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Abstract: Influenza viruses infect approximately 20% of the global population annually, resulting in
hundreds of thousands of deaths. While there are Food and Drug Administration (FDA) approved
antiviral drugs for combating the disease, vaccination remains the best strategy for preventing
infection. Due to the rapid mutation rate of influenza viruses, vaccine formulations need to be
updated every year to provide adequate protection. In recent years, a great amount of effort has been
focused on the development of a universal vaccine capable of eliciting broadly protective immunity.
While universal influenza vaccines clearly have the best potential to provide long-lasting protection
against influenza viruses, the timeline for their development, as well as the true universality of
protection they afford, remains uncertain. In an attempt to reduce influenza disease burden while
universal vaccines are developed and tested, many groups are working on a variety of strategies to
improve the efficacy of the standard seasonal vaccine. This review will highlight the different
techniques and technologies that have been, or are being, developed to improve the seasonal
vaccination efforts against influenza viruses.
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1. Introduction

The family Orthomyxoviridae is composed of seven genera of negative sense, segmented,
single-stranded RNA viruses [1]. Influenza A and B viruses (IAV and IBV respectively) are responsible
for the vast majority of the estimated 3 to 5 million cases of influenza-mediated severe illness and
290,000–650,000 deaths annually [2]. To date, vaccination remains the best strategy for preventing
the spread of IAV and IBV [3]. The influenza vaccine is currently administered in a “trivalent” or
“quadrivalent” format, wherein the vaccine is a cocktail of two IAV strains and either one or two
IBV strains [4]. Due to rapid viral evolution, unlike many other vaccines, the influenza vaccine
formulation requires updates each flu season. Data from the WHO Global Influenza Surveillance and
Response System ensures the strains in the vaccine match circulating viruses; hence, the term “seasonal
vaccine” [5]. This need for continual adjustment of the vaccine formula is a result of influenza viruses’
ability to accumulate mutations over time, a process termed “antigenic drift” [6]. Influenza viruses,
like many RNA viruses, have a much higher mutation rate than organisms with DNA genomes
due to the lower fidelity of RNA polymerases [7]. Intrinsic viral mutation combined with immune
selective pressures result in the fixation of viral variants that are antigenically distinct from their
predecessors. These “drifted” viruses are frequently capable of escaping the immune response elicited
by the previous vaccination or infection, leading to the requirement for constant monitoring and testing
of isolated strains to ensure the current vaccine is a match to circulating viruses. Vaccine mediated
protection against influenza viruses is further complicated by the fact that the segmented viral genome
permits two different virus strains to reassort genetic material with one another upon coinfection,
potentially leading to “antigenic shift” [8]. Antigenic shift enables the creation of antigenically novel
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viral strains capable of causing pandemic outbreaks. Thus, seasonal influenza vaccine production
must be flexible enough to deal with the annual acquisition of mutations in circulating strains and to
rapidly respond to pandemic outbreaks as occurred with a reassortant H1N1 strain in 2009 [9].

Rapid influenza virus evolution leads to the yearly requirement for massive vaccine manufacturing
infrastructure capable of generating hundreds of millions doses. Currently, the majority of influenza
virus vaccines are manufactured using embryonated chicken eggs [10]. This manufacturing strategy,
which has been used for ~50 years, begins with the identification of the predicted circulating strains.
Quadrivalent vaccines today are composed of the two-major circulating IAV strains, H1N1 and
H3N2 viruses, and the two major lineages of IBV viruses, Yamagata and Victoria [11–13]. Once a
strain is selected, the genetic segments encoding the two major glycoproteins, hemagglutinin (HA)
and neuraminidase (NA), of the circulating influenza viruses are reassorted into an egg-adapted
background virus containing the remaining 6 segments [14]. Once these reassortant viruses are generated,
they are grown in embryonated chicken eggs and screened to isolate “candidate vaccine viruses” or
CVVs, that grow to high-titers in eggs and remain antigenically similar to the circulating strains [5].
The CDC, or another center affiliated with the WHO Global Influenza Surveillance and Response
System, then delivers the approved CVVs to private manufacturers [10,15]. These manufacturers
then mass-produce the viruses in embryonated chicken eggs and subsequently partially purify the
reassortant viruses. These purified viral particles are then inactivated and standardized based on HA
content [16]. The HA protein is primarily responsible for inducing neutralizing antibodies against
influenza viruses, and as a result is the focus of most vaccines [17,18].

