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Since its emergence as a pandemic in March 2020, coronavirus disease (COVID-19)
outcome has been explored via several predictive models, using specific clinical or
biochemical parameters. In the current study, we developed an integrative non-linear
predictive model of COVID-19 outcome, using clinical, biochemical, immunological, and
radiological data of patients with different disease severities. Initially, the immunological
signature of the disease was investigated through transcriptomics analysis of
nasopharyngeal swab samples of patients with different COVID-19 severity versus
control subjects (exploratory cohort, n=61), identifying significant differential expression
of several cytokines. Accordingly, 24 cytokines were validated using a multiplex assay in
the serum of COVID-19 patients and control subjects (validation cohort, n=77). Predictors
of severity were Interleukin (IL)-10, Programmed Death-Ligand-1 (PDL-1), Tumor necrosis
factors-a, absolute neutrophil count, C-reactive protein, lactate dehydrogenase, blood
urea nitrogen, and ferritin; with high predictive efficacy (AUC=0.93 and 0.98 using ROC
analysis of the predictive capacity of cytokines and biochemical markers, respectively).
Increased IL-6 and granzyme B were found to predict liver injury in COVID-19 patients,
whereas interferon-gamma (IFN-g), IL-1 receptor-a (IL-1Ra) and PD-L1 were predictors of
remarkable radiological findings. The model revealed consistent elevation of IL-15 and IL-
10 in severe cases. Combining basic biochemical and radiological investigations with a
limited number of curated cytokines will likely attain accurate predictive value in COVID-19.
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The model-derived cytokines highlight critical pathways in the pathophysiology of the
COVID-19 with insight towards potential therapeutic targets. Our modeling methodology
can be implemented using new datasets to identify key players and predict outcomes in
new variants of COVID-19.
Keywords: COVID-19, RNA seq, transcriptomics, multiplex, ROC analysis, Aritficial Intelligence, Machine Learning
1 INTRODUCTION

The coronavirus disease (COVID-19) has been following a non-
linear evolution through the pandemic, starting with one variant
that mutated into at least four dominant subtypes. Early
prediction of COVID-19 outcome is crucial to direct resource
allocation by the health care system and to triage the patients to
receive the optimum clinical management. Despite the broad
spectrum of presentations, a significant turning point in the
course of the disease is the development of abrupt systemic
elevation of a myriad of inflammatory cytokines and
chemokines (the cytokine storm- CS). In this phase of COVID-
19, multiple organ failure progressing to circulatory shock is the
leading cause of death. The CS is accompanied by a myriad of
biochemical and radiological findings (1). A key determinant
factor of COVID19 progression is the uncontrolled dysregulation
production of cytokines and chemokines, resulting in the
development of a cytokine storm, systemic inflammation, and
consequently multi-organ failure (2). The presence of the
cytokine storm was associated with COVID-19 severity as
previously reported (3, 4), where the serum levels of cytokines
in COVID-19 patients were significantly correlated with the
severity of the disease and acted as warning indicators of the
severity and progression of COVID-19.

Interpreting the role of cytokines, their predictive value and
therapeutic potential is still a significant challenge in the context of
COVID-19. An example of an incomplete understanding of CS
and its pathogenesis is the uprise and drop of tocilizumab. As
interleukin-6 (IL-6) is a critical cytokine inCS-inducedmortality in
patients receiving engineered T cell therapy, it was first
suggested as a potential therapeutic target for COVID-19 CS.
However, a randomized, double-blind Phase III COVACTA
trial failed to reveal a significant reduction in mortality
by using tocilizumab in COVID-19 (NCT04320615) (5),
mandating further (re)search for additional key players in the
CS pathogenesis.

The COVID-19 is an adaptive dynamic disease that has
witnessed the SARS-CoV-2 mutated multiple times since March
2020. It is highly expected that SARS-CoV-2 will persist as an
endemic infection, with epidemic peaks (6), as witnessed with the
4th and 5th waves in some countries. Many of the early models for
COVID-19 failed to predict many aspects of the disease (7). Part of
the issue is that COVID-19 is a non-linear disease.Manymolecular
studies were carried out to understand COVID-19 initiation and
progression. However, such studies faced various challenges,
including the curse of dimensionality (where the total number of
severely infectedpatients is relatively lowbut eachpatient has a high
numberofdatapoints) and inability tofindoptimal solutionsacross
org 2
the general problem and thus end up with sub-solutions (local
minima) (8). Artificial Intelligence (AI) is designed to find global
solutions to multi-dimensional data. In the context of COVID-19,
AI offers vital tools to find better predictors. However, AI has a few
limitations in biomedical applications, mainly because AI solutions
can be skewed by noise and thus requires well-annotated datasets
with a clear understanding of themeasured parameters. Integrating
clinical, radiological and biochemical tests is highly recommended
to achieve the ultimate benefit of modeling the disease.

Interestingly, stochastic modeling was previously used to model
the human immune response to the yellow fever vaccine (9). Since
COVID-19 is linked to immune response, modeling of the SARS-
CoV-2 infection have been extensively published on different aspects
of the disease, including the immune system usingmultiple ODEs to
model immune cells, antibodies and cytokines (10–13), and on the
clinical and radiological data (14–16). A few models on cytokine
release syndrome in other diseases were also created (17–19).
Investigating the immune response signature in COVID-19 yielded
various biomarkers in different studies. A previous retrospective
analysis suggested IL-6, IL-8 and TNF-a as independent predictors
of patient survival (20). More recently, Perreau et al., 2021 suggested
hepatic growth factor (HGF) and CXCL13 as predictors of severity
and mortality of COVID-19 (21).

In the current study, we hypothesized that integrative
analysis of pro-inflammatory, anti-inflammatory cytokines and
checkpoint markers in addition to key clinical, biochemical, and
radiological parameters could predict COVID-19 outcomes with
higher predictive accuracy than individual parameters. Guided
by the transcriptomics analysis of nasopharyngeal swabs, we
curated a panel of 24 cytokines to be assayed using a multiplex
assay with high intra- and inter-assay precision to reflect the
immune response in our model, using a small amount of serum.
Added to the 24 entries of cytokine levels, we also included 63
entries of clinical, biochemical and radiological parameters of
well-characterized patients. In this study, we are introducing our
clinically applicable integrative model as a predictive tool for
COVID-19 severity and sequelae that will hopefully help guide
clinical decision and management strategies. In addition, the
study highlights potential therapeutic targets via identifying key
players in the cytokine storm.
2 PATIENTS AND METHODS

2.1 COVID-19 Patients’ and Healthy
Controls’ Criteria
Nasal swab samples were collected from 50 COVID-19 patients
(10 Asymptomatic, 11 mild, 13 moderate, and 16 severe patients;
April 2022 | Volume 13 | Article 865845
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SARS-CoV-2 infections is confirmed by PCR), in addition to 11
healthy donors, at Rashid Hospital in Dubai, following the
approval of the ethical committee at Dubai Health Authority
(DSREC-04/2020_09). All patients were recruited between
February-March 2020, and hence did not receive COVID-
19 vaccine.

