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Background and aims: Extremely elevated levels of low-density lipoprotein-cholesterol (LDL-C)
contribute to long-term chronic systemic inflammation in homozygous familial hypercholesterolemia
(HoFH) patients. The aims of this study is to describe the inflammatory profile of HoFH patients and
explore the effect of a PCSK9 inhibitor (PCSK9i) on a series of inflammatory biomarkers, including the
neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), monocyte-HDL ratio (MHR),
monocyte-lymphocyte ratio (MLR) and mean platelet volume-lymphocyte ratio (MPVLR).
Methods: In this prospective cohort study, 25 definitive HoFH patients on high-intensity statins plus
ezetimibe were administered subcutaneous injections of 420 mg PCSK9i every 4 weeks (Q4W). The
biochemical parameters and inflammatory profile were analyzed on the day before PCSK9i therapy and 3
months and 6 months after PCSK9i therapy.
Results: HoFH on the maximum tolerated statin dose plus ezetimibe displayed elevated lipid and
disturbed blood biomarker profiles. After 3 months of add-on PCSK9i therapy, a significant reduction in
LDL-C was observed. Moreover, the percentage and count of neutrophils, monocyte counts, MPV, and two
inflammatory biomarkers, the NLR and MLR, were reduced. However, at 6 months of PCSK9i treatment,
the NLR and MLR returned to pre-PCSK9i treatment levels.
Conclusions: PCSK9i induces a transient decrease in the NLR and MLR in HoFH patients in a lipid-
lowering independent manner.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Familial hypercholesterolemia (FH) is an autosomal dominant
hereditary disease that is characterized by elevated levels of total
cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) [1],
premature atherosclerosis (AS) and cardiovascular diseases (CVDs).
The most frequently reported gene mutated is the LDL-receptor
(LDLR), accounting for 85e90% of reported FH cases. In addition,
mutations in apolipoprotein B (APOB), proprotein convertase
subtilisin/kexin-9 (PCSK9), and low-density lipoprotein receptor
adaptor protein 1 (LDLRAP1) were also reported to cause FH [2]. In
the general population, the prevalence of heterozygous FH (HeFH)
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Abbreviations

HoFH homozygous familial hypercholesterolemia
HeFH heterozygous familial hypercholesterolemia
cHeFH compound heterozygous familial

hypercholesterolemia
DH double heterozygous familial hypercholesterolemia
TC total cholesterol
TG triglycerides
HDL-C: high-density lipoprotein cholesterol
LDL-C: low-density lipoprotein-cholesterol
FPG fasting plasma glucose
ALT alanine transaminase
AST aspartate transaminase
CREA creatinine
MPV mean platelet volume
hsCRP high sensitivity C-reactive protein

AS atherosclerosis
CVD cardiovascular diseases
CAD coronary artery disease
LDLR LDL-receptor
APOB apolipoprotein B
PCSK9 proprotein convertase subtilisin/kexin-9
LDLRAP1 low-density lipoprotein receptor adaptor protein 1
PCSK9i PCSK9 inhibitor
NLR neutrophil-lymphocyte ratio
PLR platelet-lymphocyte ratio
MHR monocyte-HDL ratio
MLR monocyte-lymphocyte ratio
MPVLR mean platelet volume-lymphocyte ratio
ATT Achilles tendon thickness
ROS reactive oxygen species
MPO myeloperoxidase
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patients who carry a mutation in one of the alleles is approximately
1 in 300 [3,4], while homozygous FH(HoFH), in which both alleles
harbor mutations, affects 1 in 160,000e300,000 individuals [5].
Compared to HeFH patients, HoFH patients usually have higher
LDL-C levels and poorer clinical prognosis [5].

