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Abstract: Copper oxide particles of various sizes and constituent phases were used to form conduc-
tive circuits by means of photonic sintering. With the assistance of extremely low-energy-density
xenon flash pulses (1.34 J/cm2), a mixture of nano/submicron copper oxide particles can be reduced
in several seconds to form electrical conductive copper films or circuits exhibiting an average thick-
ness of 6 µm without damaging the underlying polymeric substrate, which is quite unique compared
to commercial nano-CuO inks whose sintered structure is usually 1 µm or less. A mixture of sub-
micron/nano copper oxide particles with a weight ratio of 3:1 and increasing the fraction of Cu2O
in the copper oxide both decrease the electrical resistivity of the reduced copper. Adding copper
formate further improved the continuity of interconnects and, thereby, the electrical conductance.
Exposure to three-pulse low-energy-density flashes yields an electrical resistivity of 64.6 µΩ·cm.
This study not only shed the possibility to use heat-vulnerate polymers as substrate materials benefit-
ing from extremely low-energy light sources, but also achieved photonic-sintered thick copper films
through the adoption of submicron copper oxide particles.

Keywords: photonic sintering; copper oxide; copper salts; hybrid paste

1. Introduction

An important trend in microelectronics is the manufacture of conductive circuits,
interconnections, and joints at low processing temperatures by metallic NPs and their
low sintering temperature. The surfactants of NPs need be desorbed, and the NPs coa-
lesce to achieve conductive networks with favorable mechanical strength and electrical
conductance [1–5].

On account of the increasing demand for circuits on flexible and stretchable substrates,
nanoparticle sintering under electromagnetic irradiation, for example, lasers, near-infrared
radiation, or pulsed flashes, has attracted much attention [6–8]. In flash light sintering,
for instance, the absorption of light by nanoparticles via surface plasmon resonance gener-
ates heat. A drastic rise in temperature can evaporate organic surfactants on NPs, induce
localized melting, and thereby cause necking among the particles. However, excess irradia-
tion energy may damage polymer substrates.

Kim et al. proposed the photonic sintering of Cu NPs to reduce the material cost [9].
Exposing Cu NPs to intense pulsed xenon flash of an energy density from 20 to 50 J/cm2

enables a low electrical resistivity of 5 µΩ·cm to be attained. Two-step flash light sintering
with preheating and subsequent main sintering has been proposed to prevent warping
of polymer substrate [10]. To improve particle coalescence, a mixture of Cu nanoparticles
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(20~50 nm in diameter) and microparticles (2 mm in diameter) with an optimal weight
ratio of 1:1 has been suggested [11]. However, Cu NPs are easily oxidized and difficult to
preserve [12]. To solve this problem, in a revolutionary step, CuO nanoparticles replaced
pure Cu NPs in some instances of conductor fabrication by photonic sintering with intense
pulse light or lasers [13–16]. In this process, reducing solvents are required, and the energy
of the electromagnetic irradiation causes photochemical reduction, which drives the CuO-
to-Cu transformation and the coalescence of particles into continuous networks; this
process is typically described by percolation theory.

The fabrication of conductive tracks using copper ion inks has also been suggested.
The use of copper formate, acetate and oleate, as well as copper hydroxide, has been
proposed to form printed circuits using pulsed light [17,18]. Motivated by these ideas,
hybrid pastes that comprise a mixture of submicron and nano-sized copper oxide particles,
as well as copper salt additives, are developed herein. This work is the first to explore
the effect of copper oxide phase (CuO and Cu2O) on the performance of photonic-sintered
structure.

2. Experimental Procedures

Commercially available submicron copper oxide particles (SMPO, with a diameter of
about 500~600 nm, Figure 1a), and CuO nanoparticles (NPO, with an average diameter of
approximately 100 nm, Figure 1b), were used herein. XRD phase identification, as presented
in Figure 2, shows that SMPO consisted of Cu2O and CuO, and NPO comprised merely CuO.
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Figure 1. Morphologies of copper oxide particles: (a) SEM image of submicron copper oxide particles (SMPO), and (b) 
TEM image of copper oxide nanoparticles (NPO). 