Peripheral venous blood samples of 37 COVID-19 patients
were collected following the approval of the ethical committee at
Rashid Hospital in Dubai (DSREC-04/2020_19), in addition to
40 healthy controls. All the included patients were recruited
between June-July 2020, and hence did not receive COVID-
19 vaccine.

Patients were classified into the respective group severity as
follows: (A) Mild-moderate: no or mild pneumonia, (B) severe:
patients with at least one of the following symptoms: shortness of
breath (breathing rate ≥ 30/min), SaO2 at rest ≤ 93%, partial
pressure of oxygen in arterial blood (PaO2)/inspired oxygen
fraction (FiO2) ≤ 300 mmHg, or lung infiltrates > 50% within 24
to 48 h. Clinical and biochemical data were collected. Also,
computed tomography (CT) imaging was performed, followed
by an assessment using the COVID-19 Reporting and Data
System (CO-RADS) as a standardized assessment of
pulmonary involvement of COVID-19 (22). The Co-RAD
categories correspond to the corresponding level of suspicion
of pulmonary involvement in COVID-19. 0= scan is technically
insufficient to assigning a score; 1=normal or non-infectious; 2=
typical for other infection but not COVID-19; 3 = features are
compatible with COVID-19 but also other diseases; 4 = highly
suspicious for COVID-19; 5 = typical for COVID-19; and 6 =
RT=PCR positive for SARS-COV-2.

The healthy controls (age: 47.18 ± 16.6 years, 24 males and 16
females, BMI: 25.9 ± 3.11 Kg/m2) were filtered from an initial
cohort of 150 controls to include only those with a non-obese
BMI and normal HbA1c to avoid having any confounding
factors such as obesity or prediabetes.

2.2 Whole Transcriptome and
Bioinformatics Analysis of Nasal
Swab Samples From COVID-19
Patients and Healthy Controls
One ng of RNA of each sample was analyzed using targeted
whole RNA-seq with AmpliSeq whole transcriptome on S5
system (Thermo Fisher Scientific), and RNA-seq data were
analyzed using the Ion Torrent Software Suite version 5.4.
Alignment was carried out using the Torrent Mapping
Alignment Program (TMAP), as described in (23).

The expression counts of the nasal swap samples of COVID-
19 patients and healthy controls were normalized across samples
using the DESeq2 normalization method. Differentially
expressed genes between each of the severity groups against
the healthy control group were identified using the Bioconductor
package DESeq2. Differentially expressed genes with adjusted p-
value <0.05 and fold change >2 or <0.5 were considered
statistically significant. The adjusted p-value was calculated
using false discovery rate (FDR) according to Benjamini
Hochberg method (24).
Frontiers in Immunology | www.frontiersin.org 3
2.3 Bioinformatics Analysis of
Publicly Available COVID-19 Whole
Blood RNA-Seq Dataset
In addition, whole blood bulk RNA sequencing data
(Normalized counts) deposited by Bernardes et al. (25) were
retrieved from: https://github.com/Systems-Immunology-
IKMB/COVIDOMICs/tree/main/TF_enrichment/TF_
enrichment_analysis-main/data. The dataset included samples
from 42 COVID-19 patients (12 asymptomatic, 11 mild, 6
complicated, 4 complicated incremental, 6 complicated hyper-
inflammatory, and 3 critical patients), in addition to 14 healthy
donors. Statistical significance of the differential expression of
cytokines between the disease severity groups was analyzed using
one-way ANOVA with post hoc Tukey’s multiple comparisons
test in Graph Pad Prism (version 5.01). A p < 0.05 was
considered statistically significant.

2.4 Collection of COVID-19 Patients’
Blood Samples
Peripheral Venous blood samples of 37 COVID-19 patients were
collected following the approval of the ethical committee at
Rashid Hospital in Dubai (DSREC-04/2020_19). Ethylene-
diamine-tera-acetic Acid (EDTA) containing tubes were used
to collect the blood samples. Then, serum was separated for the
cytokine assays Forty blood samples were obtained from before
the first case of COVID-19 infection in the UAE (MO-HAP/
DXB/SUBC/No.14/2017).

2.5 Cytokine Assay
Given the results of previous steps, various cytokines of
significance were assessed in the sera (50ul sample) of the
COVID-19 patients and healthy controls using the Human
Immunotherapy Magnetic Luminex Performance Assay 24-
plex Fixed Panel (R&D systems, USA). The assessment was
done using the Bioplex-200 system (Biorad, USA). A list of the
curated cytokines is provided in Supplementary Table S1.

2.6 Statistical Analysis
Groups with different severity were compared after testing
normality (Kolmogorov-Smirnov and Shapiro- Wilk tests). If
the p-value is <0.05, non-parametric tests were used (Mann
Whitney for comparing two groups, or Kruskal-Wallis to
compare more than two groups). We grouped the mild and
moderate as (non-severe). Of all variables, only age, BMI and
platelet count followed normal distribution where the unpaired
t-test was used. Power calculation was performed based on Wei
et al. (26), setting the statistical power at 0.8, a = 0.05, and using
the mean values of different cytokine levels in mild-moderate
versus severe cases. The minimum number required in each
group was estimated to be 15. The statistical package SPSS (v.28)
was used for statistical analyses.

2.7 Machine Learning
Machine learning was used to reduce the set of clinical parameters
and identify the optimal set of parameters to stratify the patients
according to the different aspects of COVID-19 pathogenesis. A
April 2022 | Volume 13 | Article 865845
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mixture of unsupervised hierarchical and K-means clustering
analyses were performed in R (code in the Supplementary
Material) to assess the separation of COVID-19 cases
according to the blood protein expression levels of cytokine
quantified using BIO PLEX-200. k = 6 was used as the number
of clusters for the k-means clustering analysis. The k-means by
storing all the labeled examples, and using them directly for
inference on new data.

2.8 Mathematical Modeling
Mathematical modeling was used to identify key cytokines
and biochemical markers that can stratify the clinical
parameters collected in the study. The mathematical modeling
was carried out using two models that were integrated
subsequently. The first is ANOVA multivariate model with
Bonferroni’s multiple testing. This is used to identify the
variables that are significantly different amongst the various
compared patients’ groups as well as different parameters
denoting severity (e.g., mechanical ventilation, radiological
findings, complications, e.g. liver injury).