For a long time, lipid lowering has been the principal target in
FH treatment. As the first-line pharmacological treatment for dys-
lipidaemia, statins can significantly reduce plasma level of LDL-C
and the risk of cardiovascular events [6]. However, the majority of
FH patients cannot achieve optimal LDL-C reduction even with the
maximum tolerated doses of statins [7,8]. Recently, several large
randomized clinical trials demonstrated that the addition of PCSK9
inhibitors (PCSK9i) to statins may lead to a further reduction in
LDL-C and cardiovascular risk [9,10], even in HoFH patients [11,12].

Of note, hypercholesterolemia causes chronic systemic and
vascular inflammation [13e16]. A number of immunocytes and
blood components, such as monocytes [17], macrophages [18],
dendritic cells [19], lymphocytes [20], neutrophils [21], platelets
[22] and the complement system [23] contribute to the proin-
flammatory environment in AS, and promote the development of
atherogenesis, plaque destabilization and plaque erosion. In the
peripheral blood, a series of blood cellular component-related pa-
rameters, such as the neutrophil-lymphocyte ratio (NLR) [24,25],
platelet-lymphocyte ratio (PLR) [26,27], monocyte-HDL ratio
(MHR) [28,29], monocyte-lymphocyte ratio (MLR) [30,31] and
mean platelet volume-lymphocyte ratio (MPVLR) [32], are able to
illustrate systemic inflammation status and evaluate the risk of
future CVD events. For example, the NLR and MLR reflect the bal-
ance between the innate (neutrophils andmonocytes) and adaptive
(lymphocytes) immune responses in the body [33]. Platelets
directly contribute to the progression of thrombosis and CVD
[34,35], and their activity becomes significantly enhanced in
hyperlipidaemia [36]. Platelet counts and MPV are the two main
parameters in evaluating platelet activity [37].

Since hypercholesterolemia and inflammation are now consid-
ered as “two sides of the same coin”, anti-inflammation becomes a
target for therapeutic strategies [38]. In addition to lipid-lowering
effects, PCSK9i showed anti-inflammatory and immunomodula-
tory effects in FH patients. Scicali et al. [39] found that six month of
add-on PCSK9i in HeFH patients significantly reduced LDL-C levels,
neutrophil counts and the inflammatory marker MHR, while the
NLR was not altered. However, few studies have investigated the
effects of PCSK9i on systemic inflammation in HoFH patients.
13
Patients and methods

Study design and participants

This study protocol conformed to the ethical guidelines of the
1975 Declaration of Helsinki. This study was reviewed and
approved by the ethics committees of Beijing Anzhen Hospital,
Capital Medical University. All subjects voluntarily participated in
the study, signed informed consent forms, and cooperated with the
medical staff to complete the follow-up. Forty-seven healthy do-
nors (HD) with LDL-C < 3.5 mmol/L were recruited. The exclusion
criteria for HD included a history of established cardiovascular
disease, lipid-lowering drugs, clinical signs of acute infection, and
anti-inflammatory medication.

Eligible HoFH participants were diagnosed by genetic testing
(two alleles both carrying mutations in the regions of LDLR, APOB,
PCSK9 or LDLRAP1), whether they were true HoFH (the same mu-
tation in both alleles of the same gene), compound heterozygous FH
(cHeFH-different mutations in the two alleles of the same gene) or
double heterozygotus FH (DH-two different alleles of two separate
genes). The pathogenic genes were detected by the second-
generation sequencing technique. In addition, their Achilles
tendon thickness (ATT), a sensitive index in diagnosing FH [40], was
measured before starting the genetic test. The eligibility criteria
were age between 12 and 75 years old, bodyweight �40 kg, fasting
triglyceride (TG) � 4.5 mmol/L, and fasting LDL-C � 3.4 mmol/L
after at least four weeks of stable high-intensity statins plus eze-
timibe therapies. Participants were willing to maintain a regular
healthy diet and comply with clinic visits during the study period.
The exclusion criteria included uncontrolled cardiac arrhythmias,
myocardial infarction, unstable angina, percutaneous coronary
intervention, coronary artery bypass grafting, stroke, deep vein
thrombosis, pulmonary embolism (<3 months before study start),
systolic blood pressure >180 mmHg and/or diastolic blood pressure
>110 mmHg, having received other PCSK9i and cholesteryl ester
transfer protein inhibitors (>6 months before study start). Patients
did not have any clinically significant endocrine disease that
influenced serum lipids. Women who were pregnant or breast-
feeding were excluded. The inclusion of patients was consecutive.