This manufacturing technique has remained relatively unchanged across decades for a number of
reasons. Firstly, vast infrastructure for producing egg-based influenza vaccines currently exists and is
required to meet the annual need of new seasonal vaccines for the global population [19]. It is estimated
that the current egg-based manufacturing industry is capable of producing 1.5 billion doses annually,
a number other vaccine manufacturing techniques have difficulty matching [20]. Secondly, due to
its extraordinary manufacturing capacity and robust viral growth, egg-based influenza vaccines are
also among the cheapest vaccines available [21,22]. Low cost vaccines allow protection from influenza
disease in both developed and developing nations.

Although egg-based manufacturing confers several benefits, serious drawbacks remain. First of
all, reassortant viruses must be adapted in eggs to produce high-yield candidate vaccine viruses.
This process, combined with the need to screen the antigenicity of isolated strains, drastically increases
the production time of influenza vaccines for the upcoming season [22–24]. Increased production
time reduces the flexibility of the manufacturing process, necessitating the start of production
long before the start of the season. This timeline reduces the ability of public health officials to
adapt to sudden changes in circulating strains. This process of egg-adaptation is both slow and,
at times, ineffective. Despite efforts to adapt reassortant viruses to culture in eggs, some strains,
especially H3N2 viruses, continue to grow poorly in eggs [25]. This inability to adapt strains can
result in significant delays in vaccine production due to the lower yield of these strains and, in some
severe cases, may necessitate the removal of a predicted strain due to its inability to be grown to
sufficient levels [25,26]. This problem occurred during the 2003–2004 season, when the predicted
A/Fujian/411/2002 strain was unable to be grown successfully in chicken eggs and was subsequently
replaced by the prior year’s H3N2 strain [27]. Greater than 82% of the isolates examined by the CDC from
that year antigenically matched the A/Fujian/411/2002 strain, resulting in epidemic levels of influenza
morbidity and mortality [28]. Additionally, it was recently shown that egg-adaptation can negatively
impact vaccine effectiveness [25,29,30]. The viral hemagglutinin (HA), the primary antigenic target of
neutralizing antibodies, binds to sialic acid on the surface of host cells to facilitate influenza virus
entry [1]. The sialic acids on human cells in the upper respiratory tract exhibit an α-2,6 linkage,
whereas avian cells exhibit an α-2,3-linkage, resulting in a different conformation for recognition by
the HA protein [31,32]. Poor receptor binding is a primary reason that many human influenza viruses
exhibit poor growth in eggs, inducing a selective pressure on these viruses to adapt their HA proteins.



Vaccines 2018, 6, 19 3 of 12

Unfortunately, the binding region of the HA protein is in the globular head domain, which contains the
major antigenic sites which are targeted by neutralizing antibodies [1]. Thus, many of the mutations
influenza viruses accumulate during egg-adaptation result in altered antigenicity. This potentially
changed antigenicity is usually controlled for during the generation of CVVs by continually testing the
antigenicity of isolated strains. However, due to the complex nature of influenza immune responses
in individuals with multiple exposures to different strains, it can be difficult to accurately predict
the antigenicity of a given vaccine strain [33]. Furthermore, CVVs are not closely monitored during
egg-based manufacturing and unstable vaccine strains can result in the production of mutated vaccine
viruses that no longer represent circulating strains [25,29]. These instances of egg-adaptation, notable in
recent years, have contributed to poor vaccine efficacy as a result of antigenic mismatch of adapted
viruses to circulating viruses [34]. For the current 2017–2018 influenza season, it was demonstrated
that a single amino acid mutation acquired during egg-adaptation, which changed the glycosylation of
the HA protein, is likely responsible for the estimated 25% vaccine effectiveness against the circulating
H3N2 virus in adults in the U.S. [29,35]. This review will focus on novel strategies that have been
developed to address the issues associated with egg-based production in an effort to produce a more
effective seasonal influenza vaccine. These strategies and their respective potential benefits and
drawbacks, are briefly schematized in Figure 1.

