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ABSTRACT

Motivation: Abstract shape analysis allows efficient computation
of a representative sample of low-energy foldings of an RNA
molecule. More comprehensive information is obtained by computing
shape probabilities, accumulating the Boltzmann probabilities of all
structures within each abstract shape. Such information is superior
to free energies because it is independent of sequence length and
base composition. However, up to this point, computation of shape
probabilities evaluates all shapes simultaneously and comes with a
computation cost which is exponential in the length of the sequence.
Results: We device an approach called RapidShapes that computes
the shapes above a specified probability threshold T by generating
a list of promising shapes and constructing specialized folding
programs for each shape to compute its share of Boltzmann
probability. This aims at a heuristic improvement of runtime, while
still computing exact probability values.

Conclusion: Evaluating this approach and several substrategies,
we find that only a small proportion of shapes have to be actually
computed. For an RNA sequence of length 400, this leads, depending
on the threshold, to a 10-138 fold speed-up compared with the
previous complete method. Thus, probabilistic shape analysis has
become feasible in medium-scale applications, such as the screening
of RNA transcripts in a bacterial genome.

Availability: RapidShapes is available via http://bibiserv.cebitec
.uni-bielefeld.de/rnashapes
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1 INTRODUCTION
1.1 Motivation

1.1.1 From minimum free energy folding to abstract shape analysis
Secondary structure prediction, based on thermodynamics, for RNA
molecules has become an indispensable tool in RNA research,
despite its well-known shortcomings (Doshi et al., 2004; Mathews
et al., 1999). There are limitations in the underlying energy model
(Mathews and Turner, 2006) (with respect to ion concentration,
temperature and entropic effects), influences of co-transcriptional
folding (Meyer and Miklés, 2004) and mechanisms such as
RNA thermometers and riboswitches (Mandal and Breaker, 2004,
Waldminghaus et al., 2009), where the prediction of an ‘optimal’
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structure, even when correct, tells only half the story. Hence, much
past and ongoing work is devoted to improving this state of affairs.

Comparative analysis of several (related) RNA sequences opens
many routes for improvement (Bernhart ez al., 2008; Havgaard et al.,
2007; Reeder and Giegerich, 2005, only to name a few), but when
studying only a single sequence, the only way forward is to give
a more complete account of the folding space of the molecule.
Abstract shape analysis is a fairly recent attempt in this direction.
For shortness, here we discuss only those approaches which it is
directly based upon.

The first method analyzing the complete folding space in order
to assess the relevance of a secondary structure was introduced
in McCaskill (1990). This approach uses the partition function to
address this property. In general, the partition function provides a
measure of the total number of states (structures) weighted by their
individual energy at a particular temperature. For an RNA sequence s
and the set F(s) of all possible secondary structures for this sequence,
it is defined as follows:
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where E) is the energy of structure x in kcal/mol, R is the universal
gas constant (0.00198717 kcal/K) and 7 is the temperature in Kelvin.
In words, the partition function is the sum of Boltzmann weighted
energies of all structures. The probability Prob of a certain secondary
structure x € F'(s) is defined as:
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Intrinsic to this approach is that the probability is proportional to
the (Boltzmann-weighted) energy of a structure. This approach does
not provide further information on structural relevance. There is no
possibility that an individual structure has a higher probability than a
structure with lower free energy, and the minimal free energy (MFE)
structure is always the most probable one; albeit with an individual
probability that is often very close to zero. This problem has already
been stated in McCaskill (1990), and the author also provides a
means to alleviate it. Instead of computing the probability of a
complete structure, the probabilities of atomic structural elements,
i.e. base pairs, are computed by what has become known and widely
used as the McCaskill algorithm.

The RNAsubopt program, released by Wuchty et al. in 1998,
can give a non-heuristic enumeration of near-optimal structures.
However, there is an ‘embarrassingly large’ (McCaskill) number
of such structures in the vicinity of the energy minimum, and the
problem remains how to derive significant observations from this
information.
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In Chan e al. (2005) and Ding and Lawrence (2003), the authors
introduced a statistical sampling algorithm that is implemented in the
tool SFOLD. In each step of the recursive backtracing procedure,
base pairs and the structural element they belong to are sampled
according to their probability, obtained from the partition function.
Features of the sampling procedure are that each run is likely to
produce a different sample and that the same structure can be
sampled multiple times, where the MFE structure has the highest
probability. Still, the MFE structure is not guaranteed to be present
in the sample, especially for long sequences. Sampled structures are
clustered, and cluster centroids can be considered as representing the
relevant structural alternatives in the molecule’s folding space. The
idea of producing a structure which reflects the entire distribution
of structures (more properly than the MFE or maximum likelihood
structure does) has been further extended by studying a variety of
centroid estimators in Carvalho and Lawrence (2008), Do et al.
(2006) and Hamada et al. (2009).