FromMay 2019 to March 2022, 67 probable HoFH patients were
enrolled from Beijing Anzhen Hospital, Capital Medical University.
The participants had to have received stable maximum statin
therapy with ezetimibe for at least 4 weeks (that is, atorvastatin
40 mg/d or rosuvastatin 20 mg/d, ezetimibe 10 mg/d) before they



Fig. 1. Study population flowchart.
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added the PCSK9i evolocumab 420 mg administered subcutane-
ously every 4 weeks (Q4w). Biochemical analyzes were performed
on the day before PCSK9i administration (T0) and 1 month (T1), 2
months (T2), 3 months (T3) and 6 months (T6) after the start of
PCSK9i administration. At T3, the lipid-lowering effects of PCSK9i
were evaluated. If patients did not attain their LDL targets, the
follow-up was terminated at T3. The LDL target was defined by a
reduction in the mean level of LDL-C at T1, T2 and T3 > 5%
compared to T0.

Biochemical analysis

The counts and percentages of neutrophils, lymphocytes and
monocytes, serum TC, TG, LDL-C, high-density lipoprotein choles-
terol (HDL-C), fasting plasma glucose (FPG), alanine transaminase
(ALT), aspartate transaminase (AST), creatinine (CREA), platelet
count, mean platelet volume (MPV) and high-sensitivity C-reactive
protein (hsCRP) were assessed using a Roche COBAS 701 analyser.
The levels of LDL-C were measured with a direct assay (LDL-
Cholesterol Gen.3 (LDLC3), Roche Diagnostics). The NLR, PLR, MHR,
MLR and MPVLR were calculated by the aforementioned values.

Statistical analysis

Continuous data are expressed as the mean ± standard devia-
tion (SD), and categorical data are expressed as the frequency
(percentage). SPSS software version 25.0 (SPSS, Inc., Chicago, IL)
and R software (R Studio, Version February 1, 5001; Boston, MA,
USA). were used for statistical analyzes and graphs. Normality of
the distribution was assessed by the Kolmogorov-Smirnov test. For
continuous variables that satisfied a normal distribution, inde-
pendent two-sample t tests or paired t tests were used; otherwise,
the Mann-Whitney test was used. Categorical data were compared
by the Chi-square test. For all analyzes, P values < 0.05 were
considered indicative of statistical significance.

Results

In this study, 67 probable HoFH patients were evaluated. Of
these, 25 definitive patients had received maximum stable statins
plus ezetimibe therapy for at least one month. Then these patients
started to add 420 mg PCSK9i Q4W and were followed up once a
month. Twelve patients withdrew (2 at T1, 2 at T2, 5 at T3 and 3 at
T4; Fig. 1). Ultimately, 13 patients completed the 6-month follow-
up. Meanwhile, 47 HD were recruited as controls.

