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Abstract: Unlike mammalian red blood cells (RBCs), fish RBCs are nucleated and thus capable of
gene expression. Japanese flounder (Paralichthys olivaceus) is a species of marine fish with important
economic values. Flounder are susceptible to Edwardsiella tarda, a severe bacterial pathogen that
is able to infect and survive in flounder phagocytes. However, the infectivity of and the immune
response induced by E. tarda in flounder RBCs are unclear. In the present research, we found that
E. tarda was able to invade and replicate inside flounder RBCs in both in vitro and in vivo infections.
To investigate the immune response induced by E. tarda in RBCs, transcriptome analysis of the
spleen RBCs of flounder challenged with E. tarda was performed. Six sequencing libraries were
constructed, and an average of 43 million clean reads per library were obtained, with 85% of the reads
being successfully mapped to the genome of flounder. A total of 1720 differentially expressed genes
(DEGs) were identified in E. tarda-infected fish. The DEGs were significantly enriched in diverse
Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways,
especially those associated with immunity, disease, and infection. Ninety-one key DEGs involved in
12 immune-related pathways were found to form extensive interaction networks. Twenty-one genes
that constituted the hub of the networks were further identified, which were highly regulated by
E. tarda and involved in a number of immune processes, notably pathogen recognition and signal
transduction, antigen processing and presentation, inflammation, and splicing. These results provide
new insights into the immune role of flounder RBCs during bacterial infection.
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1. Introduction

Red blood cells (RBCs) are the most abundant cell type in the blood. While the mammalian
mature RBCs lack nuclei, the RBCs of non-mammals contain nuclei and cytoplasmic organelles, which
suggests the ability to synthesize proteins in response to stimuli [1–4]. Recently, nucleated RBCs have
been reported to be involved in various immune responses when stimulated with pathogens such as
Escherichia coli [5], Candida albicans [6,7], infectious salmon anemia virus (ISAV) [8], piscine orthoreovirus
(PRV) [2], non-replicating viruses like viral hemorrhagic septicemia virus (VHSV) [9], and infectious
pancreatic necrosis virus (IPNV) [1,10]. The nucleated RBCs express pattern recognition receptors (PRRs)
that recognize pathogen-associated molecular patterns (PAMPs) on microorganisms [11,12]. In fish,
rainbow trout and Atlantic salmon RBCs express Toll-like receptor (TLR) 3 and TLR9 that recognize
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CpG motifs [7,13–15]. Atlantic salmon RBCs also express RIG-I that interacts with intracellular viral
dsRNA [14]. NOD2, NLRX1, NLRC3, and NLRC5 receptors of NOD-like receptors (NLRs) family were
detected in rainbow trout RBCs stimulated with VHSV [11]. The activation of the PRRs of nucleated
RBCs has been reported to trigger signal transductions and induce the transcription of diverse genes
related to innate immunity, such as interferon, interleukin, chemokines, and antimicrobial peptide [12].
In addition, nucleated RBCs also display an antigen-presenting cell (APC)-like behavior, and fish RBCs
have been reported to express MHC-I and MHC-II [16–20]. The MHC-I and MHC-II exposed on the
surface of RBCs can be recognized by T cells and activate the adaptive immunity [12].

Edwardsiella tarda is a gram-negative bacteria that is known to infect a wide range of hosts, including
birds, reptiles, mammals, and fish [21,22]. It is a severe pathogen to many farmed fish species, including
Japanese flounder (Paralichthys olivaceus), and has caused huge economic losses in aquaculture [23].
Studies have shown that E. tarda exhibits a strong capacity to evade host immune responses and is able
to replicate in host macrophages and resist the killing effect of serum complements [24,25]. A recent
study revealed that E. tarda markedly suppressed the induction of a large amount of immune genes,
notably RIG-I-like receptors, cytokines, and interferon-related genes, during its infection of mammalian
macrophages [26]. In a previous report, we demonstrated that Japanese flounder RBCs were capable
of ingesting both live and inactivated E. tarda, the former via clathrin-mediated endocytosis [27].
However, the immune response induced by E. tarda in flounder RBCs has not been investigated.

