced by antioxidative detoxification systems. In contrast, in
pathological conditions such as cardiovascular, neurological and cancer diseases, ROS production
exceeds the antioxidative detoxification capacity of cells, leading to cellular damages and death.
In this review, we will first describe the biology and mechanisms of ROS mediated oxidative stress in
cardiovascular disease. Second, we will review the role of oxidative stress mediated by oncological
treatments in inducing cardiovascular disease. Lastly, we will discuss the strategies that potentially
counteract the oxidative stress in order to fight the onset and progression of cardiovascular disease,
including that induced by oncological treatments.

Keywords: antioxidative treatment; cardiotoxicity; cardiovascular disease; endothelial dysfunction;
oncological treatments; oxidative stress; ROS

1. Introduction

Free radicals, including radical oxygen species (ROS) and reactive nitrogen species
(RNS), are products of cellular metabolism involved in cellular redox regulation and phys-
iological functions such as immunity, differentiation, mitogenic response and cytokine
production [1,2]. In cellular metabolism ROS, both free radicals such as superoxide (O2

−)
and non-radical species such as hydrogen peroxide (H2O2) display beneficial or detrimental
effects since they stimulate stress response and cause oxidative damage and tissue dys-
function. According to the “mitohormesis” theory [3], low or moderate levels of ROS have
beneficial effects on biological processes. However high concentration of these molecules
generates oxidative stress by overcoming the efficiency of enzymatic and non-enzymatic
antioxidant systems [1,2]. The imbalance between ROS production and capability of an-
tioxidant systems results in indiscriminate damage to all cellular constituents including
DNA, proteins, and cell membranes. As a result, oxidative stress plays a crucial role in
determining cell fate [4,5].
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The biology of oxidative stress is very complex and multiple mechanisms are in-
volved [6]. However, irrespective of the mechanism, oxidative stress causes the onset of
many types of disease such as cardiovascular disease (CVD) and cancer [7,8] as well as
modulation of cancer treatment-related outcomes [1,2]. Excessive ROS levels have been
linked to tumor initiation, growth and progression [1]. In addition, malignant disease
expresses higher levels of ROS production as compared to normal tissues because of in-
creased metabolic rate, oncogene activation and defective vasculature. The latter leads to
the generation of hypoxic areas [2]. Lastly, cytotoxicity of chemotherapeutic agents can be
mediated by ROS generation leading to induction of apoptosis or necrosis in both normal
and cancer cells by exceeding the antioxidant capacity of the tissue [2].

In this review, we will first summarize the biology and mechanisms of ROS medi-
ated oxidative stress, underlying the role of ROS in the onset and progression of CVD.
Second, we will review oncological treatments which induce CVD, emphasizing the cru-
cial role of oxidative stress in mediating this type of toxicity. Lastly, we will discuss the
strategies potentially useful to counteract the oxidative stress in order to fight the onset
and progression of CVD, including that induced by oncological treatments.

2. Biology and Mechanisms of Oxidative Stress

Mitochondria are intracellular organelles which represent the “powerhouses” of the
cells. Their functionality is crucial especially in post-mitotic tissues such as the heart.
In heart tissue a huge amount of energy is required. This energy is provided in the form of
adenosine triphosphate (ATP) that is synthesized by mitochondria. Mitochondria produces
ATP starting from substrates such as fatty acids, glucose and amino acids, in a process
called oxidative phosphorylation. The latter occurs in a series of complexes, named electron
transfer chain (ETC), that transfers electrons from electron donors to electron acceptors
via redox reactions. During these reactions, ROS are continuously produced through an
oxidative metabolism [9].

Conditions causing mitochondrial dysfunction are associated with an increased ROS
production. Mitochondrial dysfunction is determined to a large extent by genomic and
mitochondrial DNA instability as well as by epigenetic alterations [10,11]. DNA instability
is strictly correlated to several syndromes linked to premature cardiovascular aging [12].
Moreover, impairments in ETC not only affect the ATP synthesis, but compromise several
mitochondrial functions including calcium and redox homeostasis, leading to calcium
overload and redox balance alteration [13]. In cardiomyocytes, calcium overload leads to
cellular damage and death by increasing mitochondrial ROS production [14]. Changes in
the redox state homeostasis influence apoptotic events to a variable extent depending on
cell types and tissues. Heart and brain are mainly affected with an increased incidence of
heart failure and neurodegeneration that are often inter-connected [15,16].

Mitochondria produce free radicals from various substrates by utilizing multiple
enzymes such as xanthine oxidase and NADH/NADPH oxidases (NOXs). These enzymes,
expressed in endothelial cells, cardiomyocytes and other cardiovascular cells, continuously
produce ROS. In addition, in presence of various stimuli such as cyclic stretch, inflammation
and pharmacological therapy these and other enzymes such as the cytochrome p450s and
the peroxidases increase the amount of ROS. As a result, excessive ROS production causes
the onset and progression of cardiac dysfunction and CVD [17].

Several alterations of CVD have in common endothelial dysfunction, a condition
determined by oxidative stress accumulation and decline in nitric oxide (NO) bioavailability.
The latter is caused by a decrease of the expression and activity of endothelial NO synthase
(eNOS), alteration of cellular signaling with a consequent paucity of eNOS substrates and
co-factors, and ROS-mediated NO degradation. NO is inactivated by ROS, mainly O2

−·,
in a reaction that is counteracted by the antioxidant enzyme superoxide dismutase (SOD).
SOD largely contributes to maintain the delicate NO/O2

−· balance [18]. Alterations in the
expression and/or activity of SOD as well as of endogenous antioxidant enzymes such as
catalase and glutathione peroxidase (GSH-Px) also cause oxidative stress that contributes
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to cell and tissue dysfunction [19]. Several studies reported a negative correlation between
systemic antioxidant capacity and development of diseases, primarily CVD [7].

3. Oncologic Treatment Related Cardiotoxicity: The Role of Oxidative Stress

Several anticancer agents are known to cause reversible and/or irreversible cardiomy-
opathies as well as blood pressure alterations, arrhythmias, vasculitis and other types of
CVD [20]. In addition, cardiovascular toxicity represents a dose limiting factor for many
anticancer treatments [21]. Cytotoxicity from anticancer agents in both cancer and normal
cells can be mediated by both a direct cytotoxic effect and an increased ROS production.
As already mentioned, ROS production is mitigated by antioxidant enzymes. Several lines
of evidence suggest that cancer tissues upregulate the expression of antioxidant enzymes
as a protective mechanism to counteract an increased oxidative stress in an adaptive man-
ner [21]. This protective mechanism seems to be less effective in normal tissues including
the heart as compared to cancer cells. As a result, cardiac cells are more susceptible to cell
alterations as compared to cancer cells. Even more the specific susceptibility of the cardiac
cells to the oxidative stress induced by anticancer agents is also affected by the relatively
low levels of antioxidant enzymes [22].

Understanding the mechanisms of drug-related cardiotoxicity becomes crucial to
design novel strategies in order to promote an effective cardio protection, without com-
promising the efficacy of anticancer treatments. Due to ethical reasons and difficulty in
obtaining patients’ myocardial biopsies most of the available data essentially comes from
in vivo and in vitro experimental models. In vivo studies, involving rodents and non-
rodents species, can mimic chronic cardiotoxicity observed in clinical practice as they allow
repeated drug administrations and analysis of tissues for histopathologic alterations [23].
Anthracyclines-related cardiotoxicity has been extensively studied in C57Bl/6 and BALB/C
mice which are the most characterized strains used in the laboratory [24]. Afterward, a va-
riety of oncological agents (both cytotoxic and targeted compounds) has also been found to
induce cardiovascular alterations during preclinical studies by using mouse, rat and rabbit
models [23].