Baseline characteristics of the participants before PCSK9i therapy

Among the 25 patients enrolled in this study, six patients had
homozygous LDLR mutations, 15 patients had compound hetero-
zygous LDLR mutations, one patient had LDLR and PCSK9 double
heterozygous mutations, one patient had homozygous LDLRAP1
mutations, and two patients had double LDLR mutations and APOB
heterozygous mutations (Fig. 2; Supplemental Table 1). Twenty-
four patients performed the ATT test and 22 displayed a promi-
nent thicker Achilles tendon (normal value is approximately
4e7 mm [41]) (Supplemental Table 1). The baseline characteristics
of the participants before PCSK9i therapy are summarized in
Table 1. Compared to HD, HoFH patients hadmarkedly higher levels
of TC and LDL-C (4.17 ± 0.81 vs. 10.80 ± 4.07 mmol/L, P < 0.0001,
1.36 ± 0.30 vs. 9.00 ± 3.76 mmol/L, P < 0.0001, respectively). Of
note, HoFH patients displayed a disturbed blood biomarker profile.
Among eight platelet andwhite blood cell (WBC) parameters, seven
were significantly different between HD and HoFH patients,
including increased MPV (10.02 ± 0.99 vs. 10.61 ± 1.22 fL, P ¼ 0.03),
14
neutrophil counts and percentages (4.05 ± 13.56 vs. 6.23 ± 3.65
*109/L, P < 0.001, 56.08 ± 10.33 vs. 66.80 ± 7.25, P < 0.0001,
respectively), decreased lymphocyte counts and percentages
(2.59 ± 0.79 vs. 2.29 ± 1.22 � 109/L, P ¼ 0.03, 35.86 ± 9.32 vs.
26.11 ± 6.41, P < 0.0001, respectively), monocyte percentages
(8.06 ± 2.44 vs. 7.09 ± 1.75 � 109/L, P ¼ 0.04), and platelet counts
(242.60 ± 59.37 vs. 210.24 ± 61.06 � 109/L, P ¼ 0.007) in HoFH
patients. The monocyte counts were comparable between HoFH
patients and HD. The systemic inflammatory biomarkers NLR, MHR,
MLR and MPVLR that derived from the above parameters were
significantly higher in HoFH patients (68.90%, 106.67%, 27.27%, and
29.50% higher than in HD, respectively). The PLR and hsCRP showed
no significant difference between the two groups. In addition, no
correlation between LDL and systemic inflammatory biomarker
was observed (Supplemental Fig. 2).
Effects of PCSK9i therapy on inflammatory biomarkers in HoFH
patients

After 3 months of add-on PCSK9i therapy, the levels of TC and
LDL-C were significantly reduced by 13.56% and 20.28% (from
11.06 ± 4.21 mmol/L to 9.56 ± 4.80 mmol/L, P < 0.01; from
9.37 ± 3.84 mmol/L to 7.47 ± 4.17 mmol/L, P < 0.001, respectively),
which were still obviously higher than HD. Moreover, three of seven



Fig. 2. The location of mutations in LDLR, APOB, PCSK9 and LDLRAP1 gene.
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of the above disturbed platelet and WBC parameters statistically
recovered, including percentage and count of neutrophils (from
68.06 ± 6.47 to 63.47 ± 5.24, P < 0.01; from 6.80 ± 3.72 to
4.38 ± 1.31 mmol/L, P < 0.001, respectively), and percentage of
lymphocytes (from 24.98 ± 5.66 to 29.72 ± 5.13 mmol/L, P < 0.001).
The monocyte counts significantly decreased after 3 months of
PCSK9i therapy (from 0.70 ± 0.48 to 0.45 ± 0.13 mmol/L, P < 0.001).
Furthermore, PCSK9i therapy reduced two inflammatory biomarkers,
the NLR and MLR (�22.68% and�17.24%, respectively) (Table 2). And
MLR returned to a level that was not statistically different from HD.

The NLR and MLR were further analyzed in 13 patients who
completed 6 months of therapy. The LDL levels at T6 were lower
than the levels before PCSK9i treatment (P < 0.01). However, the
NLR and MLR at T6 returned to the levels of T0 (P ¼ 0.07 and
P¼ 0.32, respectively). Furthermore, the cell counts of lymphocytes
at T6 were statistically comparable to the levels before PCSK9i
treatment (P ¼ 0.59) (Fig. 2). Each color represented an individual
(Fig. 3). Furthermore, we analyzed the above changes according to
their genetics type (true HoFH vs. cHeFH and DH). No noticeable
differences in the index between the two groups was observed
(Supplemental Fig. 1).