Figure 1. Summary of alternative approaches to traditional, egg-grown seasonal influenza vaccines
that are either currently in use or in development. A depiction of the various alternative approaches to
avoid the problems associated with the current seasonal influenza vaccines and a list of their respective
pros and cons.
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2. Currently Available, FDA-Approved Alternatives to Traditional Egg-Based Vaccines

In 2012, the FDA announced its approval of Flucelvax®, the first approved non-egg produced
vaccine alternative in the US [36]. Flucelvax® is a cell-based influenza vaccine manufacturing platform,
developed by Novartis’s influenza vaccine group (now owned by Seqirus), wherein influenza viruses
are grown in tissue culture systems using Madin-Darby Canine Kidney (MDCK) cells [37]. Similar to
egg-based production, reassortant viruses are generated using the HA and NA of clinically relevant
strains in a standardized genetic backbone. The four selected CVVs are then amplified, the viruses are
purified, and finally inactivated for use in vaccines [38]. This strategy, while similar to the egg-based
manufacturing process, has several advantages over egg growth. Importantly, the utilization of
cells reduces the potential constraints of egg-shortages. Egg-based manufacturing techniques are
reliant on an enormous supply of chicken eggs, sometimes slowing production time based on their
availability. In contrast, cell-based manufacturing offers a more flexible production timeline since
virus amplification is dependent on the capacity of bioreactors [38]. Another advantage is based on
data showing that the glycosylation of the HA protein can drastically impact immunogenicity [29].
Previous work demonstrated that virus grown in different cell types, for example, avian (egg)
compared to mammalian, may exhibit drastically different glycosylation profiles [39,40]. While not
yet formally shown, many groups are investigating the theory that utilizing mammalian cells
as a substrate, rather than avian cells, will yield more antigenically matched HAs for vaccines.
Furthermore, because this strategy uses cells and not eggs, there is no risk of egg-allergies negatively
impacting patients who have previously experienced anaphylaxis. An additional, and perhaps the most
appealing, advantage of vaccine production in mammalian cells is the reduction of the egg selective
pressures driving HA mutations. Originally, the same CVVs used in egg-based manufacturing were
also utilized for the production of Flucelvax®. This meant in years where egg-adaptation was an
issue, the cell-based vaccine was also impacted [34]. In 2016, however, the FDA approved the use of
cell-based CVVs and has since mandated that all Flucelvax® doses be made exclusively using cell-based
CVVs to ensure its insulation from egg-adaptation [34]. In fact, Scott Gottlieb, the Commissioner of
the Food and Drug Administration, recently stated that “about 20 percent improved efficacy for the
cell-based vaccine relative to the egg-based vaccines” has been estimated by the FDA for the 2017–2018
season [41].

While this platform offers a number of advantages, drawbacks remain. Concerns around
adaptation remain when using MDCK cells. It has recently been shown that influenza viruses can
develop mutations in the HA and NA proteins after serial passaging in cell culture [42]. While it
needs to be determined whether these mutations happen during vaccine manufacturing, or impact
vaccine effectiveness, this finding highlights an important area of research as this strategy becomes
more prevalent. Additionally, unlike the egg-based vaccines, the global-scale infrastructure for
manufacturing the necessary amount of cell-based influenza vaccines does not currently exist.
According to David Minella, a communications manager for Seqirus, approximately “21.5 million doses
of [Flucelvax] were provided to the U.S.” for the 2017–2018 influenza season (personal communication).
This number, roughly equivalent to Seqirus’ current annual manufacturing capacity, represents only
18% of the estimated quadrivalent vaccine supply that was available in the U.S. for the 2017–2018
influenza season [43]. Also, according to the CDC vaccine pricelist Flucelvax® can cost up to 40%
more than an egg-based vaccine. Removing the requirement and risks of egg adaption demonstrates
the appeal of a cell-based design, yet it is clear this system cannot currently replace the entirety of
egg-based manufacturing at a low cost without significant investments in infrastructure.