In the context of oxidative stress-related cardiotoxicity, animal models also allow the
cardioprotective effects of several substances to be discovered. For instance, Qi et al. demon-
strated that cardamonin, a flavonoid isolated from several herbs, alleviated doxorubicin-
induced cardiotoxicity in C57BL/6 J mice. Specifically, cardamonin treatment was effective
in counteracting oxidative stress in the hearts of doxorubicin-treated mice by increasing
antioxidant and decreasing oxidant species [25]. Chakrabort et al. demonstrated that an
atypical G protein Gb5 was responsible to initiate multiple pathologic signaling pathways
involved in heart damage associated not only to anthracycline but also taxane, and fluo-
ropyrimidine treatment. In vascular muscle cells treated with these chemotherapeutics,
scavenging of ROS reduced apoptosis in a Gb5-dependent manner and Gb5 knockdown
in mice, reduced hallmarks of the failing heart including proinflammatory cytokines and
profibrotic factors [26].

ROS accumulation affects cardiac homeostasis through the alteration of different
cellular components. Therefore, in vitro studies have been carried out in different cell types
including endothelial cells of the endocardium and coronary vessels, smooth muscle cells,
cardiac fibroblasts and cells with progenitor characteristics [27].

The use of cell cultures allows human heart physiology to be mimicked, and offers the
advantages of gene manipulation, high throughput, ease of use, and low costs [22]. Recently
human pluripotent stem cell (hPSC)-derived cardiomyocytes have been recognized as a
helpful tool for assessing cardiotoxicity of anticancer therapeutics. Through such an in vitro
model, it has been shown that ROS production increases already 24 h after exposure
to doxorubicin at concentrations that are significantly lower when compared to those
measurable in patients’ serum levels after a single injection. Notably, repeated doxorubicin
exposure irreversibly reduces ATP levels thereby causing mitochondrial dysfunction which
cannot be restored after drug removal.
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The hPSC-based in vitro models has been successfully used also to assess cardiac
safety of other classes of anti-cancer drugs such as signaling inhibitors and also to compare
the related cardiotoxic effects to each other. It has been demonstrated that sunitinib,
crizotinib, nilotinib, and erlotinib cause an increase of ROS generation and apoptosis with
consequent induction of arrhythmic beating [28].

Unfortunately, the results obtained in animal models are still difficult to fully translate
to humans. One of the most important reasons is the potential development of sponta-
neous cardiovascular alterations in non-treated animals which represents an important
confounder for cardiovascular safety assessments. Moreover, the animals usually used in
preclinical studies are young and healthy. This limits the occurrence of the aforementioned
confounder and does not allow the experimental data to be efficiently translated into older
patients [23]. Undoubtedly, also in vitro models have several limitations mainly the lack of
multicellular interactions and tissue organization resembling physiology. For these reasons,
despite both in vitro and in vivo models represent precious tools to clarify the mechanisms
of cardiotoxicity associated to oncological agents, it is crucial to integrate pre-clinical and
clinical data [29].

3.1. Anthracyclines

Anthracyclines are potent cytotoxic drugs that inhibit cancer growth through mul-
tiple mechanisms including promotion of ROS. ROS destroy nucleic acids and other
biomolecules, inhibiting DNA synthesis as well as topoisomerase II activity [30]. An-
thracyclines are currently approved for the treatment of both hematological and solid
malignancies. Doxorubicin, daunorubicin, epirubicin and idarubicin are the most common
anthracyclines utilized in oncology. Doxorubicin and daunorubicin were the first to be used
in clinical practice. Epirubicin, a stereoisomer of doxorubicin, has an increased volume
of distribution and longer half-life as compared to doxorubicin. Idarubicin, a deriva-
tive of daunorubicin, is more lipophilic and has a higher cellular uptake as compared to
daunorubicin [31].

The clinical use of anthracyclines is often limited by their related cardiotoxicity, well
described by a rich body of literature [31]. The incidence of cardiotoxicity during an-
thracycline administration ranges from 0.9% to 26.0%. This incidence depends by the
cumulative dose of anthracycline used and patient characteristics such as cardiovascular
risk and age. Use of anthracyclines may lead to acute, chronic or late-onset cardiotoxic-
ity. Acute cardiotoxicity includes arrhythmias and elevation of levels of brain natriuretic
peptide and troponin. These adverse events are reversible in a week after discontinuation
of treatment and the chemotherapy agent may be resumed later. Chronic cardiotoxicity
results in cardiomyopathy and usually occurs within one year of treatment. Late-onset
cardiotoxicity occurs from months to years after treatment. Patients present a progres-
sive decline in ejection fraction that leads to decompensation, valvular damage or worse
arrhythmias [31,32].

Thus far, the mechanism of anthracycline-related cardiotoxicity remains unclear, and
is thought to be multifactorial and include ROS production. The most widely accepted
hypothesis is that anthracyclines interfere with redox cycling and increase oxidative stress
in cardiac cells where excessive ROS production causes mitochondrial dysfunction, cal-
cium overload, DNA damage and lipid peroxidation of cardiac membranes (Figure 1A).
Specifically, the quinone moiety of anthracyclines are susceptible to various cellular oxide
reductases which catalyze univalent reduction to a semiquinone radical. In myocardial cells,
this is predominantly achieved via an enzymatic pathway involving NADPH-cytochrome
P450 reductase, a flavoprotein of the mitochondrial ETC. Successively, in the presence
of molecular oxygen, the semiquinone auto-oxides generating the parent anthracycline
and O2

− that are converted in oxygen by the semiquinone or undergo dismutation to
form H2O2, either spontaneously or catalyzed by SOD. H2O2, via Fenton and Haber-Weiss
reaction, reacts in turn with the transition metal ion Fe2

+, toxic to cells as catalyst in the
formation of free radicals. This forms the anthracycline-ferrous complex that is converted



Life 2021, 11, 105 5 of 27

to anthracyclines-ferric complex by GSH-Px in the presence of flavoproteins. Lastly, gen-
eration of toxic hydroxyl radicals (OH−) triggers DNA and mitochondrial damage, lipid
peroxidation, necrosis, apoptosis and finally leads to cell death. Vasquez et al. demon-
strated that also peroxynitrite production and thus RNS generation plays a role in the
cardiotoxicity [33]. Specifically, doxorubicin binds to the reductase domain of eNOS causing
an increase in O2

− and a decrease in NO formation, bringing to endothelium-dependent
and -independent vasoconstriction. From the combination of O2

−, H2O2 and free iron,
lipid peroxidation may be initiated [30–32].
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Figure 1. Schematic representation of the molecular mechanisms underlying cytotoxic drugs-related cardiotoxicity. (A) An-
thracyclines undergo redox cycling catalyzed by NADPH-Cytochrome P-450 reductase. The one-electron (1e−) reduction
of the quinone compound leads to the formation of semiquinone intermediate, that in presence of molecular oxygen
auto-oxides generating the parent anthracycline and O2

−·. O2
−· is either transformed to RNS or dismutated to H2O2 by

SOD. Subsequently, H2O2 is eliminated by CAT and GSH-Px or may react, in presence of O2
−·, with the ion Fe2

