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Adipocytes and adipose tissue play critical roles in the regulation of metabolic
homeostasis. In obesity and obesity-associated metabolic diseases, immune cells
infiltrate into adipose tissues. Interaction between adipocytes and immune cells re-
shapes both metabolic and immune properties of adipose tissue and dramatically
changes metabolic set points. Both the expression and activity of the non-canonical
IKK family member TBK1 are induced in adipose tissues during diet-induced obesity.
TBK1 plays important roles in the regulation of both metabolism and inflammation in
adipose tissue and thus affects glucose and energy metabolism. Here we review the
regulation and functions of TBK1 and the molecular mechanisms by which TBK1
regulates both metabolism and inflammation in adipose tissue. Finally, we discuss the
potential of a TBK1/IKKe inhibitor as a new therapy for metabolic diseases.
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INTRODUCTION

Obesity has reached a pandemic (1). The complications of obesity, including type 2 diabetes,
cardiovascular diseases, neurodegenerative diseases, non-alcoholic fatty liver diseases, and cancer,
have become leading health threats. Obesity is caused by a positive energy balance, leading to excess
lipid accumulation in adipose and other tissues (2–5). In addition to being an inert site for energy
storage, adipose tissues play essential roles in metabolic homeostasis (6, 7). As the major cell type
within adipose tissue, adipocytes are responsible for lipid storage and mobilization in response to
insulin and sympathetic activation respectively. However, these cells can also sense their nutrient
status, and respond by secreting a series of hormones known as “adipokines” (6–8). Upon food
intake, the resulting elevation of nutrients in the circulation stimulates insulin production. Insulin in
turn lowers glucose and fatty acid levels in part by instructing fat and muscle tissue to increase
glucose uptake and storage, while reducing lipolysis in fat, glycogenolysis in muscle and liver and
gluconeogenesis in liver (9, 10). In adipocytes, nutrients are largely stored as triglycerides. Upon
reaching a threshold of lipogenesis, adipocytes trigger the production of adipokines such as leptin, to
suppress food consumption and activate the sympathetic nervous system, thus closing a loop to
ensure energy homeostasis (9, 11–15). Excessive energy intake or low energy expenditure could lead
to a sustained positive energy balance and consequently cause increased adiposity in obesity (3–5).

Obesity is associated with low-grade chronic inflammation in adipose tissue, featured by an increased
number of macrophages and an elevated ratio of proinflammatory macrophages (16–20). Although the
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immediate trigger for obesity-associated inflammation in adipose
tissue remains unclear, multiple factors, including hypoxia,
mechanical stress, lipotoxicity, adipocyte death, and bacterial
toxins may contribute to this process (9, 21–27). Inflammation
has been reported to affect several properties of adipocytes. The
activation of proinflammatory pathways has been shown to disrupt
glucose uptake and insulin responsiveness and alter adipokine
production (28–31), suggesting that inflammation plays an
essential role in the pathological response to obesity.

The nuclear factor kappa B (NFkB) is a widely expressed
transcription factor that mediates inflammatory responses in
numerous tissues. The NFkB signaling pathway plays a key role
in the development of inflammation and insulin resistance in
adipose tissue (32–34). Transcription through NFkB is mainly
controlled by the phosphorylation of inhibitor of NFkB (IkB) by
the upstream IkB kinases (IKKs). The canonical IKKs, IKKa, and
IKKb, phosphorylate IkB, and other NFkB subunits to induce the
expression of NFkB target genes (35). Besides IKKa and b, the IKK
family also includes two non-canonical members, IKKϵ and TANK-
binding kinase 1 (TBK1). Interestingly, despite their sequence
similarity to the canonical IKK isoforms, TBK1 and IKKe do not
appear to play important roles in NFkB activation in response to
proinflammatory cytokines (36). However, expression of Ikke and
Tbk1 mRNAs are induced by NFkB (37). Moreover, IKKϵ and
TBK1 are activated by protein phosphorylation in response to
proinflammatory cytokines or other substances that bind to Toll-
like receptors 3 and 4 (38). It was reported that activities of IKKϵ
and TBK1 are significantly increased in adipose tissue of obese mice
(37). We review here the functions of the noncanonical IKKs in
inflammation and metabolic regulation in adipose tissue, with a
major focus on the roles of TBK1 in crosstalk between inflammation
and metabolism.
NON-CANONICAL IKKs