Another method to avoid egg-based manufacturing eliminates the reliance on influenza virus
replication/production entirely. Only a year after Flucelvax® was approved, the FDA also announced
the approval of Flublok®, made by Protein Sciences Corporation [44]. Unlike both egg-based and
cell-based manufacturing, Flublok® utilizes baculovirus-expression systems to purify recombinant
HA protein [45,46]. Manufacturers clone a desired HA gene into a baculovirus transfer vector,
using RT-PCR from viral RNA, or synthesize it using a known sequence [45]. Once generated,
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manufacturers transfect the cloned HA gene and linearized baculovirus genomic DNA into insect cells.
This process allows recombinant baculoviruses to form and subsequently be used as stock viruses.
Stock viruses infect insect cells in bioreactors to produce recombinant HA protein that is purified and
used for vaccination. This manufacturing strategy is much quicker since there is no longer a need
to rescue influenza viruses and select for high yield variants. This efficiency creates a much more
flexible platform, allowing public health officials to potentially adapt to sudden changes in circulating
influenza strains. This strategy is also immune to the issues of egg-adaptation, as it produces an HA
with an exact amino acid match to the circulating virus [46]. Furthermore, this strategy allows for the
production of vaccines with higher HA concentrations. Optimized purification techniques and the sole
expression of HA allow manufacturers to produce exceptionally pure samples of antigen that can be
concentrated to much higher levels, while simultaneously maintaining low levels of contaminant [47].
Lastly, similar to the cell-based strategy, this system does not utilize eggs, insulating it from the
limitations of egg-shortages and the potential issue of severe allergic responses to egg proteins in
some patients. Advantages aside, this strategy is not immune to drawbacks, especially with regard
to cost. According to the CDC, Flublok® can cost more than twice as much as an egg-based vaccine,
causing many patients to opt for either the egg or cell-based vaccines [48]. Flublok® also has the
shortest shelf-life out of the three vaccine strategies. It is not recommended to be stocked for longer than
nine months, requiring a restocking of the vaccine regardless of whether the formulation is changed in
a given year [44]. Furthermore, similar to the cell-based strategy, the infrastructure to manufacture
enough doses for an entire season does not yet exist. Without a low-cost production scheme and
extended shelf-life, it is unlikely that Flublok® could completely replace egg-based manufacturing.

The final FDA-approved alternative to traditional egg-based production methods works to simply
improve the protection afforded by the standard vaccine. Instead of relying on a different production
method, the approach is to incorporate an adjuvant to increase the magnitude of the immune response
against the vaccine antigens. FLUAD®, which was originally developed by Novartis’s influenza
group (now owned by Seqirus), was approved in the U.S. for use by patients 65 and older in 2015,
with distribution starting during the 2016–2017 influenza season [49]. The FLUAD® vaccine has
actually been approved for use in other countries since the late 1990’s, with over 85 million doses
distributed worldwide [50,51]. While this vaccine platform still relies on egg-based manufacturing,
it incorporates the use of an emulsion-based adjuvant, MF59 [52]. This emulsion is comprised primarily
of squalene, an organic compound commonly utilized in the human body to synthesize cholesterol
and other steroids [52]. MF59 enhances immune responses by inducing the recruitment of immune
cells to the injection site, allowing an enhanced uptake of and subsequent response to the antigen [51].
While this vaccine is currently only approved in patients 65 and older, recent studies have begun to
demonstrate its ability to induce robust immune responses in children [53]. Studies have also shown
the addition of MF59 was capable of inducing cross-reactive antibodies able to neutralize strains
not included in the vaccine [53,54]. FLUAD®, while capable of inducing stronger responses than
un-adjuvanted vaccines, is still based on growing influenza viruses in eggs, making it susceptible to
viral adaptations during growth in eggs. The only additional issue with employing the widespread use
of adjuvants like MF59 is the commonly mentioned mild side-effect of enhanced pain at the injection
site, likely due to the increased influx of immune cells [49].