+, via
the Fenton and Haber-Weiss reaction, giving rise to reactive oxygen species (ROS). ROS lead to DNA, lipid and protein
damage and apoptosis induction. In addition, anthracyclines can bind to NOS, causing an increase of RNS, particularly
the ONOO−, highly harmful for cells. (B) Antimetabolites increase the levels of ROS/RNS mainly in cardiomyocytes and
endothelial cells. In addition, antimetabolites can reduce the enzymatic activities of antioxidant enzymes. As a result, there
is an imbalance between the production of ROS/RNS and the availability of antioxidants. This generates oxidative stress
causing the oxidation of macromolecules, thus disturbing cellular functions. Antimetabolites, especially 5-FU, also lead
to NOS dysregulation with reduced NO availability and increased RNS along with endothelin-1 upregulation and the
activation of protein kinase C. These processes lead to endothelium-dependent and -independent vasoconstriction, and
potentially to coronary spasm. (C) Finally, platinum-based antineoplastic agents induce oxidative stress by impairment of
mitochondrial metabolism and nuclear activity, promoting apoptosis and cell death by BAX induction. In cardiomyocites,
platinum-derivatives, primarily cisplatin, cause mitochondria dysfunction associated to increased caspase activity, ulti-
mately leading to apoptosis. Abbreviations: CAT, catalase; GSH-Px, glutathione peroxidase; H2O2, hydrogen peroxide;
NOS, nitrous oxide synthase; O2

−·, superoxide anion radical; ONOO−, peroxy-nitrite; RNS, reactive nitrogen species; ROS,
reactive oxygen species; SOD, superoxide dismutase.

3.2. Taxanes

Taxanes, belonging to a class of diterpenes with antineoplastic effects, are plant al-
kaloids. They are microtubule-stabilizing compounds that inhibit mitosis of cancer cells
and interfere with a number of biochemical pathways to induce apoptosis and cancer cell
death [34,35]. Among all the classes of antineoplastic agents, taxanes are one of the most
widely used representing a cornerstone of chemotherapy. Taxanes are currently utilized
in the management of multiple cancer types and in different setting of cancer treatment
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including adjuvant, neoadjuvant and metastatic setting. Paclitaxel, docetaxel and cabazi-
taxel are the most common taxanes utilized in oncology [35]. Taxanes cause cardiotoxicity
in 2.3% to 8.0% of treated patients [36]. Typically, the risk of cardiotoxicity with taxanes
is highest when they are used in combination or sequentially with anthracyclines [37].
This combinations is shown to induce high response rates in women with metastatic breast
cancer, particularly when the two drugs are administered almost concomitantly [38,39].
Unfortunately, the clinical use of doxorubicin-paclitaxel combinations has been limited by
an unexcepted high incidence of cardiotoxicity presumably because the taxanes act through
an allosteric modulation of NADPH-dependent cytoplasmic reductases. As previously
described, these enzymes play a major role in converting doxorubicin to its secondary
alcohol metabolite doxorubicinol in the heart [37]. Doxorubicinol is an alcohol metabolite
free radical that reduces oxygen to O2

− and its dis-mutated product H2O2. In the light
of the low cardiac antioxidant mechanisms of hearth tissue as compared to other tissues,
such ROS might play a role in inducing cardiotoxicity through mitochondrial dysfunction
along with DNA damage, apoptosis, and lipid peroxidation. A less severe aggravation of
cardiotoxicity is observed when taxanes are combined with epirubicin [40].

3.3. Antimetabolites

Antimetabolites such as fluoropyrimidines are cytotoxic drugs that can also induce
cardiotoxicity. Fluoropyrimidines include capecitabine and 5-fluorouracil (5-FU). Both are
currently approved for the treatment of several tumors including head and neck, breast,
esophageal, gastric, pancreatic and colorectal cancer [41]. Capecitabine is converted into its
active form, 5-FU, preferentially within tumors, by an enzyme expressed in both atheroscle-
rotic plaques and cancer cells. Myocardial ischemia is the strongest risk factor for fluoropy-
rimidine related cardiotoxicity [42]. 5-FU, administered intravenously, has a short half-life,
but active metabolites concentrate in cardiac and cancer cells, resulting in a prolonged expo-
sure to the drug. The incidence of cardiotoxicity by 5-FU ranges from 1.0 to 18.0% [43], with
a mortality rate between 2.0 and 13.0% [44]. In vitro and in vivo experiments demonstrated
that fluoropyrimidines related cardiotoxicity is mediated by oxidative stress generation
in cardiomyocytes as well as in endothelial cells [41–46] (Figure 1B). Specifically, ROS like
O2

−, are under normal physiological conditions cleared by antioxidant systems, such as
SOD and GSH-Px. O2

− is dis-mutated to H2O2 in a process catalyzed by SOD, and H2O2 is
then eliminated by catalase or GSH-Px. The activities of SOD and GSH-Px are impaired by
5-FU treatment demonstrating a reduced antioxidant capacity. If not eliminated by cellular
antioxidant systems, O2

− can generate the highly reactive and toxic OH− through the
Haber–Weiss reaction catalyzed by iron. Increased ROS levels inside cells lead to oxidation
of macromolecules including lipids, nucleic acids and proteins, thereby disturbing cellular
functions. Moreover, 5-FU treatment causes eNOS dysregulation with inhibition of NO
synthase and enhanced generation of RNS along with endothelin-1 upregulation and the
activation of protein kinase C. This leads to endothelium-dependent and -independent
vasoconstriction and eventually to coronary spasm [44,47].

3.4. Platinum-Based Antineoplastic Agents

Platinum-based antineoplastic drugs (informally called platins due to their coordina-
tion complexes of platinum) are also described as “alkylating-like” agents because their
crosslinking in inhibiting DNA synthesis and repair in cancer cells. These chemotherapeu-
tic agents are used to treat several cancer types. The most used platinum compounds in
oncology are cisplatin, carboplatin and oxaliplatin but many others are under develop-
ment [48].

Cisplatin, belonging to first generation of platinum compound, is the most frequently
used [49] but dose-related nephrotoxicity and cardiotoxicity such as arrhythmias, angina
pectoris, cardiac failures and vascular events limit its clinical use. These events may restrict
the intensity and cumulative dose of cisplatin in some cases and increase the long-term
prevalence of CVD in patients who have been received this type of chemotherapy [50,51].
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The mechanisms underlying cisplatin-induced cardiotoxicity are not fully elucidated.
However oxidative stress along with apoptosis, DNA damage and inflammation are
most likely involved in the occurrence of cardiomyocytes injury (Figure 1C). Specifically,
as confirmed in a variety of cytotoxicity models, cisplatin breaks the intracellular oxidative–
antioxidant balance, leading to increased ROS production and cardiomyocyte apoptosis
and necrosis through activation of Bax, a main regulator of Bcl-2 family [52]. When cisplatin
accumulates in the mitochondrial matrix, it induces generation of ROS. This causes Bax
activation and transport to the mitochondrial outer membrane where it leads to transition
pores opening that alters mitochondrial permeability. This mechanism causes the release of
the cytochrome c into the cytosol and consequent activation of pro-apoptotic factor release
such as caspase 9 [53].

Carboplatin, a second-generation platinum compound, is also widely used for cancer
treatment. Adverse events from carboplatin administration have a lower incidence as
compared to cisplatin. As a result, it can be used at higher doses. The predominant dose-
limiting toxicities of carboplatin are bone marrow suppression and ototoxicity [54] although
some studies report cardiovascular adverse events such as atherosclerosis, hypertension
and heart failure [55]. The mechanisms underlying carboplatin-mediated cardiovascular
toxicity are still unclear. It is shown that ROS production and oxidative stress are also
implicated [56].