NFkB plays a central role in the transcriptional response to
proinflammatory stimuli. In the absence of stimuli, IkB binds to
NFkB to sequester the transcription factor in the cytoplasm (39).
Inflammatory stimuli increase the phosphorylation and
activation of IKKs, which in turn phosphorylate IkB and NFkB
to activate the expression of NFkB target genes (35, 39, 40). An
IKK complex formed by IKKa, IKKb, and the NFkB essential
modifier (NEMO) directly phosphorylates IkB at Ser32 and Ser36

to induce ubiquitin-associated degradation. Consequently, NFkB
is released to activate gene expression. This pathway represents
the canonical NFkB signaling pathway (41, 42). Both IKKa and
IKKb possess a kinase domain (KD), a scaffold dimerization
domain (SDD), and a NEMO-binding domain (NBD). A
ubiquitin-like domain (ULD) is found in IKKb but not in
IKKa. In contrast to the canonical IKKs, IKKϵ and TBK1 have
similar SD, ULD, and SDD, but lack the NBD. Human TBK1
shares 49% identity and 65% similarity to IKKϵ, but only 27%
identity with IKKa and IKKb (43–45). Unlike the canonical
IKKs, the roles of IKKϵ and TBK1 in the NFkB signaling
pathways remain uncertain. Early studies demonstrated that
Frontiers in Immunology | www.frontiersin.org 2
TBK1 phosphorylates IKKb to increase its activity, while IKKϵ
phosphorylates RelA at Ser468 to induce its nuclear translocation
(44, 46, 47). However, subsequent studies found that TBK1 or
IKKϵ deficiency has no effect on LPS, TNFa, interleukin-1b, or
poly(I:C)-induced activation of NFkB (38, 48). Thus, it appears
that IKKϵ and TBK1 are not required for the activation of NFkB
in response to proinflammatory cytokines (36). Instead, studies
showed that the expression of Ikke and Tbk1 are induced by
NFkB under proinflammatory conditions (37). Interestingly, two
separate studies demonstrated that TBK1 and IKKϵ mediate
NFkB activation downstream of the cGAS-STING pathway in
response to cytosolic DNA or STING ligand (49, 50).

Multiple studies demonstrated that non-canonical IKKs play
important roles in metabolic regulation. The expression of Ikke
was upregulated in the liver, adipocytes, and adipose tissue
macrophages during diet-induced obesity (34). Knockout of
Ikke reduced inflammation and improved insulin sensitivity in
adipose tissue and liver. Hepatic steatosis was largely attenuated
by IKKϵ deficiency as well. Ikke knockout mice gained less
weight and were resistant to high fat diet-induced obesity due
to the increased energy expenditure and thermogenesis (34). The
expression of Uncoupling protein 1 (Ucp1), a major uncoupler
utilizing the mitochondrial proton gradient to generate heat, was
significantly upregulated in white adipose tissue in these
mice (34).

Energy expenditure is largely controlled by sympathetic signals.
Catecholamines induce Ucp1 expression and increase
thermogenesis in both brown and subcutaneous white fat (51,
52). During high fat diet-induced obesity, adipose tissue becomes
resistant to catecholamines, resulting in decreased energy
expenditure (9, 53–55). Mowers et al. demonstrated that IKKϵ
directly phosphorylates and activates phosphodiesterase 3B
(PDE3B) to reduce intracellular cAMP levels and thus represses
cAMP-mediated b-adrenergic signaling (55). Ikke knockout
restored catecholamine sensitivity, leading to an upregulation of
Ucp1 expression and an increase of thermogenesis (34, 55, 56).
Therefore, during obesity, the inflammation-induced expression
of Ikke represses sympathetic signal and further promotes energy
storage (Figure 1). IKKϵ mediates the interaction between
inflammatory and catecholamine signals, representing one
example of how inflammation modulates metabolism in
adipose tissue.
TBK1