The second model is the Stepwise linear regression model.
This dynamic method systematically reduces the set of
parameters (e.g., cytokines, biochemical parameters),
depending on the significant interaction between the variables.
The ANOVA multivariate model with Bonferroni’s multiple
testing and the Stepwise linear regression model. Both models
were applied to a combination of categorical (e.g., disease
severity, oxygen support) and continuous data (e.g., protein
expression and level of biochemical markers). Two-sided
p <0.05 were considered to be statistically significant. ROC
analysis was performed to assess the predictive efficacy of the
predictors identified from the two mathematical models.
Frontiers in Immunology | www.frontiersin.org 4
Different parametersweremeasured to check themodel accuracy.
if a is true positive, b is false positive, c is false negative, and d is true
negative, the sensitivity was calculated as [a/(a+c)]×100; specificity as
[d/(b+d)]×100; positive predictive value as [a/(a+b)]×100; and
negative predictive value as [d/(c+d)]×100. Positive likelihood ratio
was calculated as Sensitivity/(1-Specificity); negative likelihood ratio
as (1- Sensitivity)/Specificity (26, 27).
3 RESULTS

3.1 Nasopharyngeal Samples Identify
Cytokines as Top Upregulated DEGs
and Signaling Through Cytokines
as Top Upregulated Pathway
Previous studies on nasopharyngeal swab samples were highly
insightful on shifts in the immune landscape in association with
COVID-19 (28), in contrast to the transcriptomic signature
associated with different types of respiratory infections (29).
However, general shifts in transcriptomic profiles associated
with COVID-19 severity warranted further dissection and
biological validation. Therefore, we carried out a transcriptomics
analysis of nasopharyngeal samples collected from asymptomatic,
mild, moderate, and severe patients using samples from healthy
donors as a reference (Table 1). The upregulated transcriptome
was significantly enriched in cytokine signaling and immune
response pathways in moderate and severe COVID-19 patients
(Figure 1 and Supplementary Figure S1), with several cytokines
being in the top 100 DEGs. Our analysis revealed the significant
upregulation of genes expressing IFN-g, CXCL10, IL-33,
Granzyme-B, and PD-L1 in moderate COVID-19 patients only
TABLE 1 | Demographic and Clinical data of the exploratory cohort (COVID-19 patients tested by transcriptomics analysis of nasopharyngeal swabs).

Asymptomatic (n=10) Mild (n=11) Moderate (n=13) Severe (n=16) p-value∫
Mean± SD or N (%) Mean± SD or N (%) Mean± SD or N (%) Mean± SD or N (%)

Demographics
Age 36.9 ± 6.64 34.2 ± 6.2 47.6 ± 17.8 60.3 ± 15.6 <0.001
BMI 27.9 ± 1.6 23.3 ± 3.4 27.2 ± 4.5 29.5 ± 5.3 0.015

Gender
Females 0 3 (27.3) 3 (23.1) 2 (12.5) 0.472
Males 19+0 (100) 8 (72.7) 10 (76.9) 14 (87.5)

Smoking 0 (0) 5 (45.5) 1 (0.08) 0 (0) <0.001
Symptoms
Fever 0 (0) 6 (54.5) 12 (92.3) 16 (100) <0.001
Cough 0 (0) 6 (54.5) 13 (100) 16 (100) <0.001
Diarrhea 0 (0) 0 (0) 4 (30.8) 3 (18.8) <0.001
Dyspnea 0 (0) 2 (18.2) 10 (76.9) 14 (87.5) <0.001
Loss of smell 0 (0) 5 (45.5) 8 (61.5) 7 (43.8) <0.001
Nausea/Vomiting 0 (0) 3 (27.3) 3 (23.1) 4 (25) <0.001

Oxygen supplement <0.001
Nasal canula, NIV, HFO, Mask 0 (0) 0 (0) 8 (61.5) 3 (18.8)
Mech Ventilation 0 (0) 0 (0) 1 (0.08) 13 (81.3)

ICU admission 0 (0) 0 (0) 6 (46.2) 16 (100) <0.001
Fatality 0 (0) 0 (0) 0 (0) 4 (25) 0.001
Ap
ril 2022 | Volume 13 | Articl
∫ Non-parametric tests for continuous variables (Age and BMI) were used (Kruskal-Wallis H), as both were not normally distributed within individual groups. Assessment of severity: Mild to
moderate is defined as no or mild pneumonia. The severe type was defined as patients with at least one of the following symptoms: shortness of breath (breathing rate ≥ 30/min), SaO2 at
rest ≤ 93%, partial pressure of oxygen in arterial blood (PaO2)/inspired oxygen fraction (FiO2) ≤ 300 mmHg, or lung infiltrates > 50% within 24 to 48 h. Eleven age- and gender-matched
healthy controls (age = 27.9± 7.3 years, 9 males and 2 females) were included. N/A, not available.
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and IL-8, IL-1Ra, IFN-a, CCL4, TNF, CCL3, and IL-1ß was in
moderate and severe COVID-19 patients; in comparison, to
healthy donors or asymptomatic patients (Figure 2A).

To investigate whether the upregulation of these cytokines
and inflammatory mediators is localized or systemic, the
COVID-19 patients whole blood RNA-seq publicly available
dataset (25) was analyzed. The analysis revealed the significant
upregulation of IL-10 in mild, complicated and critical cases; IL-
15 in mild and complicated cases; PD-L1 in complicated and
critical cases; and IFN-g in mild cases (Figure 2B).
Frontiers in Immunology | www.frontiersin.org 5
3.2 Cross-Validation of Cytokines
Using Bio-Plex
3.2.1 Recruited Patients
Based on previous findings and existing knowledge from
previous publications, we examined the association of these
cytokines with different clinical aspects of COVID-19
pathogenesis in a new cohort of 37 patients (on day 0-5 of
admission, followed up for 4 weeks), and 40 age- and gender-
matched healthy controls [Out of initial 150 control subjects, we
selected 40, with a non-obese BMI (mean= 25.9 ± 3.11 Kg/m2)
A

B

FIGURE 1 | Pathways Enrichment is the nasopharyngeal swab samples of moderate and severe COVID-19 patients. Functional clustering and pathway analysis of
the significantly upregulated genes in the nasopharyngeal swab samples collected from (A) moderate and (B) severe COVID-19 patients in comparison to healthy
patients. DEGs were identified using DESeq2 algorithm; the genes were filtered according to adjusted p-value of <0.05 and fold change >2 or <0.5. The functional
clustering analysis was performed using Metascape; p-value cut-off for pathways inclusion was <0.01.
April 2022 | Volume 13 | Article 865845
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and normal HbA1c (<5.8%), to avoid having any confounding
factors that may affect the cytokine levels, such as obesity or
prediabetes]. Patients’ clinical data is provided in Table 2.

3.2.2 Cytokine Assay
In view of the transcriptomics analysis, the curated panel
included cytokines (inflammatory and anti-inflammatory),
chemokines and other immune-related molecules such as
checkpoint markers, receptors and cytotoxic mediators
(Supplementary Table S1). Out of the 24 investigated
cytokines, 17 markers showed a differential pattern in COVID-
19 patients compared to healthy controls (Figure 3).