Oxaliplatin, a third-generation platinum compound, is currently approved for the
treatment of gastrointestinal cancer. It is less toxic as compared to cisplatin. While cumu-
lative neuropathy is a common cause for treatment discontinuation, other toxicities are
generally tolerable and managed by dose reductions and/or supportive treatment [57].
Nevertheless, acute, or chronic cardiotoxic adverse events have been also rarely observed.
Patients with coronary artery spasm are at risk of ventricular arrhythmias and sudden
cardiac death by oxaliplatin treatment [58]. The cardiomyocyte apoptosis by oxaliplatin is
most likely caused by ROS, occurring via signal transducer and activator of transcription 1
(STAT1) and dual oxidase 2 (DUOX2) [59].

3.4.1. Targeted Cancer Therapy

With the abundance of clinical research and a heavy focus on drug development,
over the past decade, there has been a major change from non-specific cytotoxic drugs
to molecularly targeted agents in cancer therapy. This change mostly involves the use of
small-molecule tyrosine kinase inhibitors (TKIs), monoclonal antibodies (mAbs) and more
recently immunotherapeutic modulators [60]. These agents inhibit the activity of upreg-
ulated cellular pathway components in malignant cells which drive tumor progression
and/or immunoediting processes, leading to more effective and selective cancer therapy.

The majority of the targeted therapeutic agents increases the oxidative stress burden
to a level that is likely to overcome the reduction ability of cancer cells. In this way, targeted
therapeutic agents display both a direct and oxidative stress mediated antitumor effect [59].
Despite their more selective anti-tumor effects as compared to classical chemotherapeutic
agents, also use of targeted therapeutic agents may be limited by the development of
both “on-target” and “off-target” adverse effects. One of the major “off-target” effect
which emerges as a major safety concern is the reversible cardiotoxicity associated to
hypertension, cardiac dysfunction and QT prolongation (Type 2 cardiotoxicity dysfunction)
that is associated to an excessive ROS production [20,57,60]. As a result, early recognition
and management of drug-related cardiotoxicity are extremely needed to reduce morbidity
and mortality from this type of anti-cancer therapy.

3.4.2. TKIs

TKIs are low-weight molecules that act as antagonists of receptor tyrosine kinases
(RTK) by (i) interfering with ATP-γ-phosphate for the ATP binding site within the kinase
catalytic domain; (ii) preventing the auto-phosphorylation, dimerization and activation
of intracellular pro-tumorigenic pathways; and (iii) inhibiting neo-angiogenesis and anti-
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apoptotic signals [61]. Many TKIs are designed to target vascular endothelial growth factor
receptors (VEGFRs), platelet-derived growth factor receptors (PDGFRs), epidermal growth
factor receptor (EGFR), fibroblast growth factor receptor (FGFR), HER-2, c-Kit, RET, Raf,
Tie-2, ROS proto-oncogene 1 (ROS1) and c-Met; others to target the fusion protein Bcr-Abl,
ALK and members of SRC or JAK tyrosine kinase family [62,63]. Currently, more than
50 TKIs are approved for the treatment of different types of cancer including non-small-cell
lung cancer (NSCLC), gastrointestinal stromal tumor (GIST), hepatocellular carcinoma
(HCC), renal cell carcinoma (RCC), breast, thyroid, ovarian, gastric and colon cancer as well
as and hematological malignancies [64]. The degree of efficacy, selectivity and toxicity is
variable among TKI treatments and depends by the inhibition of the specific kinase protein.
Few TKIs specifically inhibit one kinase protein. Most of them inhibit multiple signaling
pathway components based on their dose-dependent target affinity [64]. As a result,
administration of TKIs is also associated to “off-target” effect. Cardiotoxicity from TKIs
by cardiac mitochondrial damage is usually considered a drug’s “off-target” effect [62,64]
(Figure 2A). Specifically, in cardiomyocytes the alteration of TK-related signaling by TKI
administration causes endoplasmic reticulum (ER) stress and mitochondrial dysfunction.
This in turn causes mitochondrial membrane permeabilization alteration, release of ROS
into the cytoplasm, Ca2+ release, alterations of redox status and cell metabolism, and
finally reprogramming of the phosphatidylinositol 3-kinase (PI3K), mammalian target
of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) signaling pathway.
This leads to apoptosis induction and cell death [61].

Sunitinib was the first TKI approved for the treatment of advanced/metastatic RCC
and currently there are also other clinical indications such as treatment of imatinib-resistant
GISTs and pancreatic neuroendocrine carcinomas. Sunitinib acts by blocking VEGFRs,
PDGFR-α, PDGFR-β and c-Kit. Its clinical use has been associated with several cardio-
vascular toxicities including hypertension, left ventricular (LV) dysfunction and heart
failure. The mechanisms underlying cardiovascular toxicities from sunitinib are not fully
elucidated [62,63,65]. Boutbir et al. aimed to enlarge their knowledge about the role of mito-
chondria dysfunction in sunitinib related cardiotoxicity in vitro and in vivo. They demon-
strated that treatment with sunitinib dissipated the mitochondrial membrane potential and
reduced enzyme complexes activities of the ETC along with an increased mitochondrial
ROS accumulation. In addition, sunitinib caused caspase 3/7 activation, DNA fragmenta-
tion and increased H2O2 production. In mice, treatment with sunitinib, increased plasma
concentrations of troponin I and creatine kinase myocardial band, indicating cardiomy-
ocyte damage. The activity of enzyme complexes of the ETC was decreased, mitochondrial
ROS were increased and cleavage of caspase 3 was increased, suggesting cardiomyocyte
apoptosis induction. As a result, mitochondrial damage with ROS accumulation appears to
be an important mechanism of cardiotoxicity associated with sunitinib, eventually leading
to apoptotic cell death [65–68].