In this study, we examined the capacity of E. tarda to invade and replicate in flounder RBCs, and
analyzed the transcriptome of flounder spleen erythrocytes induced by E. tarda challenge. We identified
a large amount of differentially expressed genes (DEGs) and analyzed their functional enrichment in
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Further, we
constructed protein–protein interaction networks to reveal the key immune-related DEGs involved in
E. tarda infection. Our results provided a valuable molecular basis for further study of the mechanism
of flounder erythrocytes against bacterial infection.

2. Results

2.1. In Vitro Infection of E. tarda in RBCs

Our previous study indicated that E. tarda could invade into flounder RBCs [27]. To examine
whether E. tarda was able to replicate inside RBCs, the bacteria attached to the surface of RBCs were
killed with antibiotics, and the cells were incubated further for 2 h and 4 h. Plate count showed that
the intracellular bacterial number increased with the incubation time (Figure 1), indicating an ability of
E. tarda to replicate inside RBCs.

2.2. In Vivo Infection of E. tarda in Flounder Blood and Spleen Erythrocytes

For in vivo infection, flounder were infected with E. tarda for 12 h or 24 h. Erythrocytes were
collected from the blood and spleen of the fish and purified to high purity (≥98%) (Figure S1). Both cell
surface-attached and intracellular E. tarda were detected in the erythrocytes of the infected fish (Figure 2).
No E. tarda were detected from the erythrocytes of the uninfected control fish. In E. tarda-infected fish,
both cell surface-attached and intracellular bacterial numbers increased significantly from 12 h to 24 h
(Figure 2). Furthermore, at both time points, the numbers of intracellular E. tarda in spleen erythrocytes
were much higher (2.5 and 3.7 times, respectively) than that in blood erythrocytes, suggesting a
more robust bacteria–host cell interaction in spleen RBCs. For this reason, as well as the fact that
spleen is one of the major immune organs and an important origin of erythropoiesis in teleost, the
spleen erythrocytes from infected and uninfected fish were used for subsequent transcriptome analysis
described below.
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Figure 1. Intracellular replication of Edwardsiella tarda in flounder red blood cells (RBCs). RBCs were
infected with E. tarda for 3 h, and the extracellular bacteria were killed with antibiotic. The cells were
then incubated for 0 h, 2 h, or 4 h, and the number of intracellular bacteria (shown as Colony Forming
Unit, CFU) was determined. Data are presented as means ± SEM of three independent experiments.
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Figure 2. In vivo infection of Edwardsiella tarda in flounder blood and spleen erythrocytes. Flounder
were infected with or without (control) E. tarda for 12 h and 24 h, and erythrocytes were collected
from blood (A) and spleen (B). The cell surface-attached and intracellular E. tarda were determined
and shown as Colony Forming Unit (CFU). Data are presented as means ± SEM of three independent
experiments. *, p < 0.05; **, p < 0.01.

2.3. RNA-seq of the Spleen Erythrocytes from E. tarda-Infected and Uninfected Flounder

To examine E. tarda-induced transcription profiles in erythrocytes, three libraries were constructed
with the RNAs from the spleen erythrocytes of E. tarda-infected flounder; similarly, three libraries were
constructed with the RNAs from the spleen erythrocytes of the uninfected control fish. The six libraries
were sequenced, and the data were summarized in Table 1. An average 44,186,824 raw reads were
obtained, 99.25% of which passed the quality filtering process. After removing ribosomal RNAs, a
mean number of 43,858,206 filtered clean reads was obtained from each library, and 82.87%–86.32% of
the clean reads were mapped to the flounder genome. A total of 21,398 genes were detected.



Int. J. Mol. Sci. 2020, 21, 3094 4 of 18

Table 1. Quality of RNA sequencing. C, control group; E, E. tarda-infected group. Each group was
triplicated and shown as -1, -2, and -3.

Samples Read Length
(bp) Raw Reads Clean Reads Clean Read

Ratio (%)
Mapped Read
Ratio (%)

C-1 150 52,745,248 52,367,850 99.28 86.32
C-2 150 39,343,878 39,031,230 99.21 85.97
C-3 150 52,836,746 52,477,326 99.32 85.25
E-1 150 38,019,958 37,735,932 99.25 85.49
E-2 150 40,950,324 40,635,040 99.23 84.35
E-3 150 41,224,792 40,901,860 99.22 82.87