As shown in Figure 3A, the levels of the pro-inflammatory
cytokines GM-CSF, IL-6, IL-15, and IFN-a were higher in mild-
Frontiers in Immunology | www.frontiersin.org 6
moderate COVID-19, compared to healthy controls, with a
further increase in severe COVID-19. On another note, levels
of TNF-a and IL-17A were similarly more elevated in the mild-
moderate and severe COVID-19 patients than in healthy
controls. Also, IL-1b levels were found to be increased in mild-
moderate COVID-19 patients that were restored in severe
patients. While the component IL-12p70 showed a reduction
in the serum levels of COVID-19 patients with a significant
observed decrease in the severe patients’ group, previous studies
reported no difference in the plasma levels of IL-12p70 (30). On
the other hand, anti-inflammatory cytokines such as IL-1Ra and
IL-10 showed a sequential increase in mild-moderate and severe
COVID-19, while IL-4 showed a significant increase in mild-
moderate COVID-19 (Figure 3B).
A

B

FIGURE 2 | Transcriptomics Analysis of nasopharyngeal swab samples and whole blood samples from COVID-19 patients. (A) Gene expression of cytokines and
inflammatory mediators from the nasopharyngeal swap RNA-seq data compared across the different severity groups of COVID-19 cases (asymptomatic, mild,
moderate, and severe) in reference to the non-COVID-19 control group. The data represented as log 2 normalized expression, where the normalized was performed
using DESeq2 normalization approach across all the examined samples. (B) Gene expression of cytokines and inflammatory mediators from the whole blood RNA-
seq dataset, compared across the different severity groups of COVID-19 cases (asymptomatic, mild, complicated, and critical) in reference to the non-COVID-19
control group. The data represented as log 2 normalized expression. * represents p-value < 0.05; ** represents p-value < 0.01; *** represents p-value < 0.001;
analyzed using one-way ANOVA with post hoc Tukey’s multiple comparisons test.
April 2022 | Volume 13 | Article 865845
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TABLE 2 | Demographic, Clinical and laboratory data of the validation cohort (COVID-19 patients tested for cytokine).

Demographics Mild to moderate (n=20) Severe (n=17) p-value

Age (Mean ± SD) 51.4 ± 15.39 52.59 ± 12.69 0.802
Weight (Mean ± SD) 76.35 ± 15.96 74.35 ± 12.03 0.706
Height (Mean ± SD) 166.75 ± 12.28 165.09 ± 10.8 0.712
BMI (Mean ± SD) 27.7 ± 5.06 27.78 ± 6.42 0.970
Females 7/20 (35) 1/17 (5.9) 0.048
Males 13/20 (65) 16/17 (94.1)
Blood type [N (%)] 0.64
A+ 2 (10) 1 (5.9)
B+ 4 (20) 5 (29.4)
AB+ 1 (5) 0 (0)
AB- 9 (45) 1 (5.9)
O+ 0 9 (52.9)
O- 1 (5) 0 (0)
Clinical Presentation
Symptoms [N (%)] 0.471
Fever 14 (70) 8 (47.1)
Cough 10 (50) 8 (47.1)
Diarrhea 3 (15) 1 (5.9)
Dyspnea 6 (30) 4 (23.5)
Confusion 1 (5) 0 (0)
Nausea/Vomiting 2 (10) 0 (0)
Complications
None 15 (75) 8 (47.0) 0.118
Thromboembolic event 5 (25) 1 (5.9)
Hepatic failure 1 (5) 0 (0)
Renal insufficiency 0 6 (35.2)
Bacterial co-infection 0 5 (29.4)
Fungal co-infection 0 5 (29.4)
Radiology
X-ray finding [N (%)] 0.299
None 3 (15) 1 (5.9)
Consolidation 10 (50) 10 (58.8)
Ground glass opacities 4 (20) 1 (5.9)
Pneumothorax 1 (5) 1 (5.9)
CORAD score [N (%)] 0.47
1 2 (10) 2 (11.8)
2 1 (5) 0 (0)
4 1 (5) 0 (0)
6 2 (10) 6 (35.3)
Lab Investigations (Mean ± SD)
ANC (10^3/µL) 6.57 ± 2.95 13.1 ± 7.83 0.055
ALC (10^3/µL) 1.70 ± 1.07 3.81 ± 3.65 0.242
ANC/ALC (ratio) 6.44 ± 6.06 12.47 ± 14.23 N/A
CRP (mg/L) 38.14 ± 56.31 130.55 ± 126.64 0.001
Creatinine (mg/dL) 0.78 ± 0.21 1.38 ± 1.07 0.006
ALT (U/L) 117.57 ± 180.82 115.14 ± 226.6 0.701
AST (U/L) 87.47 ± 131.72 188 ± 308.18 0.005
D-Dimer (µg/mL) 1.43 ± 2.73 2.87 ± 3.18 <0.001
Ferritin (ng/mL) 568.28 ± 505.40 1468.19 ± 1297.54 0.004
PT (secs) 14.65 ± 1.43 15.49 ± 2.28 0.367
aPTT (secs) 39.77 ± 6.25 45.44 ± 9.27 0.041
LDH (U/L) 359.65 ± 219.76 597.79 ± 262.56 0.005
BUN (mg/dL) 19.31 ± 8.21 67.54 ± 66.79 <0.001
Albumin (g/dL) 3.32 ± 0.46 2.83 ± 0.93 0.04
Bilirubin (mg/dL) 0.86 ± 1.04 0.57 ± 0.36 0.490
Hb (g/dL) 12.01 ± 2.37 11.48 ± 2.48 0.166
Platelets (10^3/µL) 269.50 ± 109.85 287.47 ± 137.72 0.445
WBC (10^3/µL) 9.17 ± 3.38 17.46 ± 8.8 0.008
Management
Azithromycin 1(5) 0 (0) 0.63
Clexane 12(60) 4 (23.5) 0.157
Corticosteroids 6(30) 8 (47.1) 0.97
Favipiravir 6 (30) 5 (29.4) 0.16

(Continued)
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The chemokines MCP-1 (CCL2) IP-10 (CXCL10)
incrementally increased levels in mild-moderate and severe
cases (contributors to pulmonary pathogenesis). MIP1b
(CCL4) increased equally in mild and severe cases. IL-8
(CXCL8) increased mild-moderate cases and decreased in
severe cases (but still significantly higher than normal
controls), (Figure 3C). As illustrated in Figure 3D, PD-L1
was found to be higher in severe COVID-19 than healthy
controls or mild-moderate COVID-19. The transmembrane
glycoprotein CD40 ligand and the cytotoxic molecule
granzyme B showed a significant increase in mild-moderate
COVID-19 patients compared to healthy controls. However,
they were reduced in the severe patients (but still significantly
higher than normal controls).