Discussion

Since hypercholesterolemia-induced inflammation contributes
to the pathogenesis of AS and CVD [42], it is tempting to propose
15
that the anti-inflammation effects of lipid-lowering drugs could be
a consequence of reduced levels of LDL cholesterol. However, the
lipid-lowering effect of statins was limited in HeFH and HoFH pa-
tients [43]. Even with the highest doses of most efficacious statins,
only approximately 20% of HeFH patients canmeet LDL targets [44],
and LDL levels were still approximately 10 mmol/L in most HoFH
patients [5]. Consistent with the previous studies, our HoFH cohort
with maximum tolerated statin dose plus ezetimibe displayed high
LDL-C levels (9.00 ± 3.76 mmol/L) and a hyperinflammatory state
(an increase in MPV, neutrophil count and percentage; a decrease
in monocyte percentage, platelet counts, lymphocyte count and
percentage). Although LDL-C levels were reduced by 20.28% (from
9.37 ± 3.84 mmol/L to 7.47 ± 4.17 mmol/L) after adding on three
months of PCSK9i treatment, the absolute LDL-C levels were still
dramatically higher than the recommended levels in current
guidelines [6] (<1.8 mmol/L for patients without CVD, and
<1.4 mmol/L for patients with CVD). Strikingly, we found partial
recovery of several systemic inflammation parameters in the
presence of high cholesterol levels. In addition, we did not observe
a close correlation between NLR and LDL-C levels, and noticeable
differences in the tested parameters between HoFH and cHeFH.
Therefore, PCSK9i might exert anti-inflammation effects indepen-
dent its lipid-lowering effect.

Our results are consistent with several previous studies showing
a relationship between PCSK9 and inflammation. It have been re-
ported that PCSK9 directly promotes pro-inflammatory responses



Table 1
Characteristics of HD and HoFH patients on maximum tolerated statin dose plus ezetimibe.

HD (n ¼ 47) HoFH (n ¼ 25) P value

Demographic profile
Age, yr 29.34 ± 8.03 29.08 ± 11.32
Men, n (%) 22 (47) 11(44)
Genetic status, n
Homozygous LDLR 6
Compound heterozygous LDLR 15
Double heterozygous (LDLR þ PCSK9) 1
Homozygous LDLRAP1 1
Double LDLR mutation þ APOB heterozygous 2
Lipid profile
TC, mmol/L 4.17 ± 0.81 10.80 ± 4.07 ＜0.0001
TG, mmol/L 0.97 ± 0.39 0.88 ± 0.44 0.55
LDL-C, mmol/L 1.36 ± 0.30 9.00 ± 3.76 ＜0.0001
HDL-C, mmol/L 2.42 ± 0.64 0.83 ± 0.31 ＜0.0001
Glucose profile
FPG, mmol/L 5.07 ± 0.44 4.79 ± 0.33 ＜0.001
Liver and kidney index
ALT, U/L 18.67 ± 15.20 25.24 ± 17.56 0.16
AST, U/L 17.58 ± 5.59 24.92 ± 9.58 ＜0.01
CREA, umol/L 64.66 ± 13.70 60.49 ± 10.17 0.13
Platelet profile
Platelets, 109/L 242.60 ± 59.37 210.24 ± 61.06 0.007
MPV, fL 10.02 ± 0.99 10.61 ± 1.22 0.03
White blood cell count and percentage
Neutrophil, % 56.08 ± 10.33 66.80 ± 7.25 ＜0.0001
Neutrophil count, 109/L 4.05 ± 13.56 6.23 ± 3.65 ＜0.001
Lymphocyte, % 35.86 ± 9.32 26.11 ± 6.41 ＜0.0001
Lymphocyte count, 109/L 2.59 ± 0.79 2.29 ± 1.22 0.03
Monocyte, % 8.06 ± 2.44 7.09 ± 1.75 0.04
Monocyte count, 109/L 0.57 ± 0.20 0.66 ± 0.45 0.68
Inflammatory profile
NLR 1.64 ± 0.59 2.77 ± 0.92 ＜0.0001
PLR 99.07 ± 29.56 102.41 ± 3.59 0.94
MHR 0.45 ± 0.25 0.93 ± 0.75 ＜0.01
MLR 0.22 ± 0.06 0.28 ± 0.07 ＜0.01
MPVLR 4.17 ± 1.20 5.40 ± 2.29 ＜0.01
hsCRP 1.49 ± 0.90 2.87 ± 4.44 0.78