2.4. Identification of Differentially Expressed Genes (DEGs) Induced by E. tarda

DEGs were identified by the fold change of the gene expression level (log2|FC| > 1) and a false
discovery rate (FDR) (FDR < 0.05). Compared to the control group, the E. tarda-infected group exhibited
1720 DEGs, 928 and 792 of which were up- and downregulated, respectively. The distributions of the
DEGs are shown in Figure 3. To verify the DEGs detected by RNA-seq, 12 DEGs were examined for
expression using qRT-PCR. The results showed that the expression trends of the DEGs were in good
agreement with that of RNA-seq (Figure S2).
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2.5. GO and KEGG Enrichment Analysis of the DEGs

GO enrichment analysis indicated that the 1720 DEGs were classified into three main categories:
biological process (BP), cellular component (CC), and molecular function (MF). The top 20 significantly
enriched GO terms (level-2) in these three categories are shown in Figure 4. Based on the values
of rich factor, the top three GO terms in the category of BP were all related to antigen process and
presentation, and the other terms associated with immunity were also highly represented in the
immune system process (Figure 4A). In the category of MF, the immune related term of transporter
associated with antigen processing (TAP) binding ranked top one, while metalloproteinase associated
activity (metalloexopeptidase and metallopeptidase activities) ranked top two and three (Figure 4B).
In the category of CC, the top three GO terms based on rich factor were ribosome, organelle inner
membrane, and organelle envelope (Figure 4C).
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are boxed in blue.
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To further understand the biological functions of the DEGs, KEGG enrichment analysis was
performed. DEGs of 12 immune-related pathways significantly enriched by KEGG analysis are shown in
Table 2. These pathways included an intestinal immune network for IgA production, cytokine–cytokine
receptor interaction, antigen processing and presentation, spliceosome, hematopoietic cell lineage,
C-type lectin receptor signaling pathway, IL-17 signaling pathway, NOD-like receptor signaling
pathway, NF-kappa B signaling pathway, Toll-like receptor signaling pathway, cytosolic DNA-sensing
pathway, and JAK-STAT signaling pathway. In addition to these immune pathways, the terms of
various diseases and infections, including systemic lupus erythematosus, graft-versus-host disease,
Parkinson’s disease, Huntington’s disease, Alzheimer’s disease, non-alcoholic fatty liver disease,
autoimmune-thyroid disease, measles, influenza A, and Epstein–Barr virus infection, together with
allograft rejection and oxidative phosphorylation were also highly represented based on rich factor
(Figure S3).

Table 2. Summary of the 12 significantly enriched KEGG pathways related to immunity.

Pathway DEG Number Rich Factor p-Value

Intestinal immune network for IgA production 8 0.211 0.008804
Cytosolic DNA-sensing pathway 10 0.196 0.006066
Antigen processing and presentation 9 0.173 0.020065
Spliceosome 25 0.169 0.000232
Hematopoietic cell lineage 12 0.167 0.010609
C-type lectin receptor signaling pathway 24 0.160 0.000698
IL-17 signaling pathway 13 0.159 0.012083
NOD-like receptor signaling pathway 20 0.143 0.007153
NF-kappa B signaling pathway 15 0.138 0.025076
Toll-like receptor signaling pathway 16 0.132 0.029570
Cytokine–cytokine receptor interaction 27 0.123 0.015126
JAK-STAT signaling pathway 22 0.119 0.036321

2.6. Construction of the Interaction Network Formed by Immune DEGs and Identification of the Hub Genes

One hundred and eleven DEGs significantly enriched by KEGG analysis were used to construct
the immune-related protein interaction network. Ninety-one DEGs (Table S2) turned out to exhibit
interactions with each other and form interactive networks (Figure 5). These DEGs were involved in
12 immune related pathways, ranging from pathogen sensing to antigen processing, signal transduction,
and effector production (Figure 6). To identify hub genes in the networks, the threshold of log2|fold
change| of >2 and multiple interaction degree of >3 was further set. As a result, 21 hub DEGs of
the networks were identified (Table 3). Most of the hub genes were dramatically upregulated, in
particular IL-10 and suppressor of cytokine signaling 1 (SOCS1), which exhibited the highest levels of
upregulation (18.6 and 12.6 folds, respectively) and also high levels of interactions with other DEGs
(interactive degree of 22 and 29, respectively). Tumor necrosis factor receptor superfamily member 1A,
mast/stem cell growth factor receptor kita-like isoform X1, and transcription factor RelB also exhibited a
more than 10-fold change in expression and extensive interactions with other genes. Other upregulated
hub genes displayed an expressional fold change of between 4.23 to 9.5. Only three hub genes were
downregulated, with a fold change of between 4.04 to 4.74 (Table 3).
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Table 3. Summary of the 21 hub DEGs. The “+” and “–” symbols before the fold change number
indicate up- and downregulation, respectively.