3.3 Exploration of Cytokines
Expression Levels in Association
With COVID-19 Disease Severity Using
Machine Learning Techniques
The protein expression data of the cytokines and inflammatory
mediators were further explored with machine learning
approaches to identify the optimal set of parameters to stratify
the patients according to different aspects of COVID-19
pathogenesis. Initially, unsupervised hierarchical and k-means
clustering were used to explore the general impact of cytokines
expression on the clustering of the examined COVID-19 patient
samples according to disease severity. The result of the
unsupervised hierarchical and k-means clustering showed that
the collective cytokines panel had little impact on the clustering
of the samples according to disease severity, as cases of different
degrees of severity were intermingled in both clustering
approaches; suggesting an overlap in the signature of some
cytokines across the different severity groups. However, the
unsupervised clustering gave hints of separation between
severe and moderate cases, suggesting that some of the
cytokines might have the potential to stratify patients
Frontiers in Immunology | www.frontiersin.org 8
according to disease severity. Therefore, mathematical
modeling was carried out to explore further and identify the
cytokines that significantly associate with disease severity and
other aspects of COVID-19 pathogenesis.

3.4 Optimal Parameter Selection Using
Mathematical Modeling
To filter out the biological overlap between the severity groups in
the data set and identify key cytokines and biochemical markers
that can be used to stratify the clinical parameters collected in the
study, an approach combining two mathematical models
(multivariate ANOVA with Bonferroni’s stringent multiple
test ing and Stepwise l inear regress ion) were used
(Supplementary Table S2).

3.4.1 Mathematical Modeling Identifies IL-10 as a
Biomarker of Severity
Multivariate ANOVA with Bonferroni’s stringent multiple
testing was used to determine whether there were statistically
significant differences in the expression of particular cytokines
and biochemical markers between the COVID-19 severity
groups (Figure 4A). The analysis revealed that the levels of IL-
10, ANC, ALC, CRP, Ferritin, LDH, BUN, and WBCs were
significantly higher in severe cases in comparison to mild-
moderate cases. The stepwise linear regression model identified
IL-10, PD-L1, TNF -a as potential predictors of COVID-19
disease severity. The data from these two mathematical models
suggest a panel of cytokines and biochemical markers for
stratifying COVID-19 patients according to disease severity,
with the circulating marker IL-10 as the driver key marker.

3.4.2 Mathematical Modeling Identifies IL-10 as a
Biomarker of Oxygen Support Requirement
A similar analysis was performed to determine the potential
association between the level of cytokines and biochemical markers
and other aspects of COVID-19 pathogenesis, such as the need for
TABLE 2 | Continued

Demographics Mild to moderate (n=20) Severe (n=17) p-value

Hydroxychloroquine 15 (75) 10 (58.8) 0.59
Interferon-1ß 5 (25) 3 (17.6) 0.24
Kaletra (Lopinavir/ritonavir) 12 (60) 14 (82.4) 0.07
Tocilizumab 2 (10) 6 (35.3) 0.35
Received medications* 18 (90) 15 (88.2)
Pressor support 2 (10) 13 (76.5) <0.001
Oxygen supplement 0.001
Room air 4 (20) 0 (0)
Oxygen mask, Nasal canula, HFO, NIV 15 (75) 0 (0)
Mech Ventilation 0 17 (100)

Fatality N (%) 0.374
Died 1 (5) 6 (35.2)
Discharged from the hospital 19 (95) 11 (64.7)
April 2022 | Volume 13 | Article
*Four patients (1 mild, 1 moderate, and 2 severe cases were considered untreated as the samples were withdrawn on the day of admission). Assessment of severity: Mild to moderate is
defined as no or mild pneumonia. The severe type was defined as patients with at least one of the following symptoms: shortness of breath (breathing rate ≥ 30/min), SaO2 at rest ≤ 93%,
partial pressure of oxygen in arterial blood (PaO2)/inspired oxygen fraction (FiO2) ≤ 300 mmHg, or lung infiltrates > 50% within 24 to 48 h. Forty age- and gender-matched healthy controls
(age = 47.18± 16.66 years, 24 males and 16 females) were included. The selected healthy controls had a normal BMI and HBA1c ranges to avoid having any confounding factors such as
obesity or prediabetes. ALC, Absolute lymphocytic count; ALT, alanine aminotransferase; ANC, Absolute neutrophil count; AST, aspartate aminotransferase; BUN, Blood Urea Nitrogen;
CRP, C-reactive protein; GGT, g-glutamyl transferase; Hb, hemoglobin; LDH, lactate dehydrogenase; N/A = not available; PT, prothrombin time; PTT, partial thromboplastin time; WBC,
White blood cell count.
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FIGURE 3 | Cytokine assessment in healthy control subjects (n =40), mild-moderate COVID-19 (n= 20) and severe COVID-19 (n=17) patients. (A) Inflammatory, (B) anti-
inflammatory cytokines, (C) chemokines, and (D) checkpoint markers, receptors and cytotoxic mediators were assessed in mild-moderate and severe COVID-19 patients
and their levels compared to healthy controls. Data is expressed as mean ± standard error of mean (SEM). *p<0.05, ** p<0.01, ***p<0.001, and **** p<0.0001.
Frontiers in Immunology | www.frontiersin.org April 2022 | Volume 13 | Article 8658459
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oxygen support. Multivariate ANOVA testing suggested the
significant association between the need for oxygen support and
the levels of GM-CSF, IL-1b, IL-10, ANC, CRP, Ferritin, LDH, BUN,
and WBC. Multivariate ANOVA with Bonferroni’s stringent
multiple testing revealed the significant increase in the levels of IL-
1b and IL-10 in patients requiringmechanical ventilation as opposed
to patients depending on room air; and a significant increase in the
levels of ANC, LDH, BUN, andWBCs in patients requiring invasive
mechanical ventilation in comparison to patients requiring non-
invasive forms of oxygen support (e.g., nasal cannula, high flow
oxygen mask, and non-invasive positive pressure ventilation)
(Figure 4B). The stepwise linear regression model identified IL-10
as a potential predictor of the need for oxygen support. Taken
together, both mathematical models suggest IL-10 as a potential
marker for the requirement for oxygen support in addition to its
potential in stratifying disease severity.

3.4.3 Mathematical Modeling Identifies IL1Ra and
IFN-g as Biomarkers of COVID-19-Specific
Radiological Findings
Analysis of the association between chest X-ray (CXR)findings and
the levels of cytokines and biochemical markers using multivariate
ANOVA with Bonferroni’s stringent multiple testing revealed the
upregulated levels of IFN-g and PD-L1 in normal cases as opposed
Frontiers in Immunology | www.frontiersin.org 10
to patients presenting with consolidation or ground-glass opacities
(Figure 4C).On theother hand, IL-1Ra, IL-6,MCP-1, andD-dimer
levels were elevated in cases presenting with pneumothorax
compared to normal cases or cases presenting with consolidation
or ground-glass opacities. Stepwise linear regression analysis
proposed IL-1Ra, IFN-g, and PD-L1 as potential predictors of
radiological findings. Stepwise linear regression analysis of
CORADs reports suggested IL1Ra and IFN-g as predictors of
radiological findings, further cross-validating the CXR analysis
results. Taken together, these data suggest that IL-1Ra and IFN-g
might potentially be used to stratify patients according to
radiological findings; IL-1Ra as a potential marker for the
development of pneumothorax and IFN-g as a potential marker
predicting the absence of COVID-19 related chest abnormalities.