Abstract shape analysis (Giegerich et al., 2004b) implements
a similar idea in a very different way. Rather than enumerating
structures and clustering them thereafter, structures are classified
a priori into abstract classes called shapes. Abstract shapes
correspond well to human characterizations such as ‘a cloverleaf
structure’ or ‘a stem-loop with a bulge in the 5’ side’. Abstract
shapes have a clean mathematical definition that allows for different
levels of abstraction. In this article, we only use the most abstract
level (5). Each shape describes a class of structures, and within each
class, the structure of minimum free energy is defined as the shape
representative structure, called shrep for short.

1.1.2  Computation of shape representative structures The
RNAshapes program computes an arbitrary number of representative
structures of different shapes, ranked by their energy. The top
ranking shape, naturally, has the MFE structure as its represenative.

Still, knowing the energies of the shape representative structures
does not tell us about the Boltzmann probability of the structures
corresponding to either shape. One might naively assume that the
top ranking shape also achieves the highest overall probability. This
may often be true, but it does not hold in general.

Let us consider an example. We present structures in the simple
dot-bracket notation made popular by the Vienna RNA package
(Hofacker et al., 1994), where dots denote unpaired residues,
and matching parentheses denote paired bases. Inspired by this
notation, in abstract shapes, arrangements of complete helices are
denoted by square brackets. Consider the two top ranking shapes
in the following example, taken from Rfam (Griffiths-Jones et al.,
2005):

>AY579432/4388-4457 from RF00215
AGCGAGUAAGACAGACUCUUCUGCCUGAGUUCGCGGAUACAAGUGUGAAUCUAACAACGCAU. GGUUA

Rfam family consensus

AAAAAAAAAA Ceeeeeed

Free Energy Shape representative structure Shape
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In this example, the second-ranking shrep of AY579432 indicates
the family consensus, and hence, more likely constitutes the
functional structure. However, the computed information provides
no hint to this situation.

1.1.3 Computation of shape probabilities Letus now consider the
shape probabilities, i.e. the accumulated Boltzmann probabilities of
all structures within each shape:

Rank Probability Shape Rank Probability Shape

1) 0.7048835 [111] 6) 0.0002346 (01011101
2) 0.2361259 [1 7) 0.0001298 (0101011
3) 0.0476083 (el 8) 0.0000582 [er1011011
4) 0.0070069 [1ern 9) 0.0000028 (1101l
5) 0.0039475 [10C1[1] 10) 0.0000025 (010010111

Such a calculation shows that shape [] [] is more populated than
shape [ ] and dominates the Boltzmann ensemble. Furthermore, this
analysis shows that structures of all other shapes ranked 3 or above
are unlikely to play a functional role.

Computation of shape probabilities is implemented in the second
release of the RNAshapes program (Steffen et al., 2006; VoB et al.,
2006).

1.1.4 Properties and uses of shape probabilities Compared with
plain folding energies, shape information has several advantages:
shape probabilities are independent of sequence length and base
composition, and hence are meaningful across related sequences
from different organisms. For example, shape probabilities have
been used to assign significance levels to predicted miRNA
precursors in large-scale studies (Berezikov et al., 2006; Lu et al.,
2008). Consensus shapes for a set of sequences can be determined
quickly and have been used as the basis of consensus structure
prediction (Reeder and Giegerich, 2005). Finally, it has been
determined that Rfam families can be indexed by their shape spectra,
which leads to a significant speed-up of Rfam searches (Janssen
et al., 2008).

1.1.5 Computational cost of probabilistic shape analysis While
standard MFE folding algorithms have the asymptotic runtime of
O(n3), where n is the sequence length, probabilistic shape analysis
has a runtime of O(rn3). The value r is the (expected) number of
all shapes encountered in the folding space of the analyzed RNA
sequence. The aymptotic number of all shapes of all sequences of

length n has recently been determined to be 1.20"-5.13 7 (Lorenz
et al., 2008; Nebel and Scheid, 2009), but the expected number
of shapes encountered for an individual sequence is not known.
Rudimentary measurements in (VoB ez al., 2006) indicate a value of
r~1.1". As a consequence of this exponential factor, probabilistic
shape analysis for a sequence of length 400 requires ~11.5h and
2.7 GB memory on present day hardware.