3. Next-Generation Seasonal Influenza Vaccines Currently in Development

Due to the challenges associated with the current FDA approved alternative (non-egg produced)
influenza vaccines described above, the use of these vaccines has remained relatively limited when
compared to standard egg-grown vaccines. Thus, alternative strategies to improve the seasonal
influenza vaccine are continuing to be developed. While many groups have simply avoided egg-based
growth strategies to overcome the limitations of the traditional influenza vaccine, our group has
focused on engineering recombinant viruses with desired characteristics for vaccine production.
We recently reported a genomic organization for the influenza virus vaccine backbone that can be
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grown in chicken eggs, yet avoids egg-adaptive mutations [55]. To accomplish this goal, we expressed
both an HA and NA protein from a single genomic segment, which normally only encodes the
HA protein, and then expressed a second HA from the segment once occupied by NA (Figure 2).
This scheme allows us to express an egg-adapted “helper” HA and a clinically relevant HA on the same
virion. The “helper” HA eliminates the selective pressure on the clinically relevant HA, which would
likely be unstable during growth in eggs. We were able to show that an H3N2 strain, which normally
grows extremely poorly in eggs and subsequently acquires a number of well characterized HA
mutations [30,56,57], when placed in our dual-HA background could grow to high titers without a
single adaptive mutation in the H3 HA [55]. Pairing egg-adapted helper HAs dramatically enhances
the growth of HA proteins known to grow poorly in chicken eggs. In theory, eliminating the need
to adapt and screen reassortants for high-yield CVVs could significantly reduce vaccine production
timelines. Without egg-adaptation, dual-HA vaccines may elicit better matched immune responses
against circulating strains. In contrast to all other alternative strategies, our design is compatible with
current manufacturing processes, and thus, could utilize the established egg-based manufacturing
infrastructure [55]. Remaining reliant on eggs means this platform is still susceptible to egg shortages
and inappropriate for people with a history of severe egg allergies. However, this system would
immediately allow large-scale manufacturing of the vaccine at the same prices currently available for
standard egg-based formulations.

Figure 2. A schematic of the standard “6 + 2” reassortant virus and the dual-hemagglutinin (HA) design.

Another alternative strategy currently under development uses nanoparticles. Novavax Inc.
had promising preclinical trials for its nanoparticle-based influenza vaccine platform, NanoFlu® and
will soon be moving into phase I studies [58]. Similar to the baculovirus system, nanoparticle-based
approaches depend on the expression of the desired antigen, typically HA, in a cell line [58,59].
Once expressed, the HA is purified and assembled into a nanoparticle for use in the vaccine. Due to
the similarities to the baculovirus based production methods, nanoparticle methods retain many of the
same advantages, including the ability to generate a large quantity of exact sequence HA, insulating this
strategy from egg-adaptation/mutation [60]. Unlike the currently approved Flublok®, this strategy
uses a full particle as opposed to HA protein in solution. It has been demonstrated that presenting
antigens in this particulate form often yields boosted immune responses, acting as a self-adjuvant [61,62].
Additionally, nanoparticle-based strategies show promise as universal vaccines, with several eliciting
a broader, more universal anti-influenza immune response [58,59]. Nanoparticles’ ability to elicit
broadly reactive anti-viral antibodies could allow a given nanoparticle seasonal vaccine to protect
for a longer period of time compared to a standard seasonal influenza vaccine. While this strategy
demonstrates promise, there is currently a lack of infrastructure for the manufacturing, as with the
other non-egg grown vaccines, needed to fulfill the necessary doses for a season. Additionally, there is
a less established precedent for nanoparticle-based vaccines, which may increase the timeline for
regulatory approval.
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Peptide-based vaccines present another opportunity for improvement over current production
methods. This platform relies on the synthesis of specific epitopes from influenza proteins (often HA,
M1/M2 and NP) recognized by B- and T-cells [63–65]. Once synthesized, peptides are purified
and loaded into either liposomes or virosomes, which serve as both an adjuvant and a delivery
mechanism for the antigens [64,66]. Liposomes and virosomes have both been demonstrated to
effectively target cells of interest and deliver antigen. Currently, many groups are working to evaluate
what delivery strategy might better suit vaccination needs [67,68]. Both liposome and virosome
formulations of these vaccines have undergone pre-clinical trials and demonstrated the ability to
elicit protection from subsequent influenza virus challenge [63]. Peptide vaccines are insulated from
the issue of egg-adaptation by relying on peptide synthesis, and avoid other egg-based risks such
as egg-availability or egg-allergens. Peptide delivery formulations are also capable of serving as an
adjuvant in addition to delivering the antigens [68,69]. Lastly, similar to the nanoparticle vaccine,
these strategies have shown a potentially more universal protection by targeting conserved epitopes of
the desired antigen [70]. However, this strategy, requires further development before its widespread
use. The formulation of these vaccines is very complicated, as the it includes both the antigenic peptides
and the composition of the liposome/virosome itself [63,67]. Optimization of these components can
take significant time and, as with other experimental approaches, the true costs are unknown and the
infrastructure for manufacturing these vaccines is currently limited.

