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A B S T R A C T   

Radiomics is referred to as quantitative imaging of biomarkers used for clinical outcome prognosis or tumor 
characterization. In order to bridge radiomics and its clinical application, we aimed to build an integrated so-
lution of radiomics extraction with an open-source Picture Archiving and Communication System (PACS). The 
integrated SQLite4Radiomics software was tested in three different imaging modalities and its performance was 
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benchmarked in lung cancer open datasets RIDER and MMD with median extraction time of 10.7 (percentiles 
25–75: 8.9–18.7) seconds per ROI in three different configurations.   

1. Introduction 

Radiological images have been acquired routinely for decades in the 
process of radiation treatment. Commonly used imaging modalities are 
(cone beam) computed tomography (CT), magnetic resonance imaging 
(MRI), and positron emission tomography (PET). The aim of these im-
aging modalities is to give either anatomical (CT and MRI) or functional 
(MRI and PET) information. Generally, the interpretation of medical 
images is performed by visual inspection. With the advent of advanced 
computer vision, it was hypothesized that algorithms could add quan-
titative and objective measurements to visual interpretation, as for 
example, in Computer-aided diagnosis (CAD) systems [1]. 

Recently, radiomics, where properties of the image, such as local 
textures, can be used as imaging biomarkers was proposed. Radiomics has 
been extensively applied to quantify biological properties of the tumor 
for better prognostication or treatment response predictions [2]. How-
ever, many studies have shown that radiomic values can be influenced 
by specific acquisition settings [3], leading to a poor generalizability of 
radiomic signatures on multi-center data. 

Radiomic feature computations need to be combined with the cor-
responding image acquisition settings (Digital Imaging and Communi-
cations in Medicine, DICOM, metadata) so that the feature values can be 
harmonized against these settings using appropriately calibrated algo-
rithms [3,4]. Conquest is an open-source Picture Archiving and 
Communication System (PACS) that stores DICOM metadata as database 
tables, opening the possibility of combining imaging data and metadata 
hosted on a PACS with radiomics. There are several radiomics extraction 
solutions available [5–8], however, from the best of our knowledge, 
current existing radiomics extraction software solutions do not support 
direct PACS integration and database-centered radiomic feature storage. 

So far, the calculation of radiomic features required some knowledge 
of programming. As all the imaging data is already stored in a PACS, we 
viewed radiomics-PACS integration as a logical step to facilitate the 
introduction of radiomics in a clinical environment. We believe that due 
to the DICOM connectivity of Conquest, SQLite4Radiomics can be used 
to form a pipeline within the hospital wide PACS system, enabling 
routine analysis of the data. 

The aim of this study was to develop a solution for wider radiomics 
adoption in radiation oncology by integrating a publicly available li-
brary, pyradiomics, with the open-source Conquest DICOM PACS soft-
ware. In this technical note, we described the architecture, workflow, 
and benchmarking of SQLite4Radiomics – an integration software for 
pyradiomics and Conquest DICOM. The code and the user manual are 
available as open-source. 

2. Materials and methods 

2.1. SQLite4Radiomics 

Conquest (or Conquest DICOM) is open-source PACS software 
(https://ingenium.home.xs4all.nl/dicom.html) that stores imaging data 
as DICOM files and the DICOM metadata in a SQL database. It runs a 
DICOM server and has full DICOM functionality, which makes it suitable 
for integration in a radiation oncology department. Pyradiomics is an 
open-source Python package (https://github.com/Radiomics/pyradio 
mics) for radiomics extraction [5] from medical images as defined in 
the Image Biomarker Standardization Initiative (IBSI) [9]. SQLite4R-
adiomics further broadens Conquest’s functionality by integrating pyr-
adiomics feature extraction into the PACS. The supplementary materials 
describe SQLite4Radiomics application customization, pipeline, graph-
ical user interface (GUI) frontend and backend. 

2.2. Case study: Datasets 

Open data from the Maastro LUNG1 cohort [10,11] was used to 
develop and test the software. These data included CT scans with 
manual delineations stored in the RTSTRUCT format. The LUNG1 
dataset with the detailed cohort description is publicly available at the 
XNAT repository (https://xnat.bmia.nl/). Individual users collected 
their internal CT, MR, and PET data with RTSTRUCT delineations to test 
SQLite4Radiomics application in those modalities. 