Hybrid pastes were developed by mixing SMPO, NPO, α-terpineol as the solvent, 
and polyvinylpyrrolidone (PVP, Mw55000, Sigma Aldrich, Burlington, VT, USA) as the 
paste thickener. The paste was 60 wt.% oxide particles, 34 wt.% α-terpineol, and 6 wt.% 
PVP. Copper salt additive effects on performance of sintered structure were investigated. 
The copper salts were cupric sulfate (CuSO4·5H2O, 99%; Shimakyu’s pure chemical, 
Osaka, Japan), copper acetate (Cu(CH3COO)2·H2O; Shimakyu’s pure chemical, Osaka, Ja-
pan), copper(Ⅱ)formate ((HCO2)2Cu, Alfa Aesar, Ward Hill, MA, USA), and cupric chlo-
ride anhydrous (CuCl2; Choneye pure chemical). Some pastes were formed by adding 10 
wt.% formic acid to promote the reduction of the copper oxides. The developed pastes 
were stencil-printed on polyimide films, dried by near-infrared radiation, then sintered 

Figure 1. Morphologies of copper oxide particles: (a) SEM image of submicron copper oxide particles (SMPO), and (b) TEM
image of copper oxide nanoparticles (NPO).

Hybrid pastes were developed by mixing SMPO, NPO, α-terpineol as the solvent,
and polyvinylpyrrolidone (PVP, Mw55000, Sigma Aldrich, Burlington, VT, USA) as the paste
thickener. The paste was 60 wt.% oxide particles, 34 wt.% α-terpineol, and 6 wt.%
PVP. Copper salt additive effects on performance of sintered structure were investigated.
The copper salts were cupric sulfate (CuSO4·5H2O, 99%; Shimakyu’s pure chemical, Osaka,
Japan), copper acetate (Cu(CH3COO)2·H2O; Shimakyu’s pure chemical, Osaka, Japan),
copper(II)formate ((HCO2)2Cu, Alfa Aesar, Ward Hill, MA, USA), and cupric chloride
anhydrous (CuCl2; Choneye pure chemical). Some pastes were formed by adding 10 wt.%
formic acid to promote the reduction of the copper oxides. The developed pastes were
stencil-printed on polyimide films, dried by near-infrared radiation, then sintered using
pulsed xenon flashes in ambient atmosphere. The power density of NIR was 3.53 W/cm2

and that for xenon flash light was 4.7 W/cm2. The flash pulses had an on-time of 0.52 ms
and an off-time of 0.33 s. Energy density was estimated to be 1.34 J/cm2.
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Figure 2. XRD results for submicron copper oxide particles (SMPO) and copper oxide nanoparticles (NPO).

3. Results and Discussion
3.1. Optimal SMP/NPO Ratio for Hybrid Pastes

Figure 3a plots the electrical resistivity of the sintered structures with various weight
ratios of SMPO to NPO ratios under three or four flash pulses. SMPO/NPO mixed
structures had much lower resistivity than those that comprised merely single-sized copper
oxide particles. As shown, the sintered SMPO structure had an electrical resistivity of
207.5 ± 44.1 µΩ·cm, while that of the sintered NP structure was 199 ± 45 µΩ·cm. Mixing
NPO with SMPO improved electrical conductance. The lowest resistivity, 101 ± 12 µΩ·cm,
was achieved with a mixture of SMPO:NPO = 3:1. The sintered structures possessed
average thickness of about 6 µm based on the SEM cross-sectional images. For instance,
Figure 3b reveals that the thickness of sintered SMPO was 5.6 µm.