Although the role of TBK1 in NFkB activation remains unclear, its
function in the innate immune response has been well-recognized.
In response to infection, pattern recognition receptors (PRRs)
sense the pathogen-associated molecular patterns (PAMPs) on
bacteria or viruses to activate TBK1-mediated signaling pathways
(57, 58). Two major types of PRRs participate in this action. Toll-
like receptors (TLRs), especially TLR3 and TLR4, are cell surface
receptors that utilize adaptor proteins such as TIR-domain-
containing adaptor-inducing interferon-b (TRIF) and Myeloid
differentiation primary response 88 (MyD88). Ligands of TLRs,
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such as lipopolysaccharides (LPSs), bind to their receptors to
induce the activation of TBK1. Retinoic acid-inducible gene I
(RIG-I)-like receptors, NOD-like receptors (NLRs), and cytosolic
DNA sensors are the PRRs in the cytoplasm (36, 59, 60). Cyclic-
GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor.
cGAS utilizes cytosolic DNA to generate cGAMP, which in turn
binds to the adaptor protein Stimulator of interferon genes
(STING). Consequently, STING interacts with and activates
TBK1 (61). Besides pathogen infection, proinflammatory
cytokines such as tumor necrosis factor a (TNFa) also produces
TBK1 activation (62, 63). Upon activation, TBK1 directly
phosphorylates interferon regulatory factor 3 (IRF3) and IRF7 at
multiple serine and threonine residues to induce their nuclear
translocation (64–67). Consequently, these transcription factors
upregulate the expression of type I interferon (Ifna, Ifnb) genes in
the innate immune response. TBK1 is indispensable for the
antiviral immune response (61, 68).

The activity of TBK1 is acutely controlled by phosphorylation
on Ser172 within the kinase domain (63, 69, 70). However, the
molecular mechanism by which this activating phosphorylation
occurs is still unclear. Structural studies suggest that TBK1
undergoes multi-order oligomerization. While the kinase
usually exists as a homodimer, the kinase domains face
outward and are generally not capable of phosphorylation in
this configuration (70). However, adapter proteins bring together
these homodimers in larger heteromeric complexes, leading to
Ser172 phosphorylation via transautophosphorylation (70).
Moreover, recent investigations demonstrated that Unc-51 like
autophagy activating kinase 1 (ULK1) can directly phosphorylate
Ser172 (63). This is consistent with the observations that both
ULK1 and TBK1 play essential roles in autophagy (71–75). TBK1
regulates autophagy via phosphorylating optineurin on Ser177

and SQSTM1/p62 on Ser403 to clear pathogen or damaged
mitochondria (76, 77). Interestingly, the activation of NFkB
Frontiers in Immunology | www.frontiersin.org 3
also upregulates the expression of Sqstm1/p62 to induce
mitophagy in response to LPS (78, 79). These studies suggest
that NFkB and TBK1 may function synergistically to promote
the clearance of damaged mitochondria and pathogens
during infection.

Understanding the functions of TBK1 in vivo have been
hampered by the lethality of global Tbk1 knockout. Whole-
body knockout of Tbk1 leads to enhanced apoptotic liver
degeneration and embryonic lethality at approximately E14.5
(80). In this regard, TBK1 directly phosphorylates receptor-
interacting serine/threonine-protein kinase 1 (RIPK1) on
Thr189 to prevent cell death. TBK1 deficiency substantially
increases RIPK1-mediated cell death, resulting in embryonic
lethality between embryonic day 13.5 and embryonic day 14.5
(81). In line with this finding, another study found that both
TBK1 and IKKϵ phosphorylate RIPK1 on multiple sites,
including Thr189, to prevent TNF-induced cell death (62, 81).
To conduct in vivo studies on the roles of TBK1 in inflammation,
Marchlik et al., generated (Tbk1D/D) mice expressing a TBK1
inactive mutant with the deletion of exon 2 (82). Tbk1D/D C57BL/
6J mice were still embryonic lethal. However, Tbk1D/D 129S5
mice were fertile and viable, but born at a decreased Mendelian
frequency. Tbk1D/D mice had increased mononuclear and
granulomatous cell infiltration into multiple tissues, along with
elevated circulating monocytes. This is consistent with another
study reporting that Tbk1D/D mice die faster and in larger
numbers in response to LPS (82).