The data shown are the mean ± SD or number (%). TC ¼ total cholesterol; TG ¼ triglycerides; LDL-C ¼ low-density lipoprotein cholesterol; HDL-C ¼ high-density lipoprotein
cholesterol; FPG ¼ fasting plasma glucose; ALT ¼ alanine transaminase; AST ¼ aspartate transaminase; CREA ¼ creatinine; MPV ¼ mean platelet volume; NLR ¼ Neutrophil-
lymphocyte ratio; PLR ¼ Platelet-lymphocyte ratio; MHR ¼ Monocyte-HDL ratio; MLR ¼ Monocyte-lymphocyte ratio; MPVLR ¼ MPV-lymphocyte ratio; hsCRP ¼ high-
sensitivity C-reactive protein.

Table 2
Characteristics of HoFH patients before and after 3 months of PCSK9i therapy.

HD (n ¼ 47) (1) HoFH subjects (n ¼ 21) T0 (2) HoFH subjects (n ¼ 21) T3 (3) P value (2) Vs (3) P value (1) Vs (3)

Lipid profile
TC, mmol/L 4.17 ± 0.81 11.06 ± 4.21 9.56 ± 4.80 ＜0.01 ＜0.001
TG, mmol/L 0.97 ± 0.39 0.82 ± 0.33 0.81 ± 0.36 0.60 0.12
LDL-C, mmol/L 1.36 ± 0.30 9.37 ± 3.84 7.47 ± 4.17 ＜0.001 ＜0.001
HDL-C, mmol/L 2.42 ± 0.64 0.83 ± 0.31 0.85 ± 0.34 0.67 ＜0.001
Glucose profile
FPG, mmol/L 5.07 ± 0.44 4.80 ± 0.35 4.96 ± 0.55 0.19 0.36
Liver and kidney index
ALT, U/L 18.67 ± 15.20 22.48 ± 13.58 24.67 ± 14.76 0.85 0.03
AST, U/L 17.58 ± 5.59 24.14 ± 9.12 27.14 ± 10.34 0.17 ＜0.001
CREA, umol/L 64.66 ± 13.70 61.2 ± 8.93 60.36 ± 11.73 0.58 0.22
Platelet profile
Platelets, 109/L 242.60 ± 59.37 214.48 ± 65.60 214.33 ± 67.51 0.98 0.08
MPV, fL 10.02 ± 0.99 10.65 ± 1.25 10.42 ± 1.03 0.13 0.13
White blood cell count and percentage
Neutrophil, % 56.08 ± 10.33 68.06 ± 6.47 63.47 ± 5.24 ＜0.01 ＜0.01
Neutrophil count, 109/L 4.05 ± 13.56 6.80 ± 3.72 4.38 ± 1.31 ＜0.001 ＜0.001
Lymphocyte, % 35.86 ± 9.32 24.98 ± 5.66 29.72 ± 5.13 ＜0.001 ＜0.01
Lymphocyte count, 109/L 2.59 ± 0.79 2.40 ± 1.30 2.05 ± 0.70 0.32 ＜0.01
Monocyte, % 8.06 ± 2.44 6.97 ± 1.59 6.80 ± 1.75 0.70 0.05
Monocyte count, 109/L 0.57 ± 0.20 0.70 ± 0.48 0.45 ± 0.13 ＜0.001 ＜0.001
inflammatory profile
NLR 1.64 ± 0.59 2.91 ± 0.90 2.25 ± 0.77 ＜0.001 ＜0.01
PLR 99.07 ± 29.56 100.27 ± 37.93 111.51 ± 37.97 0.12 0.15
MHR 0.45 ± 0.25 1.01 ± 0.79 0.75 ± 0.80 0.10 0.02
MLR 0.22 ± 0.06 0.29 ± 0.07 0.24 ± 0.08 ＜0.01 0.57
MPVLR 4.17 ± 1.20 5.35 ± 2.43 5.76 ± 2.38 0.25 ＜0.001
hsCRP 1.49 ± 0.90 2.75 ± 4.35 2.84 ± 4.73 0.99 0.67
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Fig. 3. The levels of LDL and the NLR, MLR, neutrophil count, lymphocyte count, and monocyte count before PCSK9i treatment and at 3 months and 6 months after PCSK9i
treatment.
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in macrophages [45], liver cells and a variety of tissues [46]. High
serum PCSK9 levels in patients with CVD were associated with CRP
and pro-inflammatory cytokines IL-6, IL-1b, TNF-a and M-CSF [46].
Giunzioni et al. [47] reported that PCSK9 could act directly on im-
mune cells in a cholesterol-independently manner. Consistently,
Liu et al. revealed a direct, LDL-C reduction independent, anti-
inflammation effect of PCSK9i [48].