It is clear that when computing the probabilities of al/ shapes, a
factor related to the number of shapes cannot be avoided. But in
practice, we are interested only in a handful of top-ranking shapes.
We can compute the top k shapes ranked by shrep energy in Okn3)
time—so it may seem surprising that this should not be possible
for shapes ranked by probability. The explanation is that shape
probabilities add up from many small contributions, and there is
no way to determine early which subshapes may later contribute
to the top-ranking ones. In other words, Bellman’s Principle of
Optimality (Giegerich et al., 2004a), the prerequisite of dynamic
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programming algorithms, does not apply for shape probability
computation.

There may be a different approach to compute shape probabilities
in polynomial time, but the chances do not look good: problems
of this type are closely related to the path labeling problem for
hidden Markov models, shown to be NP-hard in Brejova et al.
(2007).

For this reason of computational expense, the RNAshapes program
also provides two heuristics: one is a low probability filter that
excludes subshapes of very low probability, e.g. <10~%. This implies
that the overall partition function appears smaller than it is. The other
heuristic is a sampling mode, akin to SFOLD, but defining clusters
a priori as shapes. Still, sampling gives up on computing exact
probabilities, and also becomes expensive for longer sequences
when a large number of samples must be drawn. Therefore, we
set out here to provide a runtime heustistic to compute the shapes
of highest probability. A runtime heuristic means that we still
compute the exact probabilities, efficiently in many cases, but with
no guarantee for polynomial runtime in general.

1.2 Outline of ideas

Let s be the sequence under consideration, and length(s) =n. The
partition function Q(s) of the complete folding space F(s) can be
computed efficiently in O(n3) time. Now consider a specific shape
p.such as [][].All the structures of shape p constitute a subspace
Fp(s) CF(s). The probability of p is

Prob(p,s)=Qp(s)/O(s), where Op(s)= Z e%ft 3)

X€EF,(s)

This means that Qp(s) is itself the partition function of Fp(s),
and with a special program that folds s exactly and only into the
structures of Fj(s), we can compute Qp(s) efficiently in (’)(n3)
time.

A program folding an RNA sequence into a restricted set
of structures, using the standard energy model, is called a
thermodynamic matcher (TDM) (Reeder and Giegerich, 2005). Such
TDMs are produced, for example, via the tool Locomotif, where a
user composes pictures of annotated RNA structures, which are then
compiled into programs for RNA motif search (Reeder et al., 2007).
We use a similar TDM generator which, given an abstract shape p,
generates the TDM for p, which computes the partition function.

The overall idea is as follows:

(1) We compute Q(s) in O(n3).

(2) We enumerate (heuristically) a series of promising shapes
P1:P2s - -

(3) For each p;, we generate TDM; as a program coded in
algebraic dynamic programming (ADP) style (Giegerich
et al., 2004a).

(4) We compile TDM; and execute it to compute Qp, (s) in (’)(n3 ),
and obtain Prob(p;,s) according to Equation (3).

(5) We continue until a specified portion of the shape probabilities
is exhausted.

Since the time for TDM generation and compilation is small
compared with their execution time, overall runtime of this heuristics
is (9(tn3 ), where 7 is the number of TDMs (shapes) used. We call
this approach RapidShapes.

2 A METHOD FOR FASTER SHAPE PROBABILITY
COMPUTATION

2.1 Basic problem: shapes with a least 7% probability

Here, we define the standard problem we want to solve efficiently;
later we shall discuss variations of it. Let us set up a probability
threshold 7' for the shapes of interest, say 0.9 or 0.6 as used
in Berezikov et al. (2006), or maybe as low as 0.1. Given T,
only a constant number of shapes (1 with the first two settings,
9 for the third or [(1/7)—17 in general) can meet the threshold—
independent of the sequence length n. Note that there may be no
shapes at all meeting the threshold. On the other hand, there is a
large population of shapes living in sub-thresholdia, their number
growing exponentially with n.