Besides sunitinib other TKIs such as pazopanib (anti-VEGFRs, PDGFR, FGFR and
c-Kit), ponatinib (anti-Bcr-Abl), sorafenib and regorafenib (anti-VEGFRs, PDGFR, FGFR,
c-Kit, RET, Raf, Tie2) are able to induce relevant mitochondrial dysfunction along with
uncoupling components of ETC and ROS generation. Pazopanib is currently approved
for treatment of RCC and non-adipocytic soft-tissue sarcoma. Its clinical efficacy is also
limited by the related potential cardiovascular toxicity. The clinical use of pazopanib has
been associated with the development of hypertension, QT interval prolongation and
other cardiovascular events triggered by oxidative stress which in turn mediates apoptosis
of cardiomyocytes [69]. Ponatinib is a third-generation TKI currently approved for the
treatment of chronic myeloid leukemia (CML) in patients having gatekeeper mutation
T315I and that are resistant to the first and second generation TKIs. Multiple unbiased
screening has identified ponatinib as the most cardiotoxic clinically approved TKIs among
the entire TKI family because of an “off-target” effect on cardiomyocyte pro-survival sig-
naling pathway. This effect is mediated by inhibition of AKT and ERK signaling that leads
to mitochondrial dysfunction and ROS production. This in turn causes DNA damage and
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apoptosis of cardiomyocytes [70,71]. Sorafenib is a multi-TKIs, currently approved for
the treatment of RCC, HCC and differentiated thyroid cancer. The induction of oxidative
stress and depletion of antioxidant status by sorafenib have been related to Ca2+ distur-
bances in hepatic tissue biopsy obtained from HCC patients. This effect is mediated by
an increased ER stress as the levels of IRE1α, eukaryotic initiation factor 2α (eIF2α) and
binding immunoglobulin protein (BiP)/glucose-regulated protein 78 (BiP/Grp78) were
upregulated. Ca2+ disturbances leads to mitochondrial Ca2+ overload that induces lethal
apoptotic events also in cardiomyocytes [61,65,66]. Regorafenib, currently approved for the
treatment of colon cancer, HCC and GISTs directly uncouples oxidative phosphorylation
and promotes Ca2+ accumulation and swelling of mitochondria, as demonstrated in human
hepatic HepG2 cell line [71].
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Figure 2. Schematic representation of molecular mechanisms of targeted and immune cancer therapy-related cardiotoxicity.
(A) TKI administration induces cardiotoxicity via induction of ER stress and mitochondrial dysfunction, leading to unfolded
protein accumulation, Ca2+ release, ROS generation, AMPK activation and mTOR inhibition. The interplay among these
cellular pathways results in autophagy and apoptosis. (B) In heart, the cardioactive growth factor NRG-1 triggers HER-
4/HER-2 heterodimerization to induce protective pathways in response to stress. Blockade of NRG-1/HER-4/HER-2
axis by trastuzumab results in the inhibition of MAPK and PI3K/AKT pathways which cause alterations of structure and
functions of cardiomyocytes. In addition, blocking of HER2 is correlated with a change in the antiapoptotic/proapoptotic
proteins ratio, due to an upregulation of BCL-XS (proapoptotic) and downregulation of BCL-XL (antiapoptotic), which
leads to contractile dysfunction of cardiac cell. (C) ICI can induce cardiotoxicity by increasing in heart tissue infiltration of
activated T lymphocytes (CD4+/CD8+ T cells) and macrophages and increased expression levels of PD-L1. This leads to
pro-inflammatory and cardiotoxic effects and the activation of specific pathways, including NLRP3, Myd88, p65/NF-kb
and arachidonate-leukotriene pathways. The latter probably is regulated by the high production of ROS and phospholipid
oxidation due to accumulation of lymphocytes and macrophages. Abbreviations: AMPK, AMP-activated protein kinase;
ER, endoplasmic reticulum; MAPK, mitogen-activated protein kinase; Myd88, myeloid differentiation primary response 88;
mTOR, mammalian target of rapamycin; NLRP3, NLR Family Pyrin Domain Containing 3; NRG-1, neuregulin-1; PDL-1,
Programmed death-ligand 1; ROS, Reactive oxygen species; RTK, receptor tyrosine kinase; TKIs, Tyrosine kinase inhibitors.

Imatinib, a PDGFR/Bcr-Abl/c-Kit TKI, currently approved for the treatment of acute
lymphocytic leukemia (ALL), CML and GISTs has also been associated with cardiotoxicities
by induction of apoptosis associated to ROS production and loss of the mitochondrial
membrane potential [61].

Lastly, treatment with gefitinib and erlotinib (anti-EGFR TKIs) as well as with crizotinib
(anti-ALK, ROS1 and c-Met) has been associated to cardiotoxicity. Gefitinib and erlotinib
are currently approved for the treatment of NSCLC carrying EGFR alterations. Their related
cardiotoxicity is associated to generation of NOX 4-induced oxidative stress [59]. Crizotinib,
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currently approved for the treatment of NSCLC carrying ALK translocation or ROS1 and
c-Met mutations also exerts its functions via the induction of oxidative stress due to generation
of ROS and activation of an apoptotic cascade that contributes to cardiomyocyte death [59,72].

3.4.3. mAbs

mAb-based chemotherapy represents a relatively new and exciting class of treatment
frequently utilized to improve new cancer treatment strategies for many hematological
and solid tumors [73]. Since cancer cells share many similarities with the normal host
cells, mAbs binding to specific tumor antigens on cell surface were engineered with the
predicted advantage to display a high specificity to tumor antigens, directly targeting
tumor cells and simultaneously promoting the induction of long-lasting anti-tumor im-
mune responses [74]. Unfortunately, mAb-based therapy is also associated to deleterious
effects on cardiomyocytes leading to heart failure, arrhythmias, myocardial ischemia,
thromboembolism, hypertension and pericardial disease [75].

Trastuzumab was the first approved humanized mAb which blocks HER2 dimer-
ization with other HER partners, evokes antibody-dependent cellular cytotoxicity and
inhibits MAPK and PI3K/AKT pathways. Adding trastuzumab to standard chemotherapy,
significantly improves response rates, progression free survival and overall survival of
patients with metastatic HER2-positive breast cancer and gastric. Although trastuzumab
has proven to be extremely effective, several studies have demonstrated that trastuzumab
related cardiotoxicity represents a major limitation to its clinical use [76,77]. Retrospective
analyses have shown that 27% of patients experienced cardiac dysfunction as a result of
an adjuvant trastuzumab treatment [78]. Several studies have attempted to demonstrate
the mechanism of trastuzumab induced cardiotoxicity (Figure 2B). Mohan et al. studied
the effect of trastuzumab on autophagy in cardiomyocytes in a mouse model. The authors
demonstrated that trastuzumab leads to phosphorylation of HER1-Y845/HER2-Y1248 and
activation of ERK. This in turn results in upregulation of mTOR signaling pathway, inhi-
bition of autophagy, accumulation of damaged mitochondria and increase concentration
of ROS, nitrotyrosine and 4-hydroxynonenal, thereby triggering oxidative stress [76,79].
Kurokawa et al. replicated the trastuzumab-induced cardiotoxicity using human stem cells
in vitro with aim to better define the molecular events. The authors demonstrated that
cardiomyocytes originating from induced pluripotent stem cells (iPS-CMs) are able to repli-
cate the cardiotoxicity of trastuzumab-inhibited HER signaling. Although this discovery
have acquired important implications for cancer treatment in humans, the researchers were
only able to detect cardiotoxicity when iPS-CMs were also treated with doxorubicin [80].

Pertuzumab, a new recombinant humanized mAb, inhibits HER2 dimerization with
other HER family receptors. It is currently approved for the treatment of breast cancer in
combination with trastuzumab to enhance anti-HER2 efficacy. Pertuzumab significantly
enhances the cardiotoxicity induced by trastuzumab. Blocking HER2 receptor induces
mitochondrial dysfunction and ROS overload production that mediate cardiomyocyte cell
death [81]. With the same mechanism rituximab, an anti-CD20 mAb currently approved
for the treatment of CLL and non-Hodgkin lymphoma (NHL), and bevacizumab, an anti-
VEGF mAb currently approved for the treatment of multiple cancer types including breast,
colorectal, cervical, NSCLC, ovarian and RCC have been reported to be cardiotoxic due to
an oxidative stress induction. The most lethal cardiac issues with them are encountered
during an infusion reaction for the development of hypotension, hypoxia, acute myocardial
infarction, arrythmias and cardiogenic shock [59].