Figure 3. (a) Electrical resistivity of sintered structure with various SMPO/NPO weight ratios, and (b) cross-sectional image
of sintered SMPO samples. Three flash pulses were used to NPO, and four were used to the other samples.

According to the XRD patterns in Figure 4, the major constituent phase of the sintered
structures was pure copper. Cu2O and CuO were identified in the SMPO:NPO = 1:3
samples, but in the SMPO:NPO = 3:1 samples, Cu2O was the only oxide detected. The above
results suggest that SMPO:NPO = 3:1 is the optimal ratio for obtaining the flash-sintered
copper structure with least amount of residual oxides and lowest electrical resistivity.
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flash pulses.

3.2. Effect of Copper Salts on Photonic Sintering of Copper Oxides

Figure 5 plots the electrical resistivities of flash-sintered structure of hybrid pastes with
various copper salt additives, i.e., cupric sulfate, cupric chloride, copper formate, and cop-
per acetate. Formic acid was added to 10 wt.% to promote oxide reduction, and one-quarter
of the copper oxides was replaced by copper salts to form salt-bearing pastes. Pastes that
does not contain salts had a resistivity of around 100 µΩ·cm. Of the copper salt additives,
copper formate was the only one that reduced electrical resistance. Exposure to three
flash pulses reduced the electrical resistivity to 64.6 ± 5.7 µΩ·cm. Adding copper acetate
reduced the critical number of flash pulses from four to two, but it did not significantly
affect the electrical conductance (~100 µΩ·cm). Adding copper sulfate and chloride con-
tributed to negative effect on electrical conductance. The cupric chloride-bearing sintered
structure had an extremely high electrical resistivity, which was beyond the range of in-
terest. Figure 6 presents the microstructural morphologies of the sintered hybrid pastes
with or without copper formate. By means of comparison, copper formate promoted
the consolidation of the particles and thereby improved both the microstructural continuity
and electrical conductance.
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Figure 6. SEM image of sintered hybrid copper pastes (a) without copper salts, and (b) with copper formate.

FTIR analyzed the sintered structure and detected copper salt residues; the obtained
spectra are shown in Figure 7. Prior to irradiation (the spectrum “before exposure” in each
figure), various organic ligands were identified. In order of decreasing wavenumber, they
were νO-H (3438 cm−1) from α-terpinol, νC=O (1630 cm−1) from PVP or formic acid, δC-H
(1348 cm−1) from PVP or α-terpinol, and νC-N (1230 cm−1) from PVP. Some other ligands
associated with particular pastes were also identified, including δCOO- (775 cm−1) from
copper formate and νS=O (1415~1350 cm−1) from cupric sulfate. Flashing at the pastes that
contained carboxylates (copper formate and copper acetate) almost eliminated the organic
ligands. In contrast, the ligand signals of νC-N, νC=O, and δC-H remained detectable from
pastes with cupric sulfate and cupric chloride. The νO-H signal in cupric chloride-containing
pastes was almost unaffected. This result reveals that carboxylate was relatively readily
decomposed under pulsed flash irradiation, and converted into metallic copper, favoring
to conductive path linking.
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As also illustrated in Figure 5, when hybrid pastes containing copper formate were
exposed to three flash pulses, their electrical resistivity achieved its lowest value, after
which it increased gradually. Figure 8 displays the XRD patterns of sintered structures
that were collected from copper formate-containing pastes that were exposed to four or six
flash pulses. Cu2O diffraction peaks became intensified and that of CuO re-emerged as
the number of pulses increased from four to six. This result indicates that excess flash pulses
caused oxidation of the reduced copper and thereby worsened electrical conductivity.
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3.3. Mechanisms and Factors That Affect Electrical Conductance of Flash-Sintered Structures of
Copper Oxide Particles