2.1.1 Problem definition Given an RNA sequence s of length n
and a threshold 0 < 7' < 1, compute all shapes p of s with Prob(p)>T,
together with their shape representative structures and free energy.

This definition permits that some shapes with subthreshold
probability will also be computed, but the goal is, of course,
to minimize our efforts spent on those. We have to solve two
subproblems, namely the analysis of subspaces Fp(s) and the
generation of a good list of ‘promising’ shapes.

2.2 Analysis of the folding space partitioned by shape

A TDM folds a sequence only to a restricted set of structures.
For RapidShapes, such a restricted set of structures comprises all
structures of a particular shape (and no other). A TDM can compute
the partition function value Qp(s) of its restricted folding space Fj(s)
in O@n3) time, just as the unrestricted RNA folding program does
for the complete folding space F(s). Since Qp(s) is the sum of all
structures in Fj(s), and Fj(s) is a precise subset of F(s), we have
to ensure that a TDM folds exactly those structures constituting the
shape class p. Our strategy is to generate such programs on demand.

2.2.1 Representing structures and shapes as grammars RNA
structures are conveniently described by context-free grammars
(Durbin et al., 1999), where the parses of an RNA sequence s indicate
all its possible foldings F'(s). Parses implicitly assign a score with
each structure, be it probabilities from a stochastic model, base pair
counts or thermodynamic energies. Here, we use tree grammars to
describe structures. Tree grammars make explicit the semantics of
each grammar rule, and can be compiled directly into executable
code using the ADP technology (Giegerich et al., 2004a).

An expository simplification of the tree grammar that we use to
compute F(s) is given in Figure 1. The left part of Figure 2 shows one
of the candidate structures, tree #;, which this grammar assigns to
the input sequence ACCAAAGG. The operators root, last, stack
and hairpin will be used to compute all relevant properties of this
structure candidate. The actual grammar used in RNAshapes as well
as in RapidShapes uses 26 rules and 35 operators to accomodate the
thermodynamic energy model, including dangling bases.

We can imagine the progress of an RNA folding program based
on tree grammars in two phases. Phase one is the generation of all
candidate structures (trees), while in the second phase a score is
assigned to each candidate. The score of a candidate depends on
the scheme that describes how the tree operators must be evaluated
in phase two. For example, if we want to assign a Vienna Dot-
Bracket representation as a score to t1, we can apply AgoBracket
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start —> unpaired | root components —3 xt | last
region components region stem components region stem region
stem —>  hairpin | //Tl\\b | multiloop
(basepairing) /// \\b
base region3 base base  region stem region ase base region stem  components ase

Fig. 1. Tree grammar for folding all RNA structures Gyyj: terminals are colored in blue, where base is a single unpaired base, region is a possibly empty
stretch of unpaired bases and region3 has at least three unpaired bases. Non-terminals are black. The axiom start is written in boldface. The operators
are given in green. The subscript basepairing indicates that the outmost bases have to form a base pair. All structures are either unpaired or consists of
one (last) or many (next) consecutive stems. A stem can be a hairpin or amultiloop, which both can be extended by a stack. stack includes

internal loops, bulges and stacked base pairs, depending on whether two, one or none of both regions are empty.

ACCAAAGG
S(C.))

start —> unpaired | root

t, G

root
A/at cons —> last | next
stack
C/haj;}G coLp cor/pEan
comp —> H\ | \\
'['/ T '[K/PVEns I

Fig. 2. Left: parse #; as one of many possible parses for ACCAAAGG with
Gan. The Vienna Dot-Bracket representation is . ( (...)) and the shape
string of level 5 is []. Right: grammar Ggen to generate specialized tree
grammars: operators, non-terminals and terminals are coloured as in Figure
1. Instead of an RNA sequence, the input for this grammar is a shape string.

Gen z cons

Table 1. Equations for the two evaluation schemes A gqBracket in the second
column and Agpapes in the last column

Operat()f AdotBracker AshapeS
root(x)= X by
last(l,x,r)= ITIE S d SRR X
is(x)= X X
sr(a,l,x,r,a)= (. +x+.0+H) x
hl(a,m,a’): (+---\m|+) [1
unpaired(u) = oo _
next(u,x,y)= cou) X +Y x+y
ml(a,u,x,y,a’)= (. +x+y+) [+x+y+1

+ is string concatenation and .|, means one *.” for each base in m. a and @’ are the
two partners of a base pair. The resulting Vienna Dot-Bracket string for #; would be
. ((...)).Since Gy is semantically unambiguous with respect to A joBracket> there
is only one structure that can form this specific Vienna-Dot-Bracket representation.
The shape representation for #1 is *[1’. Since Agp,pes does not account for unpaired
regions or the number of base pairs in a stack, many structures, generated by G, will
have the same shape representation.

to get the string . ((...)) (Table 1). By exchanging A4otBracket
with Aghapes, we get [] for 71. Other schemes are used to calculate
thermodynamic energies, probabilities or base pair counts.