Another promising approach in development are nucleic acid-based vaccines. Unlike any of the
previously mentioned strategies, nucleic acid-based vaccines do not rely on the production of proteins
but instead recombinant DNA or RNA molecules [71–73]. In either case, the sequence of the desired
antigen is cloned into an expression plasmid and propagated in bacterial cells, typically E. coli. For RNA
vaccines, a transcription step follows the initial replication of the DNA template, which is subsequently
degraded using DNAses. The RNA or DNA is then purified and often administered via injection.
Host cells take up the RNA or DNA and begin expressing the desired antigen. These approaches have
been used in a variety of preclinical and phase 1 clinical trials, typically expressing at least the HA
protein of the desired virus and show a great deal of promise for future clinical trials and subsequent
development [74–79]. While there are some major differences between DNA and RNA-based vaccines,
they share many of the same advantages. Similar to other expression-based platforms, DNA and RNA
vaccines are immune to the potential pitfall of protein adaptation during manufacturing processes.
Synthesis of the nucleotide sequence guarantees that the expressed antigen is identical to its circulating
target. Nucleic acid-based vaccines are also able to be rapidly manufactured [71]. These strategies only
require the manufacturing of nucleic acid, not protein, effectively removing a step of the manufacturing
process. Furthermore, when considering the ease of amplifying and purifying nucleic acid, it becomes
clear that screening and expressing new antigens and or adjuvant-antigen combinations would become
much faster and more efficient than in any of the other strategies described [71]. Lastly, delivery of
these vaccines can be tailored to specific cell types by utilizing an assortment of delivery vectors [80].
Delivery can be especially simple for RNA-based vaccines, as it has been shown that cells are
capable of spontaneously taking in naked mRNA [81,82]. Despite ease of production and delivery,
many challenges for nucleic acid-based vaccines remain. This class of vaccines have not previously been
approved for use in humans, although they have been approved for veterinary use [83]. Furthermore,
nucleic acid introduction into the cell can activate a number of innate immune signaling pathways [84].
While nucleic acid vaccines have shown promise in preclinical trials, it was shown that activation of the
innate response by these vaccines can drastically reduce their efficacy [71]. Strategies to control innate
immune recognition of these molecules, such as the incorporation of non-immunogenic pseudouridine
bases into mRNAs [85], will be critical to ensure that these vaccines express sufficient antigen to induce
protective immunity.
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4. Conclusions

Despite the fluctuating efficacy of the seasonal influenza vaccine from year to year, it remains
the best strategy for combating infection. Experimental universal influenza vaccines are intended to
broadly protect against many (if not all) influenza virus strains regardless of antigenic mutation in the
HA head domain (reviewed in [86–88]). As with the development of any new vaccine, the timeline
for their widespread use in humans, as well as their true efficacy against divergent viral strains is
uncertain. Thus, as a short-term measure, efforts to improve the efficacy of the seasonal vaccine
as well as the development of other anti-viral therapeutics are still needed. The development and
application of new approaches to improve on the current technologies, along with the development
of completely new vaccines, makes this an exciting time to be part of the influenza virus research
community. Current efforts and further optimization of many complementary strategies for influenza
vaccine development are critical to our ability to reduce and even prevent the epidemic and pandemic
outbreaks of the future.
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