Figure 9 compares the electrical resistivities of various Cu/CuO pastes that were
subjected to flashes with various irradiation energies. Although the electrical resistivity
that was obtained herein exceeded most reported values, it still fulfilled the requirement for
acceptable electrical resistivity, i.e., 100 µΩ·cm [15]. Pulsed flashes with an extremely low
energy density were used in this study to prevent damages to vulnerable substrates while
providing acceptable electrical conductance of the sintered structure. The used of a mixture
of submicron-nano-sized copper oxide powders is proposed here for the first time on
account of its favorable cost, ease of storage, and relatively long shelf-life. Worth of notice
is that nano-Cu or CuO inks usually form sintered structure with the thickness of 1 µm of
less. The sintered films of hybrid pastes reached 6 µm in average thickness. This might
account for the inferior electrical conductance but shed the likelihood to fabricate thick
copper films.

The mechanism of the reduction of copper oxide into pure copper by pulsed flash
lights has seldom been studied and is therefore not yet sufficiently understood. The reactive
sintering reaction that was suggested by Ryu et al. [8] can be used in this process. PVP,
which was adopted as paste thickener to adjust the paste viscosity, is a kind of photoactive
polymer, which may decompose when exposed to irradiation, forming intermediate acids
or alcohol that reduce copper oxides (CuO and Cu2O) as following steps.

5CuO + CH3COOH→ 3Cu + Cu2O + 2H2O + 2CO2 (1)

4Cu2O + CH3COOH→ 8Cu + 2H2O + 2CO2 (2)

Photo-decomposition of α-terpineol and PVP may form not only acids or alcohol but
also OH radicals [19,20], which may also promote the reduction of copper oxide to pure
copper during the xenon flash pulse process via reactions (3) and (4).

CuO + 2OH→ Cu + H2O + O2 (3)

2CuO + 2OH→ Cu2O + H2O + O2 (4)

The electrical resistivity variation of sintered structures with the SMPO/NPO ratio
is associated with the particle size and constituent phases. Mixing Cu or Ag particles
of various sizes and shapes has been proposed to improve the linking of sintered struc-
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tures [7,21]. Mixing copper oxide particles of various sizes is herein proposed for the first
time. As shown in Figure 10a, the sintering of submicron-sized SMPO left interstices, form-
ing a loose structure and thereby, inferior connections among particles. The right amount
of nano-sized NPO can fill the interstices of such a porous structure. However, an excess
NPO would increase electrical resistivity, probably owing to the tiny nano-sized pores
(Figure 10b,c). These results suggest that adding copper formate can fill the gaps, cause
the reduced copper to coalesce, improve the continuity of sintered structures, and thereby,
their electrical conductance (Figure 10d).
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Adding copper formate can lower the resistivity to 64.6 ± 5.7 μΩ·cm. FTIR spectra demon-
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The constituent phases importantly affect the electrical conductance. As described
by Equations (1)–(4), the reduction of CuO to pure Cu is more difficult than that of Cu2O.
Therefore, the optimal SMPO/NPO ratio and reduced electrical resistivity of flash-sintered
structures are proposed to be related to proportion of Cu2O. However, excess exposure to
light was demonstrated to cause re-formation of oxide, and especially Cu2O in the sintered
structure, with a consequent increase in electrical resistivity.

4. Conclusions

Hybrid pastes that contain nano- and submicron-sized copper oxide particles, as well
as copper formate, were successfully developed for the fabrication of conductors by low-
energy-density pulsed flash sintering. Unlike the films formed by commercial nano-CuO
inks whose thickness is usually about 1 µm or less, several flash pulses can transform this
hybrid paste into a conducting sintered copper structure with average thickness of 6 µm.
An optimum SMPO:NPO ratio of 3:1 to yield reduced electrical resistivity is suggested.
Adding copper formate can lower the resistivity to 64.6 ± 5.7 µΩ·cm. FTIR spectra demon-
strate that unlike cupric sulfide and chloride, copper formate can be completely dissociated
by flash irradiation. One of the products of salt decomposition, metallic copper, improves
structural consolidation and electrical conductance.
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