2.2.2 Generating grammars from shapes Given shape p, we
generate the specialized grammar Gp. We do so using another tree

(basepairing)

start —> rolot
t root G[][] components[][]
1o |
next
/ components[ill —>=
/h\ region  stem[] components[]
T |a|St stem(l —> hairpin | components[] —> i

region _ stem[] region

/H\ basé region3  Dase

basé region3  Dase

bas€ reglon/stjrhgmh ase!

Fig. 3. TDM for the shape [] []: the left side shows f{y}, the only parse of
“[1[1 with Ggen-. On the right side is the generated grammar Gyjjj with five
rules depicted that is constructued by applying the evaluation scheme Agen
to the operators of fjj. To see the similarities the backbone of both trees are
colored in red.

grammar Ggep, see right part of Figure 2, which parses a shape
representation as its input. The rules of Ggep, follow the intention
of the shape abstraction: the allowed submotifs (comp) are either
adjacent helices (cons), or embedded helices within multiloops. An
exception is the completely unpaired structure (unpaired).

For our example p="[1[1" (see left part of Fig. 3), 7} is the
unique parse of [] [] with GGep. The restricted tree grammar Gy
for folding structures of shape class [] [] is constructed by applying
a grammar-generating evaluation scheme Agep to [j. The details
of this generation exceed the scope of the present article. Equations
for Age are available in the Supplementary Material. The result
is shown in the right part of Figure 3. The important difference
to Gy is that the non-terminals are now position specific—or
better helix specific—by the addition of suffices to their names.
Furthermore, the alternatives are reduced for some positions. For
example, the rule components|[] [] lacks the 1ast alternative,
while components [] lacks next.

Since a grammar is a set of rules, the identical rules in Figure 3,
namely stem[], can be handled by the same matrices in the
dynamic programming code, which saves some memory space as
well as runtime.

2.2.3  Using the standard energy model Although Q(s) and Qp(s)
are computed by two independent programs, they have to fold the
same structures and evaluate them to the same energy values, i.e.
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Boltzmann weighted energies. We can assure this by using the
identical evaluation scheme for both programs. This comes for free,
because the operators in Gy and Gp, are always the same.

THEOREM 1. GGen(Agen,p) generates a TDM,, which correctly
computes Qp(s).

PrOOF. By construction, TDM,, recognizes unambiguously all
structures of shape p. When applied to s, it exactly constructs
Fp(s) and hence computes Qp(s). That our implementation actually
satisfies this mathematical property, can be systematically tested by

checking _, 0 (s)=0Q(s).

2.3 Heuristic shape selection

To run RapidShapes for a given sequence s, we construct a list L(s) of
‘promising’ shapes. For each shape p € L(s), we construct TDMs and
compute Prob(p,s) in O(n3) time. Ideally, L(s) would only contain
the shapes above the threshold, but this is exactly the problem to be
solved.

2.3.1 Selection by shrep energies The simple shape analysis for a
given sequence s computes the top k shapes ranked by the energy of
their shreps (cf. Section 1). Although shape ranks by shrep energy
and shape ranks by probability do not agree, there is a positive
correlation between shrep energies and shape probabilities. We
start with a small £ to compute L(s)=[py,...,pr] by simple shape
analysis. If Zf.‘zlProb(pi,s)< 1—T, we repeat the simple shape
analysis with larger k to extend L(s).

2.3.2 Selection by sampled frequencies Sampling of structures to
estimate shape probabilities can be done very fast, but the results
are not exact. However, the reported shapes may be the most likely
ones, in spite of their probabilities being incorrect. To combine both
advantages, we use the quickly calculated shapes from the sampling
as members for L(s) and precisely determine their probabilities via
TDMs. Sampling requires a bound on the number of samples drawn,
which was set to 1000 for this study. This might overlook shapes
with probability >T', but this chance can be decreased by drawing
more structures.

