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Prevent the Progression of Diabetic Nephropathy
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Diabetic nephropathy (DN), a leading cause of end-stage renal disease (ESRD), becomes a worldwide problem. Ultrastructural
changes of the glomerular filtration barrier, especially the pathological changes of podocytes, lead to proteinuria in patients with
diabetes. Podocytes are major components of glomerular filtration barrier, lining outside of the glomerular basement membrane
(GBM) to maintain the permeability of the GBM. Autophagy is a high conserved cellular process in lysosomes including
impaired protein, cell organelles, and other contents in the cytoplasm. Recent studies suggest that activation of autophagy in
podocytes may be a potential therapy to prevent the progression of DN. Here, we review the mechanisms of autophagy in
podocytes and discuss the current studies about alleviating proteinuria via activating podocyte autophagy.

1. Introduction

Diabetes mellitus (DM) has been one of the global health
issues. According to the report from the International Diabe-
tes Federation, the number of patients with DM will increase
to 205 million in 2035 than in 2014. Diabetic nephropathy
(DN), a serious chronic complication of DM, is a leading
cause of end-stage renal disease (ESRD). One significant clin-
ical feature of DN is the appearance of urinary protein,
defined as “albuminuria.” Structural changes of the glomeru-
lar filtration barrier are detected in the diabetic patients with
albuminuria, including glomerular endothelial cell injury, the
loss of podocytes, glomerular basement membrane (GBM)
thickening, and mesangial expansion [1, 2]. Apart from
GBM dysfunction, the accumulation of advanced glycation
end products (AGEs), oxidative stress, and the activation of
the renin-angiotensin system (RAS) also contribute to the
decline in renal function [1, 3–7].

Based on the pathologic alterations in the kidney, DN is
classified into four groups: class I includes GBM thickening,
class II consists of mild (IIA) to severe (IIB) mesangial
expansion, class III includes nodular glomerulosclerosis,
and class IV represents developed DN which is characterized
with over 50% global glomerulosclerosis and podocyte

deficiency [8, 9]. Among these four categories, the kidney
may also exhibit arteriolar hyalinosis, glomerular capillary
subendothelial hyaline, and arteriosclerosis. Present thera-
pies are mainly focusing on the way to reduce the levels of
blood glucose and blood pressure to normal, and most of
them alleviate albuminuria via suppressing the RAS activity
[10]. Nevertheless, considering the elevation of diabetic
kidney diseases, further studies in a pathogenetic mecha-
nism for DN are needed to find new approaches to treat
DN. Recently, a number of reports have demonstrated that
autophagy is involved in the pathogenesis of diabetes-
related podocyte injury. In this review, we will make a sum-
mary on the role of autophagy in this process and the
mechanisms involved.

2. Autophagy

Autophagy (from the ancient Greek meaning “self-eating”) is
a highly conserved cellular process that delivers protein and
other impaired cell organelles to lysosomes for degradation
and recycle to maintain intracellular homeostasis. Christian
de Duve first referred autophagy in 1963 [11]. Subsequent
studies focused on the regulatory mechanisms of autophagy
and its effects on human health and disease.
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On the basis of different ways of transporting intracellu-
lar constituents to lysosomes, autophagy is divided into three
types: macroautophagy, microautophagy, and chaperone-
mediated autophagy [12]. Macroautophagy and chaperone-
mediated autophagy are through autophagosomes and chap-
erone complex, respectively, while constituents are delivered
to lysosomes directly in microautophagy [13, 14]. In this
review, macroautophagy (hereafter referred to as autophagy)
is mainly investigated among these three types. In terms of
different types of degraded substrates, autophagy was also
divided into selective and nonselective autophagy. Degra-
dation of some impaired organelles, lipophagy, or xeno-
phagy is involved in selective autophagy, whereas deficient
nutrient-induced autophagy is considered the nonselective
type [15–17].