3.4.4 Mathematical Modeling Identifies
IL-6 and Granzyme B as Biomarkers
of Liver Injury and Dysfunction
The stepwise linear regression model identified IL-6 and
granzyme B as potential predictors of liver injury and
dysfunction (indicated by an elevation in the levels of ALT
and/or AST). IL-6 and granzyme B levels were elevated in
cases with abnormal ALT levels (Figure 4D), while IL-6 was
elevated in patients with abnormal levels of AST (Figure 4E).
A B

D E

C

FIGURE 4 | Key driver predictors identified from Multivariate ANOVA with Bonferroni’s stringent multiple testing for (A) disease severity, (B) the requirement for
oxygen support, (C) Radiological findings, and (D, E) abnormal liver function indicated by (D) ALT and (E) AST. Means of the predictors’ levels presented as a
function of the target variables categories.
April 2022 | Volume 13 | Article 865845
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Intriguingly, Multivariate ANOVA with Bonferroni’s multiple
testing revealed the significant reduction in the protein expression
level of IL-6 in patients that received COVID-19 treatments (e.g.,
tocilizumab, lopinavir/ritonavir, favipiravir) in comparison to
untreated patients. Treatment status associated significantly with
reduced levels of other markers, including IL-1Ra, MCP-1, PD-L1,
ALT, D-Dimer, and Albumin.

3.5 Validation of Predictor-Based
Stratification of Severity Groups
in COVID-19
Cytokines proposed as predictors of disease severity by the two
mathematical models were used for model reduction to enhance
patients’ clustering. The supervised hierarchical and k-means
clustering revealed an enhanced clustering of patients according
to disease severity (Figure 5A, B); where severe caseswere enriched
in the cluster indicated by the red brackets in the heat map
(Figure 5A) and clusters 1, 4, and 6 in the k-means PCA plot
(Figure 5B). Moreover, ROC curve analysis was used to assess the
predictive efficacy of the predictors identified using the
mathematical modeling approach to stratify patients according to
disease severity. Analysis of the collectively identified cytokines
from the twomathematical models (IL-1-a, IL-4, IL-10, IL-13, PD-
L1, TNF-a) revealed a significant predictive efficacy with an area
under the curve (AUC) value of 0.935. Similarly, assessment of the
predictive capacity of the collective biochemical markers identified
using multivariate analysis (ANC, Ferritin, LDH, BUN, andWBC)
Frontiers in Immunology | www.frontiersin.org 11
confirmed a significant predictive efficacy with an AUC value of
0.981, Supplementary Figure S2.

ROC analysis of each cytokine and biochemical markers was
performed to suggest potential cut-off values with high sensitivity
and specificity and significantly high predictive efficacy
accordingly. The analysis revealed a cut-off value of 204.5 pg/
ml for IL-10, 117.27 pg/ml for PD-L1, 724.0 ng/mL for ferritin,
325.0 U/L for LDH, 10.25×103/mL for WBC, and 28.27mg/dL for
BUN. Cutoff values of the identified predictors for other variables
are listed in Supplementary Table S3.

3.6 Mapping of Significantly Differentiated
Cytokines on the KEGG Pathways
We further mapped the “predictor” cytokines on several
immune-related KEGG pathways, as well as the SARS-CoV2
entry pathway. Of interest, several significantly elevated
cytokines in severe COVID-19 patients are remarkable key
players along Natural Killer (NK) cell-mediated cytotoxicity
pathway (Supplementary Figure S3). Figure 6 summarizes the
workflow and the main results.
4 DISCUSSION

In this study, we aimed to predict the outcome of COVID-19
using a non-linear mathematical model of serum cytokine
changes, in addition to clinical, biochemical, and radiological
A B

FIGURE 5 | (A) Heat map representation of the unsupervised hierarchical clustering and (B) Principal Component Analysis (PCA) plot representation of the k-means
clustering analysis of cytokines protein expression in the blood samples of COVID-19 patients of different degrees of severity (3 mild, 17 moderate, and 17 severe).
ROC analysis of the predictive capacity of the cytokines (AUC=0.93 ± 0.037, 95% CI=0.86-1, p<0.0001). ROC analysis of the predictive capacity of the biochemical
markers (AUC=0.98 ± 0.02, 95% CI=0.94-1, p<0.0001), identified using the mathematical models to stratify COVID-19 patients according to disease severity.
April 2022 | Volume 13 | Article 865845
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parameters. Compared to previous studies, we used AI
techniques to integrate data from different modalities (clinical
parameters, biochemical tests, cytokine assays, and radiological
data) for the first time. We included 87 parameters as input to
our model, covering 24 cytokines classified as pro-inflammatory,
anti-inflammatory, chemokines, checkpoint markers, receptors
and cytotoxic mediators. Cytokines were selected based on an
initial transcriptomics analysis of nasopharyngeal swabs of
COVID-19 patients and control subjects. Although the
unsupervised hierarchical and k-means clustering showed that
the collective cytokines panel had little impact on the clustering
of the samples, the supervised clustering gave hints of separation
between severe and moderate cases, identifying the cytokines
with potential predictive value for COVID-19 severity. Taking
the initial large number of clinical parameters, biochemical
markers and cytokines expression data that would result in a
vast number of permutations, machine learning and
mathematical modeling were used to filter the data to achieve
model reduction and identify the optimum associations to
stratify patients according to multiple aspects of COVID-19
pathogenesis. Given the emerging new variants of the virus,
our modeling strategy can be applied to different datasets to
predict outcomes in new cases of COVID-19 and identify
fundamental immune-mediated mechanisms and potential
therapeutic targets for such new variants.
Frontiers in Immunology | www.frontiersin.org 12
Interestingly, in our study, there was a significant
upregulation of IL-10 and IL-15, consistently associated with
disease severity in both investigated COVID-19 whole blood
dataset and our cytokine assays, suggesting the potential utility of
these predictive cytokines as circulating biomarkers of severity.
IL-10 was reported to contribute to the suppression of the
immune system, viral control, and disease severity (31), and a
predictor of poor outcomes in COVID-19 patients (32–34). This
was possibly linked to its role as an anti-inflammatory cytokine,
released as negative feedback in response to the rapid
accumulation of pro-inflammatory cytokines (33, 34), and aids
in alleviating the CS and preventing tissue damage (31).