To benchmark SQLite4Radiomics performance, two open lung can-
cer cohorts were selected: Interobserver MMD PET-CT dataset and 
RIDER CT dataset, both available at the XNAT repository (https://xnat. 
bmia.nl/). The former consists of 22 unique PET-CT lung cancer images 
with multiple gross tumor volume delineations, and it was originally 
described and used in Aerts et al [10]. The latter, consists of 32 pairs of 
test–retest scans of lung cancer patients. The ROI delineations in both 
the datasets were provided as DICOM RTSTRUCT files suitable for 
SQLite4Radiomics. These data were previously used to benchmark the 
performance of the O-RAW software, which we compared SQLite4R-
adiomics performance to [6]. 

2.3. Case study: Benchmarking and performance evaluation 

The MMD PET-CT and RIDER CT datasets were used to evaluate the 
performance of SQLite4Radiomics. The benchmarking pyradiomics 
parameter file corresponds to the default parameter file of SQLite4R-
adiomics stored on GitHub. With this file, 107 features including shape, 
first order statistics, and texture (GLCM, GLRLM, GLDM, GLSZM, 
NGTDM) categories were extracted from each of two ROIs per 
DICOMSeries. For instance, an MMD patient instance contains two series 
(PET and CT) – for both of those two, we extracted radiomics from two 
ROIs – the total of four extractions per patient. 

Three system configurations were used to evaluate the performance 
of SQLite4Radiomics including SQLite query, plastimatch conversion, 
pyradiomics feature extraction, feature storage in the Conquest data-
base. The first system configuration was represented with a HP EliteDesk 
800 G2 TWR workstation (Windows 7 Enterprise, 16 GB RAM, Processor 
Intel(R) Core(TM) i7-6700). The second configuration was represented 
with HP EliteBook 840 G4 laptop (Windows 10 Enterprise, 8 GB RAM, 
Processor Intel(R) Core(TM) i5-7200U). The third configuration was 
represented by a Lenovo ThinkPad L480 laptop (Windows 10 Pro, 16 GB 
RAM, Processor Intel(R) Core(TM) i5-8250U). All the three system 
configurations were benchmarked using Novabench System Bench-
marking Software (version 4.0.9 – January 2021). 

A total of 107 features were extracted from two ROIs per DICOMS-
eries (either CT or PET) with the default parameter and configuration 
files listed on SQLite4Radiomics repository. The extraction time in 
seconds per ROI was chosen as a performance benchmarking metric in 
our study. There is, however, the possibility to customize the SQLi-
te4Radiomics performance evaluation by, for instance, extraction time 
per voxel of ROI – this might be beneficial when there is a high ROI 
volume variation in a dataset. 

2.4. User testing 

In addition to the developers, two users independently tested the 
standalone pipeline application, while five users tested the GUI version. 
Two of the users are clinical physicists, one is a radiobiologist, and two 
are researchers. The user tests were performed by observation (a user 
performs a set of tasks, while a developer observes the process without 
interfering and takes notes) and in a remote fashion (a user freely tested 

I. Zhovannik et al.                                                                                                                                                                                                                              

https://ingenium.home.xs4all.nl/dicom.html
https://github.com/Radiomics/pyradiomics
https://github.com/Radiomics/pyradiomics
https://xnat.bmia.nl/
https://xnat.bmia.nl/
https://xnat.bmia.nl/


Physics and Imaging in Radiation Oncology 20 (2021) 30–33

32

and used SQLite4Radiomics tool in their own time). In both cases, 
feedback was given by the users at the end of each test. 

3. Results 

In system configuration I, it took 4057, 4074, and 4204 s to process 
the RIDER dataset with a median extraction time per ROI of 10.1 s and it 
took 1592, 1537, and 1547 s to run the MMD dataset with a median 
extraction time per ROI of 6.3 s. In system configuration II, it took 7492, 
7527, and 8745 s to run the RIDER dataset with a median extraction 
time per ROI of 20.5 s and it took 3472, 3843, and 3727 s to run the 
MMD dataset with a median extraction time per ROI of 17.4 s. In system 
configuration III, it took 4687, 4817, and 4776 s to run the RIDER 
dataset with a median extraction time per ROI of 9.7 s and it took 1632, 
1596, and 1696 s to run the MMD dataset with a median extraction time 
per ROI of 6.2 s. All three configurations resulted in the total of 18 
successful runs of SQLite4Radiomics. The results are represented in 
Fig. 1. 

Each of the three configurations were benchmarked with the Nova-
bench System Benchmarking Software. The configuration I received a 
total score of 1264 (CPU 920, RAM 257, Disk 87, GPU unavailable); the 
configuration II received 766 points (CPU 395, RAM 169, Disk 55, GPU 
147), and the configuration III received 1330 (CPU 821, RAM 254, Disk 
52, GPU 203). The GPU score was irrelevant for this specific study 
because the radiomics calculation and SQLite4Radiomics operation 
were CPU-based. 