3.4.4. Immune Checkpoint Inhibitor Based Immunotherapy

Over the past few years, cancer immunotherapies have revolutionized the clinical
management of a wide spectrum of solid and hematological malignancies. The forefront
of immunotherapy is represented by immune checkpoint inhibitors (ICIs). ICI inhibit im-
mune checkpoint molecule such as cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4),
programmed cell death 1 (PD-1) and its ligand PD-L1. These molecules are involved in
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regulating the host immune response to both cancer cells and altered cells. ICIs such
as mAbs targeting CTLA-4 (ipilimumab), PD-1 (nivolumab, pembrolizumab) and PD-L1
(atezolizumab, avelumab, durvalumab) restore an efficient anti-tumor immune response.
However immune checkpoint molecules also play a central role in the maintenance of
immune self-tolerance. Therefore, blocking these molecules by mAbs can result in the
development of immune-related adverse events. This type of toxicity has a high inci-
dence, but fortunately in most cases it is reversible and not severe [82]. Every normal
tissue may be involved in this type of toxicity. Isolated cases of fulminant myocarditis
and other cardiovascular disorders (pericarditis, vasculitis and atrioventricular blocks)
have been reported [83]. Little is known about the mechanisms underlying ICI-related
cardiotoxicity and no ROS-mediated effects has been described yet. However, a reasonable
amount of data exists to point out that an oxidative milieu has an enormous impact on
tumor cells, tumor-infiltrating lymphocytes and other immune cells (and their interactions)
(Figure 2C). It is plausible that these agents have direct or indirect ROS-dependent mecha-
nisms arising from interactions between PD-1 antibodies and ROS generation [59]. Both ROS
levels and redox status have been reported to have a potential role as a prognostic and
predictive biomarker to immunotherapy. Therefore, studies addressing these issues are
eagerly awaited.

4. Molecules to Fight the Onset and Progression of CVD

In reason of the crucial role of oxidative stress in CVD, pharmacological and non-
pharmacological therapeutic approaches have been proposed to prevent an increase of
pro-oxidant species and/or to enhance the capacity of the endogenous antioxidant sys-
tems [84,85]. Several studies have evaluated the potential therapeutic effects of antioxidant
molecules to fight the onset and progression of CVD including that induced by anti-cancer
agents [86,87]. Although various studies both in vitro and in vivo showed cardioprotective
effects from antioxidative molecules, clinical trials have failed to demonstrate a clinical
benefit from this type of therapeutic approach and no specific antioxidative treatment
has been recommended, so far [86–90]. Here, we will summarize the molecules which
have been tested in order to reduce the oxidative stress and to improve CVD outcomes
(Table 1). We will describe firstly the potential role of vitamins and other nutraceuticals as
polyphenols and astaxanthin. Then, we will outline the emerging evidence of antioxidative
properties of some drugs already utilized in clinical practice as NO donors, antihyperten-
sives, antidiabetics and statins. Finally, we will speculate about the use of novel molecular
pathway inhibitors which potentially revert the oxidative stress in CVD.

Table 1. Molecules and Drugs to overcome oxidative stress inducing CVD.

Nutraceutical/Class of Drug Main Mechanism of Action Additional Antioxidative Effects References

Vitamins and nutraceuticals

B6 Metabolic Coenzyme in
several cellular processes Reduction of homocysteine levels [86]

Acid folic (B9) Metabolic Coenzyme in
several cellular processes

(i) Prevention of NOS uncoupling and
restoration of endothelial dysfunction
(ii) Reduction of homocysteine levels
(iii) Heart rate and blood pressure
restoration

[86,91–95]

B12 Metabolic Coenzyme in
several cellular processes

(i) Reduction of homocysteine levels
(ii) Heart rate and blood pressure
restoration

[86,91–95]

C Antioxidative Prevention of NOS uncoupling and
restoration of endothelial dysfunction [91–94]
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Table 1. Cont.

Nutraceutical/Class of Drug Main Mechanism of Action Additional Antioxidative Effects References

D Regulation of calcium
metabolism

Improvement of cardiac stress and
inflammation in obese rats [96]

E Antioxidative
Restoration of cardiac function and

attenuation of atherogenic apo
B-48-dependent hyperlipidemia

[97–99]

Polyphenols Antioxidative
(i) O2

− and peroxynitrite scavenger
(ii) Inducers of redox dependent
reactions

[100–102]

Astaxanthin Antioxidative
(i) Anti-inflammatory effects
(ii) Regulation of lipid and glucose
metabolisms

[103–107]

Anti-hypertensives

Angiotensin converting
enzyme (ACE) inhibitors ACE inhibition

(i) Reduction of monocyte-macrophage
recruitment into vessel wall, smooth
muscle cells mitogenesis and
extracellular matrix storage
(ii) Reduction of ACE mediated ROS
production
(iii) Increase of bradykinin levels

[91,108–110]

Angiotensin receptor (AT)
blockers AT blockage

Pleiotropic anti-oxidative effects
derived from renin-angiotensin axis

blockage without bradykinin-mediated
antioxidative effects

[100–102,111–116]

Beta adrenergic receptor
blockers

Beta adrenergic receptor
blockage

(i) Free radical scavenger function
(ii) Decrease of superoxide anions
generation
(iii) Restoring eNOS expression

[117–130]

Anti-diabetic agents

Dipeptidyl peptidase-4
(DDP-4) inhibitors DDP-4 inhibition

(i) Decrease of oxidative burst in whole
blood
(ii) Decrease of the expression of
NADPH oxidase
(iii) Elevation cAMP and protein kinase
A

[131–133]

Glucagon-like peptide-1
(GLP-1) analogues GLP-1 functions

(i) Decrease of oxidative burst in whole
blood
(ii) Decrease of the expression of
NADPH oxidase
(iii) Elevation cAMP and protein kinase
A

[131–133]

Sodium-glucose cotransporter
2 (SGLT2) inhibitors SGLT2 blockage NOS2 and IFNÈreduction [131,134]

Others

NO donors
NO and/or NO derived

molecule releasing by
endothelial cells

NO and/or NO derived molecule
releasing by endothelial cells restoring

REDOX balance
[92,131,135,136]

Statins
3-hydroxy-3-methylglutaryl-

coenzyme
A reductase inhibition

(i) Increase of eNOS activity
(ii) Decrease of both asymmetrical
dimethylarginine levels and NADPH
oxidase function

[91,137,138]

Abbreviations: ACE: angiotensin converting enzyme, AT: angiotensin receptor, CVD: cardiovascular diseases, DDP-4: Dipeptidyl peptidase-
4, eNOS: endothelial NO synthase, GLP-1: glucagon-like peptide-1, NO: nitric oxide, ROS: radical oxygen species, SGLT2: sodium-glucose
cotransporter 2.
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4.1. Vitamins and Nutraceuticals
4.1.1. Vitamins

Several studies showed a potential therapeutic benefit of vitamins in decreasing
oxidative stress both in cellular and mouse models [86,91]. Specifically, vitamin C and folic
acid have been shown to display a cardioprotective effect, preventing NOS uncoupling
and restoring endothelial dysfunction [91–94]. Moreover, hyperhomocysteinemia plays
an important role in oxidative stress-mediated endothelial dysfunction [86,139,140] ]. It is
well known that homocysteine levels are mitigated by administration of folic acid, vitamin
B12 and B6 [86]. Hagar et al. demonstrated that vitamin B12 and folic acid administration
on isoprenaline-induced myocardial infarction restores heart rate, blood pressure and ST
segment elevation in an experimental hyperhomocysteinemic rat model [95]. Farhangi et al.
demonstrated the potential benefit of vitamin D administration on cardiac stress and
inflammation in obese rats [96]. Similarly, antioxidative effects were demonstrated in mouse
models in which administration of vitamin E promoted restoration of cardiac function and
attenuation of atherogenic apo B-48-dependent hyperlipidemia [97–99]. Based on these
results, many clinical studies have attempted to demonstrate the potential antioxidant
effect of vitamins [88,141]. However, none of tested vitamins significantly demonstrated
its potential clinical benefit in CVD [86–90]. Possible reasons of this failure include the
difference of oxidative stress levels in patients that were not assessed and stratified for
their oxidative stress status [88,142]. The modality and duration of vitamin administration
as well as the potential interaction of vitamins with other potential antioxidant drugs may
have also influenced the obtained results [88,143]. As discussed later, many drugs exerting
a potent antioxidative effects such as statin, antihypertensive and anti-diabetic agents were
often administered in these trials to patients because of their comorbidity [88,91,131,144].
In conclusion, although vitamin supplementation has the potential to overcome the onset
and progression of CVD, there is not sufficient clinical evidence to translate these results in
the clinical practice and novel clinical studies are urgent needed.