Therefore, recombinant IL-10 has been suggested by some
investigators for treating acute respiratory distress syndrome
(ARDS) in COVID-19 patients based on its immune-
regulatory and anti-fibrotic functions (32). Moreover, IL-15/IL-
15R axis plays a pivotal role in the function of NK cells (35). IL-
15 is produced by activated monocytes/macrophages and
activates human NK cells through components of the IL-2R in
a pattern similar to that of IL-2. IL-15 also induces IL-10
expression by the NK cells, enhancing its cytotoxic effect. The
effect of IL-10 on NK cells is mediated through STAT3 signaling
according to in-vitro studies (36). Furthermore, Wang et al.,
2021, deciphered that IL-10 regulates metabolic reprogramming
in NK cells, via stimulation of the mammalian target of
FIGURE 6 | Graphical Abstract of the work flow and the main results.
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rapamycin complex 1 (mTORC1). In that way, it upregulates
glycolysis as well as oxidative phosphorylation in NK cells, thus
might enhance the functions of the NK cells (37). Masselli E. et al.
reported that the IL-15/IL-15R axis was among the top pathways
associated with severe/fatal disease in the viral pandemic gene
signature. This may shed some light on the mechanistic role of
this axis in the immuneNKcell response derangement, which leads
to NK cells exhaustion, senescence, apoptosis, and viral persistence
(38). Interestingly, severe COVID-19 resulted in an increase of
“armed” NK cells containing high levels of cytotoxic proteins such
asperforin (39).NKcells areobviouslymajorplayers in the immune
response during COVID-19 infection, but similar to hepatitis virus
infections, they may become dysfunctional during severe disease,
and their role in organ dysfunction (e.g., liver) requires further
investigation (40). It was reported that NK cells might undergo
pyroptosis, releasing inflammatory cytokines such as IL-1b (41).
However, it is not clear yet whether elevation of IL-15 may activate
NK cells, thus contributing to the cytokine burst observed in these
patients. Inaddition, IL-15waspreviously suggested toplay a role in
granulomatous pulmonary diseases through its stimulation of Th-
1-driven inflammation (42). Recently, it was also reported to be
involved in the development of rapidly progressive interstitial lung
disease in polymyositis/dermatomyositis (43). Although reported
to enhance NK-cell cytotoxicity, IL-10 elevation may be also a
consequence ofNK-cell stimulation in an attempt to ameliorate the
prevalent hyper-inflammatory state of the CS.

The role of NK cells in COVID-19 infections has not been
examined in detail, although it was suggested that they may be
important participants (44). In this study we observed that the level
of IL-15, a vital cytokine for NK-cell activity, is highly increased,
suggesting thatNKcellsmightplay a role. Itwaspreviously reported
that these cells secrete a variety of inflammatory cytokines and
chemokines (45), which may contribute to the cytokine storm
described in COVID-19 patients.

Several patterns of cytokine changes were identified across the
severity levels of COVID-19. Our results showed significant
changes in pro-inflammatory cytokines (GM-CSF, IL-6, IL-15,
IFN-a, TNF-a, IL-17A) that play a crucial role in the CS (46).
The SARS-CoV-2 infection causes local innate immune cells to
produce such inflammatory cytokines upon infection of the
respiratory epithelial tissue and cause the activation of the
adaptive immune cells leading to respiratory epithelial damage
(47). This is further supported by activating the inflammasome and
NF-kB pathways, inducing the stimulation of several pro-
inflammatory genes and immune cell hyperactivation, thus
boosting systemic inflammation. In the setting of inflammation,
IL-6, which is generated by macrophages and dendritic cells, is
known to be a key activator of the JAK/STAT3 pathway (48). Also,
IL-6was reported to contribute to immune cell hyperactivation and
target organ dysfunction in COVID-19. On the other hand, the
destruction of epithelial cells in the alveolar space caused by SARS-
CoV-2 triggersmacrophageshyperactivation leading to theCS. IL-6
was found to suppress T lymphocyte activation, that could
contribute to lymphopenia in COVID-19 patients. Also, low
numbers of T lymphocytes were observed with ICU patients
showing high IL-6 and TNF-a serological levels (49–51).
Frontiers in Immunology | www.frontiersin.org 13
Similarly, IL-17 was found to exacerbate lung injury and decrease
the survival through the recruitment of neutrophils and stimulation
of pro-inflammatory factors (52). GM-CSF also triggers
myelopoiesis in order to recruit myeloid cells to the inflammatory
sites (53). It was previously suggested as a potential therapy for the
COVID-19 CS (47).

Noteworthy, the concurrent elevations in IL-10 and various
pro-inflammatory cytokines, and the observed relationship
between elevated IL-10 levels and disease severity, suggest that
IL-10 is either failing to appropriately suppress inflammation (as
observed in other inflammatory conditions (54, 55) or acting in a
manner that deviates from its traditional role as an anti-
inflammatory molecule, indicating the ability of IL-10 to have
different functions under different conditions (32).

The anti-inflammatory IL-4, along with IL-13, mediate the Th2
cell response and M2 polarization, leading to consequent fibrosis
and release of growth factors, such as transforming growth factor-b
and platelet-derived factor (46, 56). IL-1Ra is known to control the
inflammatory immune response by binding to the IL-1R and
regulating the production of inflammatory cytokines such as IL-1
and TNF-a (57). In COVID-19 infection, IL-1Ra was suggested to
affect the stimulation of pro-inflammatory and antiviral cytokines,
where its high level could be an indication of an overactive immune
response, thus leading to inflammation-induced tissuedamage (34).
Controversial patterns were reported regarding IL-4 in previous
studies where some reported an increase in peripheral blood/serum
of severe COVID-19 patients (30, 46, 58), while others claimed that
it did not show any difference (34, 59).

Weobserved increased levelsof chemokinesMCP-1 (CCL2), IP-
10 (CXCL10), MIP1b (CCL4) and IL-8 (CXCL8) in COVID-19
patients. These chemokines are known to be crucial contributors to
pulmonary pathogenesis, such as that observed in COVID-19.
CCL2 is known to be released by alveolar macrophages, T cells
and endothelial cells in order to induce the migration of
inflammatory monocytes and neutrophils along with procollagen
synthesis byfibroblasts (60).CXCL10, a knownchemoattractant for
monocytes, NK and T cells (61), was also reported to play a crucial
role in pulmonary neutrophil infiltration (62).Moreover, CXCL10/
CXCR3 axis triggers the oxidative burst which promotes
exacerbation of the pulmonary inflammation and progression to
ARDS (62). CCL4 acts through CCR5 receptor to attract
macrophages, dendritic cells, NK and T cells to the site of
inflammation (63). Interestingly, the CCR5 antagonist, maraviroc
(an antiretroviral medication) was repurposed for moderate to
severe COVID-19 (NCT04435522 and NCT04441385). CXCL8
was reported to be responsible for the recruitment, activation, and
accumulation of neutrophils (64). Furthermore, it induces the
formation of neutrophil extracellular traps (NETs) that further
promote inflammation and tissue injury (65). Elevated CXCL8
levels at the timeof hospitalization, alongwith IL-6 andTNF-a, was
previously suggested as strong and independent predictors of
survival in COVID-19 (20).