2.4 Asymptotics

To satisfy the problem definition, given in Section 2.1, RapidShapes
must calculate the probability, the shrep structure and its free
energy for all k shapes with Prob(p)>T. All three values can be
computed for one shape by using specialized evaluation schemes
with the TDM, where Prob(p) is Qp(s) divided by Q(s), which
must be calculated just once. For the sake of speed, we seperate
the computation of shape probabilities for all shapes in L(s) from
the computation of shrep structures and free energy values for all &
shapes, with Prob(p) > T, because usually |L(s)| >> k. This leads to
an asymptotic runtime of (’)(n3 +|L(s)| m+k-n3 +1).

3 EVALUATION

3.1 Evaluation setup

Our evaluation uses a random and a ‘real’ test set. The random
testset is constructed to uniformly cover a sequence length of
5-1000nt in steps of 5 nt. We use two sequences for each length, so

the test set contains 400 sequences. The realistic test set contains
1092 candidates from a recent experimental screen for bacterial
non-coding RNAs (Schliiter,J.-P. et al., manuscript in preperation).

3.1.1 Oracle To mark the theoretical maximum speed up for
RapidShapes, we assume an oracle that a priori denominates the
shapes for L(s), ordered by their shape probabilities. This would
allow to use the minimum number of TDMs for any choice of T.
Of course, such an oracle does not exist, but we can determine what
it would have returned by dropping subthreshold shapes from L(s)
after their evaluation.

3.2 Results on random data

The performance evaluation of RapidShapes has two aspects: the
effective number of shapes that have to be evaluated, and the
absolute gain in runtime.

3.2.1 Required number of TDMs Figure 4A is a comparison of
the growth of F(s) and L(s) for different methods to fill this list with
promising shapes.

As expected, just a very small number of all existing shape classes
in F(s) (cyan colored curve) seems to account for a major part of
all structure probabilities. The number of TDMs, which must be
generated, compiled and executed for RapidShapes, is strikingly
smaller than |F(s)|, regardless of the method for filling L(s).

The Selection by shrep energies (red curve) is not perfect, because
the green curve of the omniscient oracle is somehow below, but the
distance is not too wide and it follows the trend of the oracle.

Selection by sampled frequencies (blue curve) runs the risk
of not creating enough shapes, due to the limited sample size.
Sampling 1000 structures can result in at most 1000 different shapes,
and normally much less. For larger sequences the accumulated
probability of these shapes may not be sufficient to cover 1—T.
Where this strategy needs even less TDMs than the oracle, it
comes with an increasing proportion of unexplored parts of F(s).
The amount of unaccounted folding space for the Selection by
sampled frequencies method is indicated by the blue dotted curve in
Figure 4A.

It is interesting that the sampling strategy becomes faster than the
energy-based strategy exactly where it starts missing shapes above
the threshold. We conclude that there lies no real advantage in the
sampling strategy when computing all exact shape probalities above
the threshold is required.

3.2.2 Runtime speed-up Different shape strings result in different
TDMs, i.e. different grammar sizes. The larger the grammar, the
higher is the runtime for generation, compilation and execution,
independent of the input sequence. To include these effects into
the evaluation results, Figure 4B shows our analysis of empirically
measured runtimes.