4.1.2. Polyphenols

Polyphenols are common natural, semi-synthetic and synthetic molecules, composed
of multiples phenol units derived from fruits, vegetables, tea, coffee, cocoa, mushrooms,
beverages and traditional medical herbs [145,146]. The classification of polyphenols mainly
includes flavonoids (60%), phenolic acids (30%) and others polyphenols (as stilbenes and
lignans) [145–147]. Previous studies showed that polyphenols can scavenge O2

− and per-
oxynitrite [147]. Furthermore, they exert other antioxidative effects by regulating oxidative
stress-mediated enzyme activities [147,148] and chelation of the transition metals involved
in radical-forming processes [147–149]. Cells respond to polyphenol exposition by trigger-
ing a series of redox-dependent reactions and inducing a modification of redox status of
the cells [147,150,151]. For these reasons, polyphenols have been investigated as potential
co-adjuvants in malignant, CVD, metabolic and neurodegenerative diseases [147,152,153].
Just like for other types of supplemental nutrients also for the polyphenols are yielded con-
trasting in vivo results [86,87,147,154] and their supplementation is not yet recommended in
clinical practice.

4.1.3. Astaxanthin

Astaxanthin, a carotenoid of the xanthophyll group, has important applications in
the nutraceutical, cosmetics, food and feed industries [103,155,156]. Chemical structure
of astaxanthin includes two oxygenated groups, hydroxyl and carbonyl, in each a ionone
ring displays some unique properties such as more effective antioxidative activity and
polar configuration as compared to other carotenoids [103,104,155–158]. Moreover, as-
taxanthin exerts some anti-inflammatory effects and modulates the lipid and glucose
metabolisms [103–107]. In reason of these multiple pleiotropic effects, several studies have
demonstrated that astaxanthin can delay the onset and progression of various CVD such
as atherosclerosis, hypertension and dyslipidemia [103–107,159–162]. Considering the
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extensive evidence reported in the literature about its benefit–risk profile, astaxanthin has
been approved as a nutraceutical by the United States Food and Drug Administration [163].

4.2. Anti-Oxidative Properties of Common Drugs
4.2.1. NO Donors

As we have previously mentioned, NO depletion promotes endothelial dysfunction
that is crucial in CVD pathophysiology of coronary artery atherosclerosis [164]. Adminis-
tration of molecules able to restore the redox balance through exogenous administration
of NO donors as organic nitrates has been investigated as a potential strategy to fight the
onset and progression of CVD [91]. These molecules such as the isosorbide-5-mononitrate
are currently used to decrease the excessive coronary artery constriction since they induce
NO and/or NO derived molecule releasing by endothelial cells [165]. Since atherosclerosis
is closely linked to endothelial dysfunction, some researchers have proposed that nitrates
by acting as NO donors on endothelium might also decrease the onset and progression
of atherosclerosis [91,166,167]. On the other hand, in the few past years, several lines of
evidence demonstrated that organic nitrates cause endothelium dysfunction by increasing
oxidative stress mediated by (i) uncoupling of the mitochondrial respiratory chain and
decreasing of ATP production; (ii) activation of ROS-forming enzymes and (iii) direct
reaction of the nitrate-derived NO with vascular O2

− to form highly reactive intermediate
peroxynitrite (ONOO−) [91,168–172]. Based on these contrasting results the interest for NO
donors as a potential strategy to fight oxidative stress is hampered and novel and robust
evidence are needed.

4.2.2. Anti-Hypertensives

Antihypertensive classes including angiotensin converting enzyme (ACE) inhibitors,
angiotensin receptor (AT) blockers, beta receptor blockers and calcium channel blockers
have demonstrated so many clinical benefits that are not fully ascribed by their primary
mechanisms of action [91]. ACE inhibitors improve the prognosis of patients with multiple
cardiovascular risk factors, acute myocardial infarction, chronic congestive heart failure,
diabetic nephropathy and other vascular diseases [118–122]. These clinical benefits have
been also associated to their antioxidative properties. Indeed, various cardiovascular
protective effects mediated by an antioxidative property of ACE inhibitors have been
demonstrated [91,144]. The antioxidative effect of ACE inhibitors is most likely mediated
by the blockage of renin-angiotensin axis. Angiotensin II induces vasoconstriction but
also promotes atherosclerosis through monocyte-macrophage recruitment into vessel wall,
smooth muscle cell mitogenesis and extracellular matrix storage [91,123–126]. Moreover,
angiotensin II is one of the most important triggers for the NOX activity. As we previously
mentioned, this enzyme is expressed on the surface of all vascular endothelial cells and
represents an important source of O2

− [91,164,173]. As a result, renin-angiotensin axis acti-
vation is constantly involved in oxidative stress through ROS production [91,164,173,174]. In
addition, ACE, working as an endothelial kininase II, leads to the degradation of bradykinin.
The latter via B2 receptor induces the release of vasodilator and antioxidative molecules
such as NO, endothelium-derived hyperpolarizing factor and prostacyclin [91,108–110].
Thus, ACE inhibitors exert an important antioxidative activity by incrementing bradykinin
levels and inhibiting NOXs.

AT blockers act by blocking the angiotensin receptor I. Similarly to ACE inhibitors also
AT blockers display a pleiotropic antioxidative effects that derives from renin-angiotensin
axis blockage [100,111–113]. However, in reason of the different mechanism of action
from ACE inhibitors, AT blockers cannot exert the bradykinin-mediated antioxidative
effects. Nevertheless, several studies including clinical trials have demonstrated the clinical
benefits of AT blockers in fighting the onset and progression of CVD [101,102,114–116].

Besides inhibiting adrenaline/noradrenaline beta adrenergic receptors, beta receptor
blockers also exert antioxidative properties [175–179]. Carvedilol, celiprolol, metoprolol,
nebivolol, propranolol and their antioxidative mechanisms are the most extensively in-
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vestigated [144]. Each beta receptor blocker presents its different antioxidative profile in
terms of efficacy and mechanism [175–181]. Carvedilol and metoprolol, by acting as a free
radical scavenger, reduce lipid peroxidation in patient affected by symptomatic stable heart
failure [182]. Celiprolol reduces O2

− generation in patients with essential hypertension and
improves myocardial remodeling [144,183–186]. Nebivolol reduces antioxidative stress
in essential hypertension patients by increasing NO formation [117,180,187]. Propranolol
inhibits oxidative stress by reducing lipid peroxidation of sarcolemma [135]. Lastly, some
lines of evidence have shown that beta receptor blockers such as celiprolol can reduce
blood pressure levels and mitigate hypoxia-induced left ventricle remodeling by restoring
eNOS expression through stimulation of PI3K/AKT signaling pathway [127,136,144].

Calcium channel blockers have also been investigated for their potential antioxida-
tive properties in a minor extent as compared to the above described antihypertensive
drugs [127–129]. Amlodipine decreases oxidative stress by reducing malondialdehyde and
increasing erythrocyte sodium-potassium adenosine triphosphatase and SOD levels in
essential hypertensive patients [127].