Autophagy, first detected in the yeast, is a complex pro-
cess comprising of autophagy-related gene (Atg) product
cooperation. Atg proteins are classified into five groups:
Atg1 kinase complex [Atg1/Unc-51-like kinase (ULK) 1/2],
Atg9, class III phosphoinositide 3-kinase complex (PI3KC3),
and two ubiquitin-like conjugation systems (Atg12-Atg5 and
Atg8 conjugation system) [18]. Besides the Atg regulation,
there are some other regulatory mechanisms of autophagy,
such as the mammalian target of rapamycin signaling path-
way and cellular stress pathway [19–21].

3. Podocyte Autophagy in Diabetic
Nephropathy

Studies have demonstrated that autophagy is renoprotective
in acute kidney injury, obstructive nephropathy, diabetic
nephropathy, and other renal diseases [22]. Podocytes are
highly differentiated epithelial cells lining the outer aspect
of the GBM with interdigitating foot processes, and the slit
diaphragms between foot processes play a role in substance
filtration. Podocyte injury including foot process fusion and
slit diaphragm alteration results in abnormal permeability
of the GBM, terminally leading to albuminuria. Autophagy
controls the quality of the cytoplasm, via degrading proteins,
peroxidases, and damaged organelles that complicate the
recycle of organelles, and then maintains the homeostasis of
intracellular environment [23, 24]. The self-repaired feature
of autophagy is important in the anaphase cells such as neu-
rocytes and podocytes, which have a restricted capacity in
differentiation and proliferation [25]. The previous studies
explored the mechanisms of podocyte autophagy in DN
and suggested that activated podocyte autophagy has an
effect on DN through an Atg12-Atg5 conjugation system,
mTOR, adenosine 5′-monophosphate- (AMP-) activated
protein kinase (AMPK), and oxidative stress as well as vascu-
lar endothelial growth factor.

3.1. Atg12-Atg5 Conjugation System in Podocyte Autophagy
and Diabetic Nephropathy. Atg12 is a ubiquitin-like protein
involving in autophagosome formation. Autophagy activa-
tion needs the conjugation of Atg12 to Atg5, which is stimu-
lated by Atg7 and Atg10, and then promotes Atg8 and lipid
phosphatidylethanolamine conjugation in the cytoplasm
[26]. The activation of the Atg12-Atg5 conjugation system

promotes the production of autophagosome and then acti-
vates podocyte autophagy. Currently, Liu et al. demonstrated
that β-arrestins, a negative adaptor of G protein-coupled
receptors (GPCRs), aggravate podocyte injury through
autophagy inhibition in DN [27]. They found that β-arrest-
ins suppressed podocyte autophagy via downregulating
Atg12-Atg5 conjugation, which is induced by enhancing
the interaction between β-arrestins and Atg7. Therefore,
modulation of this pathway may be a novel therapeutic
approach for treating patients with DN.

3.2. mTOR Signaling Pathway in Podocyte Autophagy and
Diabetic Nephropathy. Mammalian target of rapamycin
(mTOR) is essential to cell growth regulation, and activation
of mTOR suppresses autophagy. Deficient nutrients (such as
growth factor or amino acid deficiency) in the cytoplasm
activate autophagy by suppressing the expression of mTOR.
After inhibition, mTOR not only can activate the formation
of class III phosphatidylinositol 3-kinase (PI3K) complex
and the unc-51-like kinase (Ulk) 1 complex but also inhibit
the activity of ribosome protein subunit 6 kinase 1 (S6K1)
[28–31]. In the upstream of mTOR, there are two separated
protein kinases, phosphatidylinositol 3-kinase I (PI3K-I)/
protein kinase B and AMP-activated protein kinase, which
are regulated by different conditions [32].