Regulation of the Crosstalk Between
Metabolism and Inflammation by TBK1
Although it was reported that TBK1 expression and activity are
induced in adipose tissues during obesity and insulin resistance
(34, 37, 63), the role of TBK1 in the pathogenesis of metabolic
disease was unclear. A recent study revealed that TBK1 mediates
FIGURE 1 | IKKϵ inhibits adrenergic signaling to repress thermogenesis. IKKϵ activity is induced by proinflammatory stimuli. Active IKKϵ directly phosphorylates and
activates PDE3B to reduce cAMP levels. Consequently, IKKϵ inhibits cAMP-mediated adrenergic signaling pathway and represses energy expenditure in adipocytes.
PDE3B, phosphodiesterase 3B; cAMP, cyclic AMP; PKA, protein kinase A; HSL, hormone sensitive lipase; UCP1, uncoupling protein 1.
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crosstalk between inflammation and metabolism in adipose
tissue (Figure 2) (63). During high fat diet-induced obesity,
chronic inflammation leads to an increase of proinflammatory
cytokines in the adipose tissue (9, 30, 83). Consequently, these
cytokines, such as TNFa, produce the activation of TBK1 (63).
At the same time, the inflammatory environment also results in
enhanced NFkB activity, resulting in an increase in Tbk1
expression (34, 63). Thus, high fat diet feeding substantially
induces TBK1 activity in the adipose tissue through both
transcriptional and posttranslational regulation (34, 37, 63).
Upon activation, TBK1 attenuates adipose tissue inflammation
via repressing the atypical NFkB pathway (63). In this pathway,
the NFkB-inducing kinase (NIK) phosphorylates Ser176 to
activate IKKa, which largely resides as a homodimer (84).
IKKa in turns phosphorylates the RelB (NFkB2) precursor
p100, resulting in the cleavage and maturation of RelB (85).
Thus, NIK is responsible for activation of the atypical NFkB
pathway, which induces the expression of target genes, such as
Ccl2 (C-C motif chemokine ligand 2), to promote macrophage
infiltration and inflammation (86–88). Interestingly, TBK1
directly phosphorylates NIK, leading to its degradation (62,
63). Tbk1 knockout causes hyperactivation of the atypical
NFkB pathway and exacerbates macrophage infiltration and
inflammation in adipose tissue of obese mice (63). Moreover,
the loss of TBK1 in adipocytes attenuates HFD-induced obesity
via increasing mitochondrial biogenesis and energy expenditure.
TBK1 inhibits AMP-activated protein kinase (AMPK) by
catalyzing phosphorylation on inhibitory sites in AMPKa
subunit, Ser459 and Ser476. Tbk1 knockout thus ameliorates
AMPK repression in adipose tissues of high fat diet-fed mice
Frontiers in Immunology | www.frontiersin.org 4
(63), revealing that TBK1 mediates crosstalk from inflammation
to energy metabolism. The inflammation-induced TBK1 activity
produced during obesity represses energy expenditure and
promotes anabolism, which further enhances obesity through a
feedforward loop.