4. Discussion 

Radiomics currently lacks integration in clinical pipelines. At the 
same time, we routinely generate, archive, and store images routinely in 
hospital PACS systems. In order to bridge radiomics and its clinical 
application, we presented SQLite4Radiomics – an integration software 
of pyradiomics and Conquest DICOM – two popular open-source tools of 
both worlds of radiomic analysis imaging and clinical imaging. SQLi-
te4Radiomics can receive data through the standard DICOM frameworks 

present as a part of treatment planning workflow in radiation oncology. 
We have built-in plastimatch (https://plastimatch.org/) conversion 

that removes the burden from the user regarding the conversion of the 
contour data of DICOM RTSTRUCT into binary mask files. The volumes 
(ROIs) selection is customizable, which allows for better match of local 
ROI labeling in a particular clinic. The calculated radiomic data is stored 
in a alongside the DICOM metadata and images. Therefore, the data can 
be easily coupled to statistical environments such as Python and R, 
which have database connection facilities. Due to the integration of the 
DICOM metadata and the radiomics output, the data can be combined to 
examine dependencies between the two [3,4]. Although SQLite4R-
adiomics allows for simpler radiomics extraction and storage, it also 
gives the users opportunity to investigate the relationship between a 
radiomic feature and image acquisition settings. We would like to 
encourage the radiomics community to use this opportunity to further 
improve the reporting quality on radiomics reproducibility [12]. In 
addition, our approach will lead to simpler integration of radiomics and 
conventional clinical variables, such as performance and tumor stage, 
into cancer prognostic models [13]. 

We found that the computer performance benchmarking score (e.g. 
with Novabench) may be a relevant predictor in SQLite4Radiomics time 
efficiency approximation as the score is based on the processor and RAM 
performance. The time efficiency of SQLite4Radiomics is comparable to 
that of pyradiomics and it outperforms O-RAW. The main difference in 
the execution times between O-RAW and SQLite4Radiomics may be due 
to O-RAW’s RDF-conversion of radiomic data, which is not present in 
SQLite4Radiomics [6]. Yet the extraction can be performed without the 
user input if the RTSTRUCT trigger is enabled, which makes the access 
time to radiomic data comparable with executing an SQLite query only. 

The radiomics extraction and storage process was automated using 
SQLIte4Radiomic tool and can be customized according to research or 
clinical requirements. The software was developed with the possibility 
to be extended upon by the research community and is open-source. 
With regards to the future functionality, we see the following possible 
developments. Currently, SQLite4Radiomics is hosted on a local ma-
chine, therefore, an extension may include scaling up with authentica-
tion and proper online hosting. SQLite4Radiomics can possibly be 
extended by converting the SQLite radiomics tables to SPARQL RDF 
triples to match Radiomics Ontology [6]. This integration with RO and 
machine learning toolkits will allow to perform rapid learning to auto-
matically re-adjust prognostic models whenever new data comes in, as 
was proposed by Deist et al [14]. 

Interestingly, SQLite4Radiomics is based on pyradiomics, which was 
not originally intended to mimic IBSI’s image processing exactly. This 
causes a mismatch while executing feature extraction in the Lung Cancer 
CT phantom. This issue was addressed on pyradiomics github page 
(https://github.com/AIM-Harvard/pyradiomics/issues/498). For the 
purpose of matching the pre-processing of IBSI and pyradiomics, we 
listed IBSI-compliant pre-processing methods in the IBSI-pyr-
adiomics_discrepancies branch. 

SQLite4Radiomics reduces the entrance threshold for clinical re-
searchers and makes radiomics extraction from organic: whenever new 
images arrive in a PACS, radiomic features can be extracted and stored 
as SQLite tables. Radiomics extraction is based on a popular open-source 
pyradiomics library and DICOM-RT conversion is performed by plasti-
match – reliable open-source ITK software. SQLite4Radiomics makes 
radiomics data easy to store, query and combine with clinical data at any 
time with no need for additional wrappers. 
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Fig. 1. Performance letter-value plot (generalization of the boxplot [15]). The 
graph shows the performance in seconds per region-of-interest in both MMD 
PET-CT and RIDER CT datasets for the three system configurations we used to 
benchmark SQLite4Radiomics’ performance in. The letter-value plot general-
izes the classical boxplot by visualizing more percentiles (in %): [(3.125, 
96.875), (6.25, 93.75), (12.5, 87.5), (25.0, 75.0)]. The box area is proportional 
to the percentage of covered data. Each system configuration contains its 
Novabench score for reference. 
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