While computing a probabilistic shape analysis, the program
RNAshapes uses a filter to exclude all subshapes with a very low
probability (<0.000001 by default), although they might contribute
to highly probable shapes. This means the results are no longer exact,
but this threshold is wisely chosen. The error for the probability
values is very small and the speed-up is significant. Without the
filter, RNAshapes exceeds memory for sequences as small as 130 nt
(cyan colored curve in Fig. 4B). With activated filtering, valid input
sequences can have up to 400 nt (magenta curve). This comes with a
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Necessary number of TDMs (T=0.1)
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Fig. 4. Evaluation results: (A) necessary number of TDMs compares the growing numbers of shapes in F(s) and |L(s)|, which is the number of shapes used in
RapidShapes. The x-axis is sequence length, the logarithmic scale right y-axis is |L(s)|. F(s) is measured by RNAshapes with low-probability filter set to 10~°,
colored in cyan, and without filtering, colored in magenta. We tested three different methods to fill L(s) for 7 =0.1. The green colored Loracle(0.1, 5) is the optimal
choice of shapes for RapidShapes. ‘Selection by shrep energies’ Lenergy (0.1, ) is colored in red and ‘Selection by sampled frequencies’ Lsampling(0.1, 1000, 5)
for 1000 samples per sequence is colored in blue. The previous curves result from the random data, while the black (7'=0.1) and gray (T =0.5) curves arise
from the real dataset, when applying the ‘Selection by sampled frequencies’ method. ‘Selection by shrep energies’ for the real dataset is shown by the dashed
black and gray curves. The left y-axis depicts the amount of unaccounted folding space, i.e. the accumulated probability of all evaluated shapes minus (1 — 7).
The dotted blue curve corresponds t0 Lgampling(0.1, 1000, 5), while the dotted green curve result from the most probable 1000 shapes, which are too few to
cover 1 —T for sequences longer than ~550 bases. (B) Runtime comparison illustrates actual runtimes of the various methods instead of counting shapes.
The logarithmic scale y-axis is here runtime in seconds. The newly introduced orange curve depicts the runtime for the pure sampling process via RNAshapes
of 1000 structures. (C) Runtimes for different thresholds show the influence of selecting different values for the threshold 7. All curves are smoothed via
the gnuplot option ‘smooth bezier’. For more details on the curves, consider the online-only Supplementary Material. We stopped our evaluation at sequence
length 700 after consuming 574 CPU days.
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mean squared error between true and calculated shape probabilities
of 4.62 x 10~ (tested with 750 sequences of both testsets < 130
bases).

For short sequences, the overhead of constructing TDMs
prevents RapidShapes from being useful, but with input sequences
>208nt there is a growing speed-up, compared with RNAshapes.
Furthermore, the heuristic makes it possible to compute shape
probabilies for sequences > 400 nt, where RNAshapes runs out of
memory.

The achieved speed-up depends on the choice of threshold T'.
Our previous measurements were made for a rather low threshold
of T=0.1. In practice, a threshold of 0.6 or even 0.9 makes sense
when checking for the existence of a dominant shape. The larger the
T, the faster is RapidShapes—this is demomstrated by the different
red and blue curves in Figure 4C for ‘selection by shrep energies’
and ‘selection by sampled frequencies’, respectively.

3.3 Results on real data

Natural RNAs, whether functional or not, are not random sequences.
Functional non-coding RNAs are known to be optimized for good
folding energy, although this signal is not strong enough to discern
functional from non-functional RNA. All natural RNA has a bias
toward lower folding energy than random sequences. (Cf. Clote
et al., 2005, and the long debate summarized therein). We can
expect this bias to favor a small number of shapes with a high
probability over a more even distribution in real RNAs. This fact
must lead to RapidShapes requiring a smaller number of TDMs and
hence becoming faster. This result is confirmed on our real data
testset. It consists of 1092 candidates from a bacterial screen for
non-coding RNAs, identified via deep sequencing and microarray
expression analysis. Returning to Figure 4A, consider the black and
the gray line, computed with 7=0.5 and 7 =0.1, respectively. The
smaller number of required TDMs also results in a moderate speed-
up. Out of these 1092 sequences, are 98 >208 nt, the break-even
point (for 7=0.1) where RapidShapes starts to become faster than
RNAshapes. While RNAshapes with activated filtering consumes
67.5 h to calculate shape probabilities, RapidShapes takes only 7.3 h
of runtime.

4 DISCUSSION

4.1 Speed-ups and brake-even points achieved

Abstract shape probabilities, as computed by RNAshapes, provide
useful information beyond MFE folding. Due to the large
computational cost, previously, a sampling heuristic had to be used
for sequences longer than about 200 bases. This heuristic, however,
has the disadvantages that (i) it does not return exact probabilities,
(i) does not account for the part of the folding space not covered
by the sampling and (iii) does not return shape representative
structures. The mean squared error between sampled and exact shape
probabilities for all test sequences is 1.64 x 10~*. In a case where a
particular shape clearly dominates all others, these disadvantages do
not really matter, as this shape will be sampled many times (dwarfing
the probabilities of other shapes), and the shape representative
structure has a good chance to be in among the sample. However,
one cannot know beforehand whether this situation applies.

The approach RapidShapes presented here overcomes these
limitations and enables the computation of shape probabilities a

much wider sequence range. It is a runtime heuristic—i.e. the
computed probabilities are exact, we obtain the shape representative
structures, and we know about the uncovered amount of probability
in the folding space. What cannot be guaranteed is polynomial
runtime in a strict asymptotic sense, but the evaluation shows that
RapidShapes performs well in practice.