3.2.1. Phosphatidylinositol 3-Kinase I (PI3K-I)/Protein Kinase
B (Akt/PKB). PI3Ks are consisted of three isoforms, includ-
ing class I, class II, and class III [33, 34]. As a member of
Atg proteins, class III PI3K composes of a Vps15 regulatory
subunit and a Vps34 catalytic subunit, which promote phos-
phatidylinositol (PI) conversion to phosphatidylinositol 3-
phosphate [PI(3)P] and then initiate autophagy [35–38].
In contrast, the class I PI3K regulatory subunit p58 is bonded
to the catalytic subunit p110 and then activates the Akt/
mTOR signaling pathway [39, 40] by promoting phos-
phatidylinositol 3,4,5-triphosphate. Therefore, it seems that
class I PI3K inhibits autophagy while class III PI3K activates
it. The activation of class I PI3K is triggered by insulin or
growth factors to interact with insulin receptors or tyrosine
kinase receptors, which are the members of transmembrane
receptors existing on the membrane of podocytes and then
activates Akt/PKB. Then, the downstream tuberous sclerosis
complex 1 and 2 (TSC1/2) proteins will be inhibited by PKD1
and the production of Akt/PKB activation. In the end, podo-
cyte autophagy is suppressed by the activation of mTOR.

Recent studies have emphasized the relationship between
DN and nutrient-dependent pathways, involving the mTOR
signaling pathway. In the models of diabetic nephropathy,
especially the type 1, insulin resistance blocks the phosphor-
ylation of Akt/PKB and then activates mTOR by increasing
the expression of Rheb (Ras homolog enriched in brain).
Thus, insulin resistance suppresses podocyte autophagy
through increasing the activity of mTOR.

3.2.2. AMP-Activated Protein Kinase (AMPK). As an essen-
tial regulator in energy metabolism, AMPK is an enzyme
consisted of three proteins (α, β, and γ) [41]. AMPK can be
activated by an increase in Ca2+ concentration in the
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cytoplasm [42, 43] and the stimulation of numerous hor-
mones, adipokines, and cytokines. In addition to these, the
ratio of an intracellular AMP/ATP decrease also activates
AMPK. Nutrient starvation induced the activation of AMPK.
In the condition of ATP deficiency, the downstream TSC1/2
is activated by AMPK, then inhibits Rheb, and finally
enhances autophagy by suppressing mTOR activation
(Figure 1). Recently, Jin et al. suggested that berberine allevi-
ated high glucose-induced apoptosis of podocytes in mouse
via increasing the activity of AMPK [44]. They showed that
the expression of p-AMPK in a high-glucose (HG) group
was lower and the expression of p-mTOR was higher in the
HG group compared with the control group, while these
results were conversed by berberine administration.

Mechanical stress induced by the renin-angiotensin sys-
tem is considered a major damage factor in podocytes of
DN. Spironolactone, a common diuretic, is generally used
to treat heart failure, edema, or Conn’s syndrome. The study
from Li et al. demonstrated that spironolactone has renopro-
tective effects on activating autophagy through blockage of
the mTOR signalling pathway in podocytes under mechani-
cal stress [45]. They used the Flexercell FX-5000TM Com-
pression System to establish the animal model of DN and
found that the expressions of p85-PI3K, p-AKT, and p-
mTOR were significantly increased compared with those of
the control group. After administration of spironolactone
for 48h, the levels of p85-PI3K, p-AKT, and p-mTOR were
markedly decreased, which are in accordance with the results

in the group by PI3K inhibition. Thus, spironolactone might
be a new therapy of DN.

Rapamycin is a new immunosuppressive drug of mac-
rocyclic lactone, which was first found in a soil bacterium
in 1965 [46]. After that, researchers suggested that rapa-
mycin has antifungal effects as well as anti-T cell activity
in succession [47]. Furthermore, rapamycin is a selective
inhibitor of mTOR [48]. Rapamycin binding to immunophi-
lins, such as FKBP12 (FK binding protein, 12 kDa), forms an
FKBP12-rapamycin complex. The FKBP12-rapamycin com-
plex suppresses the expression of mTOR through phosphor-
ylation of mTOR and then activates autophagy. However, the
number of clinical trials of rapamycin in DN is less; further
studies are needed to clarify the renoprotective property of
rapamycin in DN.