4.2.3. Anti-Diabetic Agents

Dipeptidyl peptidase-4 (DDP-4) inhibitors, glucagon-like peptide-1 (GLP-1) analogues
and sodium-glucose cotransporter 2 (SGLT2) inhibitors are the most innovative anti-
diabetic agents. Besides their anti-diabetic primary effect, several lines of evidence demon-
strated that these drugs reduce the risk of hospitalization for heart failure [130,131,188,189].
The cardiovascular protective effects of these anti-diabetic agents are most likely mediated
by anti-oxidative and anti-inflammatory properties [131,190–196]. For instance, linagliptin,
a DDP-4 inhibitor, and liraglutide (GLP-1 analogue) reduce oxidative burst in whole blood,
augment the infiltration of white blood cells through the vascular wall and reduce the
expression of NADPH oxidase [131–133]. Steven et al. demonstrated that these antiox-
idative mechanisms can be mediated by GLP-1 induced cAMP and protein kinase A
elevation [131,133].

In addition SGLT2 inhibitors such as ipragliflozin display many antioxidative medi-
ated cardiovascular protective properties beyond their primary anti-diabetic effect [197,198].
Empagliflozin treatment reduces oxidative stress in the aorta and blood of diabetic rats [131,134].
Even more. inflammation and glucotoxicity are epigenetically prevented by SGLT2 in-
hibitors by NOS2 and IFNG reduction in vivo [131,134]. Although these novel classes of
anti-diabetic drugs have such potential antioxidant properties no clinical evidence are
currently available to recommend their clinical use.

4.2.4. Statins

Statins are a lipid lowering drugs able to improve the prognosis of patients affected by
coronary or peripheral arterial disease, heart failure, hypercholesterolemia and several other
conditions by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase [199–204]. Fur-
thermore statins exert additional pleiotropic properties such as improvement of endothelial
function, stabilization of atherosclerotic plaques, reduction of both oxidative stress and
inflammation, and decrease of thrombogenic responses [205–209]. These antioxidative ef-
fects are mediated by the increase of eNOS activity and the reduction of both asymmetrical
dimethylarginine levels and NADPH oxidase function [91,137,138]. Due to these multiple
pleiotropic activities on the protective role in CVD, further investigations are needed to
established the real impact of their antioxidative effects in CVD [91].

5. Novel Potential Strategy to Revert Antioxidative Stress in CVD
5.1. Mitochondrial-Targeted Antioxidative Based Therapy

As described above, ROS production is an important factor in CVD onset and progres-
sion. Classically, mitochondria are considered one of the most important actors engaged in
ROS production [210]. Indeed, various strategies targeting mitochondria, such as small
molecules have been tested in preclinical studies in order to fight the onset and the pro-
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gression of CVD [86,87,211]. A mitochondria-targeted SOD mimetic molecule, called
mito-TEMPO, decreases the mitochondrial O2

− and H2O2 production both in cellular
and mouse models [86,212,213]. Specifically, mito-TEMPO reduces angiotensin II induced
hypertension, the mitochondrial O2

− and 3-nitrotyrosine activity as well as serum glucose
levels and diastolic dysfunction in high-fat diet mice [86,213,214]. Furthermore, mito-
TEMPO administration prevents cardiomyocytes hypertrophy in diabetic mouse hearts by
decreasing mitochondrial ROS production [86,212].

On the other hand, contrasting results have been shown from mitoquinone (MitoQ)
use, another mitochondrial-targeted oxidative drug. Although some evidence showed that
MitoQ mitigates redox-induced cardio-toxicities and improves cardiac mitochondrial net-
work integrity [86,215,216], other studies in cancer cell models, demonstrated that MitoQ
decreases mitochondrial DNA integrity and induces apoptosis by enhancing ROS produc-
tion and mitochondrial membrane depolarization [86,217,218]. Thus, although promising
further studies are needed to demonstrate the efficacy of this drug in humans.

5.2. mTOR Signaling Pathway Inhibition

mTOR is a serine/threonine kinase protein which plays a crucial role in many cellular
processes such as cell growth, metabolism, proliferation, survival, transcription, translation,
apoptosis. motility and autophagy [219,220]. In reason of several mTOR functions, several
lines of evidence showed that mTOR pathway dysregulation is involved in many diseases
including CVD [221,222]. However, the relationship between mTOR pathway and oxida-
tive stress in CVD is still to be elucidated since this pathway is involved both in oxidative
stress mitigation and production [221,223]. Moreover, although potential regulator effect
on oxidative stress through mTOR signaling down-regulation has been shown in animal
models of experimental diabetic conditions, clinical studies are still disappointing [223].
Several molecules have demonstrated to exert many antioxidative cardioprotective ef-
fects by regulating the mTOR signaling pathway [221,223]. These molecules included
(i) inhibitors of mTOR such as rapamycin and its derivates [224–228], and ii) molecules
that in different ways modulate mTOR pathway such as metformin [221,223,229], resvera-
trol [221,230–233], curcumin [221,234,235] and sirtuin 1 [223,236].

Although, mTOR signaling pathway inhibition seems to be an interesting novel
potential strategy to fight the onset and the progression of oxidative stress in CVD, likewise
for mitochondrial-targeted anti-oxidative based therapies, more studies, especially in
humans, are needed to validate this type of strategy.

6. Conclusions

Oxidative stress is certainly one of the most important factors in CVD as well as in
cardiotoxicity pathogenesis. Despite a large mass of studies, all the mechanisms underlying
the role of stress oxidative in both CVD and cardiotoxicity remains unclear. Moreover, no
one of the currently therapeutic strategies can effectively revert oxidative stress in clinical
practice, so far. Many questions remain open and several investigations are still needed.
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Abbreviations

ACE angiotensin converting enzyme
ALL acute lymphocytic leukemia
AMPK AMP-activated protein kinase
AT angiotensin receptor
ATP adenosine triphosphate
BiP binding immunoglobulin protein
CML chronic myeloid leukemia
CTLA-4 cytotoxic-T-lymphocyte-associated antigen 4
CVD cardiovascular diseases
DDP-4 Dipeptidyl peptidase-4
DUOX2 dual oxidase 2
EGFR epidermal growth factor receptor
eIF2α eukaryotic initiation factor 2α
eNOS endothelial NO synthase
ER endoplasmic reticulum
ETC electron transfer chain
FGFR fibroblast growth factor receptor
GIST gastrointestinal stromal tumor
GLP-1 glucagon-like peptide-1
Grp78 glucose-regulated protein 78
GSH-Px glutathione peroxidase
HCC hepatocellular carcinoma
hPSC human pluripotent stem cell
H2O2 hydrogen peroxide
ICI immune checkpoint inhibitors
iPS-CMs induced pluripotent stem cells
LV left ventricular
mAbs monoclonal antibodies
MitoQ mitoquinone
mTOR mammalian target of rapamycin
NHL non-Hodgkin lymphoma
NO nitric oxide
NOXs NADH/NADPH oxidases
NSCLC non-small-cell-lung-cancer
ONOO− peroxynitrite
O2

− superoxide
PDGFR platelet-derived growth factor receptor
PD-1 programmed cell death 1
PI3K phosphatidylinositol 3-kinase
RCC renal cell carcinoma
RNS reactive nitrogen species
ROS radical oxygen species
ROS1 ROS proto-oncogene 1
RTK receptor tyrosine kinases
SGLT2 sodium-glucose cotransporter 2
SOD superoxide dismutase
STAT1 signal transducer and activator of transcription 1
TKIs tyrosine kinase inhibitors
VEGFR vascular endothelial growth factor receptors
5-FU 5-fluorouracil
OH− hydroxyl radicals
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