In addition to inflammation-induced TBK1 activation, it has
also been reported that TBK1 Ser172 phosphorylation is induced in
adipocytes during glucose deprivation, which creates an energy
shortage condition (63). Thus, TBK1 is activated not only during
overnutrition, but also during undernutrition. Mechanistically,
energy shortage leads to an increase of AMP/ATP ratio, which in
turns activates AMPK. AMPK directly phosphorylates ULK1 at
multiple residues to induce its activity (89, 90). ULK1 is able to
phosphorylate Ser172 to activate TBK1 (63). Similar observations on
AMPK-dependent TBK1 activation have been reported in
myotubes and Hela cells as well (91). Furthermore, prolonged
fasting induced Tbk1 expression in different depots of white
adipose tissues (63). However, the molecular mechanism of this
transcriptional regulation is still unknown. Studies on animal
models and human subjects reported that fasting or
undernutrition leads to a reduction of basal metabolic rate and
energy expenditure (92, 93). Given the effects of TBK1 on energy
metabolism, fasting likely activates a TBK1-mediated feedback loop
to repress energy expenditure in response to undernutrition. The
activation of TBK1 could be a protective mechanism to attenuate
the loss of body weight during fasting. Moreover, reduced caloric
intake has been demonstrated to attenuate adipose tissue
inflammation in obesity (94–97). The anti-inflammatory function
of TBK1 at least partially contributes to this effect and mediates
crosstalk from undernutrition to inflammation.
FIGURE 2 | TBK1 regulates inflammation and energy metabolism in adipocytes. TBK1 activity is induced by proinflammatory stimuli and undernutrition. Although
TBK1 is not directly involved in TNFa-induced activation of NFkB, active TBK1 phosphorylates NIK to induce its degradation and thus attenuates atypical NFkB
pathway in a negative feedback loop. Moreover, TBK1 inhibits AMPK to repress energy expenditure in adipocytes. AMPK, AMP-activated protein kinase; NIK, NFkB
inducing kinase.
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In summary, TBK1 plays a central role in the regulation of
both inflammation and energy metabolism in adipose tissue. It is
activated during both overnutrition and undernutrition and
mediates a negative feedback loop to repress inflammation and
energy expenditure under certain conditions (63). More
importantly, TBK1 is responsible for the bidirectional crosstalk
between energy metabolism and inflammation. The deficiency of
TBK1 in adipocytes leads to the attenuation of high fat diet-
induced obesity, but the exaggeration of adipose tissue
inflammation (63), indicating a loss of the positive correlation
between adiposity and adipose tissue inflammation.

Furthermore, in response to proinflammatory stimuli, TBK1
has been shown to affect metabolic reprogramming in different
cell types. Upon the activation of TLRs, active TBK1 was
recruited to the myddosome and thus promotes glycolysis in
macrophages (98). Another two studies also reported that
TBK1 activation mediates TLR ligand-induced glycolytic
reprogramming (99, 100). The rapid induction of glycolysis is
critical for the production of succinate and inflammatory
cytokines in the immune response (99). These findings
demonstrate another TBK1-mediated pathway that regulates
the crosstalk between inflammation and metabolism. However,
further studies are needed to compare the cell type specific roles
of TBK1.

Inhibition of TBK1 and IKKϵ
in Metabolic Diseases
Insights into the critical roles of the noncanonical IKKs in the
pathogenesis of obesity and insulin resistance led to a screen of
chemical inhibitors, identifying amlexanox as an inhibitor for
both TBK1 and IKKϵ (37). Daily gavage of amlexanox in obese
mice prevents genetic and high fat diet-induced obesity. The
inhibition of weight gain by amlexanox is reversible after
withdrawal of the drug. Amlexanox improved insulin
sensitivity, reduced adipose tissue inflammation, increased
energy expenditure, and attenuated hepatic steatosis in these
obese animal models (37). Considering the phenotypes observed
in Ikke knockout mice and adipose Tbk1 knockout mice, the
beneficial effects of amlexanox is likely the combined outcomes
from the inhibition of both kinases. The inhibition of IKKϵ
increases cAMP and catecholamine sensitivity to upregulate
thermogenesis and attenuates adipose tissue inflammation (34).
On the other hand, loss of TBK1 activity de-represses AMPK to
increase mitochondrial biogenesis and other catabolic functions
(63). The TBK1 deficiency-induced adipose tissue inflammation
is likely compensated by the anti-inflammatory effects of
IKKϵ inhibition.