3.3. Reactive Oxygen Species (ROS) in Podocyte Autophagy
and Diabetic Nephropathy. Besides insulin and nutrition
starvation, intracellular metabolism alternations are also
related to the pathogenesis of DN, involving the increase in
reactive oxygen species (ROS). Several studies have shown
that ROS are the most common factors in activating podo-
cyte autophagy. An increase in ROS production activates
PKR-like kinase (PERK), which then oxidizes Atg4 proteases
via eIF2a phosphorylation, subsequently promotes the level
of proteolytic mature LC3, and prevents mTOR activation
[49] (Figure 2). Recently, Ma et al. explored the effect of
high-glucose milieu on podocyte autophagy and suggested
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Figure 1: mTOR signaling pathway in podocyte autophagy. PI3K-I: class I phosphatidylinositol 3-kinase; Akt/PKB: protein kinase B; TSC:
tuberous sclerosis complex; ATP: adenosine triphosphate; AMPK: AMP-activated protein kinase.
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that podocyte autophagy was activated by upregulating the
generation of mitochondrial ROS after exposing to high glu-
cose for 24 hours [50]. Meanwhile, podocytes exposed to
angiotensin II (ANGII) also increased the generation of
ROS and promoted autophagy activation [51]. However,
the membrane of the mitochondrion is damaged by excessive
ROS generation in the mitochondrion, and ROS releasing
into the cytoplasm may cause damage to other organelles.
Since the function of autophagy targeting and degrading
injury organelles is selective, the augmentation of ROS will
be limited [52]. Chronic exposure to high-glucose condition
leads to autophagy insufficiency and subsequently causes
lysosomal dysfunction and podocyte apoptosis, finally result-
ing in diabetic nephropathy [53]. Therefore, reduction of
ROS generation is a potential therapeutic approach for pre-
venting the development of DN.

3.4. Vascular Endothelial Growth Factor (VEGF) in Podocyte
Autophagy and Diabetic Nephropathy. In the early phases of
animals or patients with DN, the level of VEGF has been
shown to be increased in the kidney. Several studies have sug-
gested that elevation of VEGF is associated with the increase
in the glomerular permeability, then resulting in proteinuria
[54].VEGF is considered to be a promoter of angiogenesis
and synthesized mainly by the podocytes. VEGF-A, as one
member of a VEGF family, has a negative effect on glomeru-
lar endothelial cell (GEC) glycocalyx through the early stages
of DN, and this effect can be reversed by VEGF-A165b, an
inhibitory isoform of VEGF-A, finally ameliorating pro-
teinuria [55]. Autophagy has been reported to prevent
angiogenesis [56, 57]. Miaomiao et al. found that high glu-
cose enhanced the level of VEGF, whereas this elevation is

downregulated by autophagy activation via rapamycin, an
inhibitor of mTOR [58]. Yang [59] and Liu et al. [60] also
demonstrated that the increase in autophagosome inhibits
angiogenesis.

4. Conclusion

According to the International Diabetes Federation, the
global diabetes prevalence will increase from 8.3% in 2014
to 10.1% in 2053. As a serious global health issue, it is urgent
to find potent therapies to treat diabetes and its complica-
tions, especially diabetic nephropathy. The previous studies
have shown the activation of autophagy in podocytes via
inhibiting the expression of mTOR and alleviating albumin-
uria in DN. Meanwhile, autophagy activation also decreased
the expression of VEGF and subsequently prevented the pro-
gression of DN. Although studies have suggested that podo-
cyte autophagy is a renoprotective process in lysosome, DN
is an extremely complex complication. Further investigations
are needed to elucidate the role of autophagy in podocyte
injury induced by DN and discover the autophagy-based
therapies for the treatment of DN.
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