.5The speed-up achieved by RapidShapes depends on the
threshold and on the sequence length. Using a very relaxed threshold
T =0.1, RapidShapes becomes faster than the traditional method
(using its low-probability filter) at sequence length 208 nt. At
sequence length 400 nt, RapidShapes is faster by a factor of 10.
Taking a more stringent threshold at 7'=0.6, RapidShapes becomes
faster at sequence length 159 nt, and at sequence length 400 nt, the
speed-up factor is about 138. Independent of threshold, RapidShapes
is the only practical method to compute exact shape probabilities for
sequences > 400nt.

4.1.1 Expected numbers of shapes above a probability threshold
The combinatorics of shapes has found considerable interest
recently, but the expected number of shapes of a sequence of length
n is still unknown. Our large-scale evaluation has produced some
empirical data in this respect. Assuming a simple exponential growth
pattern of O("), we can estimate «. Our data (Fig. 4A) suggest that
a=1.096439" for the number of all shapes of a sequence of length n
(cyan curve), o =1.020742 for all shapes with a probability > 10-6
(magenta curve), and o= 1.011290" for all shapes with probability
larger than T=0.1 (green oracle). RapidShapes computes o=
1.011341" shapes (red curve) and hence is quite close to optimal.
For T'=0.5, the oracle value is « =1.005604 (data not shown).

4.2 Problem variants

4.2.1 k best shapes As explained initially, we can efficiently
compute the k best shapes of sequence s ranked by shrep energy,
but not ranked by probability. In order to compute the k best shapes
ranked by probability, we compute shape probabilities according to
the Lenergy strategy. Assuming K >k shapes have been computed,
and pp,...,p; are the best k shapes seen so far, we can stop
computation as soon as 1 — Z,K: | Prob(p;) < Prob(py,).

4.2.2  Best shape only If we ask for the best shape no matter how
small its probability is, we can do no better than to apply the above
strategy for k=1. However, if we are interested in the existence of
a dominant shape, loosely defined here as one which is more likely
than all the rest together, we just solve the standard problem with
threshold 77=0.5.

4.3 Implementation alternatives

4.3.1 Algorithm parameterization versus generation From an
algorithmic point of view, or method of generating, compiling and
running algorithms for subproblems on the fly appears somewhat
unusual. As an alternative, one could think of modifying the code
of the traditional method to accomodate a target shape p as an
extra parameter, and restrict the folding to structures which match p
running through list Lenergy . This would turn the general method into
the equivalent of a TDM for p. However, this would slow down the
inner loop of an (’)(n3) algorithm, whereas generating and compiling
takes O(n) time (empirically: less than 7.76% of the overall process)
to yield an O®n?) TDM algorithm without such a slowdown. And
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besides, generating TDMs from shapes has other applications, e.g.
in RNA motif search.

4.3.2  Other shape enumeration heuristics We have experimented
with other ideas of enumerating promising shapes, such as (i) using a
precompiled library of frequently encountered shapes, or (ii) always
computing low complexity shapes (such as []) first. Neither of
these ideas has provided an improvement. When computing shape
probabilities for abstraction levels i <5, a good strategy may be to
first compute best shapes of level i+ 1 and then computing their
subshapes at level i. This is possible since shape abstraction levels
form a perfect hierarchy. However, this idea has not been further
explored yet.

4.4 Open problems

Given a particular TDM, it is easy to generate a scanning version to
find high probability instances of its shape in a longer sequence.
An adaptive window size, subject to a reasonable upper bound,
also seems feasible. However, thinking of for RNA gene prediction
based on dominant shapes, we would need a scanning version that
dynamically changes the shape as it moves along the sequence. This
presents a challenge for future research.

Our technique does not depend on the concrete information
that is accumulated for each shape. Recent approaches such as
CONTRAfold (Do et al., 2006) and CG (Andronescu et al., 2007)
replace the classical thermodynamic model by stochastic models,
trained from structural data via machine learning techniques. To
benefit from our aproach, these methods need to be augmented to
support shape abstraction. Technically, they are based on different
grammars than RNAshapes. For these grammars, shape abstraction
functions need to be defined and implemented. Then, our TDM
generator and the strategies described here should carry over without
change.
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