PD-L1 was higher in severe COVID-19 patients, whereas the
levels ofCD40 ligand and granzymeB showed a significant increase
in mild-moderate COVID-19 patients, but reduced in severe
patients. PD-L1 induces inhibitory signals and apoptosis of CD8+
April 2022 | Volume 13 | Article 865845
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T cells. This is induced by binding of the pro-inflammatory
cytokines to their respective receptors. Hence, the release of IL-6,
IL-17, andTNF-a, alongwith the increasedactivity ofmacrophages
and neutrophils, cause the increased expression of PD-L1 on the
surfaces of immune cells in COVID-19 (66), through the STAT3,
PI3K/Akt and NF-kB pathways. CD40L, a costimulatory molecule
present on T cells, was found to be released by activated platelets in
the serum, that may contribute to pulmonary thrombotic
complications observed in COVID-19 as well as being associated
with ARDS status (67, 68). Previously, studies have shown that PD-
L1 could be a potential predictive factor in various types of cancer
(69). The cytotoxic mediator, granzyme B, along with perforin, are
the main mediators through which NK cells and cytotoxic T
lymphocytes eliminate virally infected host cells, as in COVID-19
infection (70). Interestingly, NK cells from COVID-19 patients
exhibit higher levels of granzyme B that is associated with the
severity of the disease (71). To re-iterate, our study emphasizes the
role of NK cells in COVID-19 infection, an enigma that was not
previously resolved. In addition, previous reports revealed that IL-
10 and PD-L1 suppress T-cell activity during persistent viral
infection (72), thus giving mechanistic insight towards persistent
COVID-19 and the potential role of targeting both cytokines to
minimize the long-term sequelae of the disease.

Added to combining selective recognized biochemical
markers of COVID-19 severity (ANC, CRP, LDH, BUN and
ferritin), the triad of elevated serum IL-10, PD-L1 and TNF-a
improved the current model accuracy to predict the severity of
the disease, through the stepwise linear regression model. The
results from these two mathematical models suggest the
circulating marker IL-10 as a driving key marker for the
stratification of COVID-19 patients according to disease
severity. Noteworthy, IL-10 is elevated earlier than IL-6 in
COVID-19 patients (32, 34).

Our mathematical model identified IL1-a, IL-4 as negative
predictors of severity. As both are involved in adaptive immunity,
highlighting its marked derangement in severe COVID-19. In
contrast to our results, other reports showed elevated IL1-a in
severe COVID-19 that was strongly associated with lung injury
(preprint by Liu et al., 2020). Controversial patterns were reported
regarding IL-4 plasma levels where some reported an increase in
peripheral blood/serum of severe COVID-19 patients (30, 46, 58,
73), while studies show any difference (34, 59).

IL1Ra and IFN-gwere identified in our model, as biomarkers of
COVID-19-specific radiologicalfindings. The IL-1 superfamilywas
previously recognized as a key mediator of inflammation and
fibrosis in different organs, with IL-1Ra as an antagonistic
cytokine (74). The crucial balance between IL-1b and IL1Ra
determines the resultant immune response in many tissues (74).
In the severe COVID-19 cases in this study, IL-1b significantly
decreased and IL1Ra significantly increased as a part of the marked
immune dysregulation. This was associated with specific COVID-
19 related radiological findings, as revealed by the mathematical
model. IFN-g mediates immune-mediated damage in acute lung
injury (75).

In support of our findings related to IL-6 and granzyme B as
biomarkers of liver injury, a recent study demonstrated that
Frontiers in Immunology | www.frontiersin.org 14
IL-6 trans-signaling drives COVID-19-associated hepatic
endotheliopathy, which is suggested as a possible mechanism
underlying the liver injury (29). Previous reports highlighted the
role of NK cells and their enzymes (Granzyme B and perforin) in
hepatic immune homeostasis (76). IL-6 was reported to suppress
the NK cytotoxicity in-vitro and in-vivo (77). However, in view of
the multiple cytokines affecting the NK cells in the CS context and
the elevation of IL-15 (NK stimulator), the effect of IL-6 is
surpassed, with a net result of increased granzyme B. Our model
shows thehigh accuracyof liver injuryprediction in severeCOVID-
19, by combining IL-6 and granzyme B as predictors.

We used a stochastic non-linear modeling approach to reduce
the dataset for multi-dimensional data and to integrate data from
different modalities. The non-linear ODE model is crucial to
clearly reflect the dynamics of biological systems (78). To
estimate the exact probabilities for biological systems,
approaches are mainly based on Monte Carlo sampling (e.g.
the Stochastic Simulation Algorithm) (79). To create a dynamic
model of CS, Waito et al., 2016 used a nonlinear differential
equation model, considering the cytokine production rate in
relation to their interactions with one another. They adjusted the
model by using the data from a CS mouse model (IFN type 1
receptor KO). Interestingly and concordant to our results, the
model revealed that TNF-a, IL-10, IL-6, and MIP-1b, exerted the
largest effects on the dynamics of the cytokine storm (17). In the
current study, we used non-linear modeling that attempts to
identify global solutions to integrate and explore biomarkers that
can predict COVID-19 severity (8).

Our study sheds light on key immunological aspects of the
COVID-19-CS that seem to significantly differ from the CS
occurring in other diseases. Beyond its value as a biological
predictive tool, our mathematical analysis poses important
questions for future research.
5 CONCLUSIONS

Predictive modeling in COVID-19 has gained a high value,
considering the complexity of the disease. Using a non-linear
model for clinical, biochemical, immunological, and radiological
data could achieve a high level of prediction accuracy. In our
proposed integrative model, we validated a cytokine panel derived
from transcriptomics analysis of nasopharyngeal swab samples of
COVID-19 patients. Our model advocates the trio of IL-10, PD-L1
and TNF-a as an accurate predictor of severity, in addition to
previously recognizedANC,CRP, LDH, BUN and ferritin, whereas
IL-1a, IL-4 were negative predictors. IL-10 was shown to be a
driving marker and a positive predictor of mechanical ventilation.
Moreover, IFN-g, IL-1Rawerepredictorsof remarkable radiological
findings, whereas high IL-6 and granzyme B were found to predict
liver injury in COVID-19 patients.

We identified key cytokines that were consistently associated
with severity, like IL-10, an enhancer of NK cytotoxicity, and IL-
15, a stimulator of NK cells, Obviously, the modeling
methodology can be used to identify key players and predict
outcome in new variants of COVID-19.
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