It should be emphasized that add-on PCSK9i therapy signifi-
cantly reduced both NLR and MLR. Since lymphocyte counts were
comparable during this period, the reduction in NLR and MLR
should be attributed to a significant decrease in neutrophil counts
and monocyte counts. Although further investigations are still
needed, clinical trials with CAD patients revealed that serum PCSK9
concentration was positively correlated with neutrophil and
lymphocyte numbers [49]. There is growing evidence suggesting
that both monocytes and neutrophils contribute to cardiovascular
inflammation and the development of atherosclerotic plaques
[50,51]. For example, neutrophils stimulate the activation and
dysregulation of the endothelial cells by secreting reactive oxygen
species (ROS) [52] and myeloperoxidase (MPO) [53]. MPO also
mediates the oxidation of LDL, promoting the formation of foam
cells. Bernelot et al. [54] reported that PCSK9i decreased migration
capacity of monocytes in FH patients. It should be noted that LDL-C
also promotes pro-inflammatory status of monocytes and myelo-
monocytic skewing during bone marrow hematopoiesis [55].
Cholesterol-lowering treatment only reverts the myelomonocytic
skewing in hematopoietic stem and progenitor cells. Further
research is required to investigate whether a rebound of inflam-
matory parameters is related to the failure of recovery of the defects
during early hematopoiesis.

There are some limitations of this study. First, this study had a
single-center design and was limited to Chinese patients. However,
the present study showed a similar prevalence of dyslipidaemia
and other risk factors with large contemporary trials [56] and real-
world registries [57] including those involving other ethnicities.
Second, the small sample size of this study limited the generaliz-
ability of the results, and further analysis with large sample size is
required to confirm these results. Third, since the reduction in LDL-
C levels with PCSK9i treatment was more profound in HeFH pa-
tients than in HoFH patients, similar research should be carried out
in HeFH patients to further illustrate the separate impact of LDL-C
reductions and PCSK9i itself. Forth, several studies have shown
that PCSK9 induced a pro-inflammatory phenotype in human
macrophages, thus, additional analysis of more markers and the
change of plasma PCSK9 levels should also be included.

Unfortunately, the NLR and MLR returned to pre-PCSK9i treat-
ment levels at 6 months after PCSK9i treatment. It remains unclear
why PCSK9i only induces a transient decrease in the NLR and MLR,
whether HoFH patients may gain clinical benefit, and whether
other therapies targeting PCSK9 such as inclisiran also show anti-
inflammation effect. In-depth investigations should be conducted
in further studies.
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