In a proof-of-concept randomized, double-blinded clinical
study, 42 obese and diabetic patients received placebo or
amlexanox treatment for 12 weeks. Amlexanox significantly
reduced hemoglobin A1c levels (101), indicating an
improvement of glucose metabolism. Further study found that
patients with higher serum C-reactive protein (CRP) levels and
higher adipose tissue inflammation were more responsive to the
drug. In the responder group, amlexanox improved insulin
sensitivity and hepatic steatosis. The expression of thermogenic
Frontiers in Immunology | www.frontiersin.org 5
genes, including Ucp1, Dio2 and Fgf21, was upregulated by the
treatment as well in these patients. Within the responders, a
transient increase of serum Interleukin 6 (IL-6) within 2–4 weeks
of amlexanox treatment was reported (101). This observation is
consistent with a previous mouse study showing that amlexanox
upregulated Il6 expression and secretion via cAMP/Mitogen-
activated protein kinase (MAPK) p38 pathway in inguinal white
adipose tissue. The increase of circulating IL-6 activates Signal
transducer and activator of transcription 3 (STAT3) in the liver
to inhibit the expression of the gluconeogenic gene Glucose-6-
phosphatase (G6pc). As a result, amlexanox represses hepatic
glucose output and thus improves glucose tolerance (102).
CONCLUDING REMARKS

Although the causal relationship between inflammation and
obesity-associated metabolic disorders remains uncertain, there
is little doubt that adipose tissue inflammation correlates well with
the occurrence of insulin resistance and type 2 diabetes (16, 17, 19,
20). The crosstalk between inflammation and metabolism in
adipose tissue plays a critical role in the pathogenesis of
metabolic diseases. Overnutrition causes metabolic stress, which
induces the initiation of inflammation to restore the metabolic
homeostasis (9). The activation of proinflammatory signaling
pathways attenuates insulin responsive signals to prevent further
energy storage in adipocytes (103, 104). Both of these effects are
the physiological/adaptive responses to overnutrition. However,
along the progression of obesity, sustained inflammation causes a
shift of homeostatic setpoints, leading to hyperglycemia,
hyperinsulinemia, and reduced energy expenditure (9). At this
stage, the inflammation causes a pathological/maladaptive
response that further exaggerates obesity and obesity-associated
metabolic disorders. Therefore, sustained inflammation results in
a transition from an adaptive response to a maladaptive response
that accelerates the progression of metabolic disorders.

NFkB signals mediate inflammatory responses and interact
with metabolic pathways in adipose tissue (33, 105, 106). The
activities of non-canonical IKKs, TBK1, and IKKϵ are induced
during inflammation (34, 37, 63). TBK1 represses energy
expenditure via inhibiting AMPK, while IKKϵ desensitizes
sympathetic signals (34, 55, 63). The activation of these kinases
exacerbates adiposity accumulation and promotes obesity. A
recent study reported that escaped mitochondrial DNA
activates TBK1 and IKKϵ to repress energy expenditure during
metabolic stress (56). Amlexanox, a drug with outstanding safety
record, was identified as an inhibitor of TBK1 and IKKϵ. Thus
far, multiple studies on both experimental mouse models and
human subjects suggest its potential as a new treatment for
metabolic diseases (37, 101).

In addition to modulating metabolic pathways in adipocytes,
metabolic and inflammatory signals interact at systemic level in
other cell types. Metabolic stress has the potential to increase the
production of adipokines, including leptin, adiponection, and
others (28–31). It has been reported that leptin induces
inflammation, while adiponectin attenuates inflammation
October 2020 | Volume 11 | Article 592949
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(107–110). Moreover, metabolic status could affect the functions
of immune cells. Caloric restriction has exhibited systemic anti-
inflammatory effects, along with attenuated terminal
differentiation of immune cells (111). Given the energy sensing
properties of AMPK, the AMPK–ULK1–TBK1 axis may also
function in immune cells to mediate anti-inflammatory effects.
Nonetheless, the precise roles of adipose tissue inflammation in
the progression of obesity and obesity-associated insulin
resistance remains unclear. Indeed, more efforts are needed to
understand the systemic interactions between immune and
metabolic responses, which are essential for the maintenance
of homeostasis.
Frontiers in Immunology | www.frontiersin.org 6
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