Gene
Name Description Interactive

Degree Fold Change

IL10 Interleukin-10 22 +18.63
SOCS1 Suppressor of cytokine signaling 1 29 +12.61
TNFASF1A Tumor necrosis factor receptor superfamily member 1A 16 +11.19
KITA Mast/stem cell growth factor receptor kita-like isoform X1 33 +10.44
RELB Transcription factor RelB homolog isoform X1 40 +10.43
ARHGEF12 Rho guanine nucleotide exchange factor 12 7 +9.50
CD28 T cell specific surface glycoprotein CD28 14 +8.58
TAP1 Antigen peptide transporter 1 13 +7.42
ABCB9 ATP-binding cassette subfamily B member 9 13 +7.34
FOSL1 Fos-related antigen 1 21 +6.96
GADD45A Growth arrest and DNA damage protein GADD45 alpha-like 11 +6.72
NOD2 Nucleotide-binding oligomerization domain containing 2 15 +5.72
PSME2 Proteasome activator complex subunit 2 11 +5.23
TGFBR2 TGF-beta receptor type 2 10 +4.96
TAP2 Antigen peptide transporter 2 11 +4.93
SNRPG Small nuclear ribonucleoprotein polypeptide G 25 −4.74
CYLD Ubiquitin carboxyl-terminal hydrolase CYLD-like 7 +4.69
PTGS2 Prostaglandin G/H synthase 2 16 +4.27
PPIL1 Peptidyl-prolyl cis-trans isomerase-like 1 20 −4.27
HSP70 Heat shock 70 KDA protein 28 +4.23
PHF5A PHD finger-like domain-containing protein 5A 23 −4.04

3. Discussion

In this study, we performed both in vitro and in vivo analyses to examine the infectivity of E. tarda
in flounder RBCs. In vitro infection showed that E. tarda was capable of intracellular replication inside
RBCs. Consistently, in vivo infection indicated that E. tarda was able to invade into the erythrocytes
of flounder spleen. These results are in line with the previous reports that showed E. tarda is an
intracellular pathogen in fish and mammalian models [26,28]. To examine the immune response of
RBCs elicited by E. tarda, transcriptome analysis was performed, which identified 1720 DEGs in the
spleen RBCs of E. tarda-infected flounder, indicating a global influence of E. tarda on the gene expression
of RBCs. It is of note that the top terms in the GO categories of biological process and molecular
function were enriched highly with DEGs of antigen process and presentation, and the top terms of the
KEGG were enriched predominately with DEGs of immunity, diseases, and infection, indicating an
intensive induction of immune defense genes. Ninety-one immune DEGs were found to form high
degrees of interactions with each other and constitute a complicated network. Twenty-one hub genes
were further identified from the network, which were dramatically regulated by E. tarda. The potential
functional significances of the key hub genes are discussed below.

3.1. Genes Involved in NLRs-Mediated Pathogen Recognition and Downstream NF-κB Activation

Pathogen recognition mediated by PRRs is the first step of host immune response. NLRs are a
family of intracellular PRRs that recognize intracellular pathogens and activate downstream signaling
events [29–31]. NOD2, a prototype NLR, has been shown to be an intracellular recognition receptor that
can sense the presence of Gram-negative and Gram-positive bacteria in the cytosolic compartment by
recognizing muramyl dipeptide on the bacterial cell wall peptidoglycan [32–35]. In our study, we found
that NOD2 interacted with 15 key immune-related genes and was upregulated by 5.72-fold after E. tarda
challenge, suggesting that E. tarda infection activated the NOD2-mediated NLRs signaling pathway.
In mammals, NOD2 is a positive regulator of NF-κB and, through NF-κB, induces transcription and
production of inflammatory mediators [36–40]. In fish, NOD2-induced NF-κB activation has been
reported in zebrafish and mrigal [41,42]. In our study, consistent with the upregulated NLRs pathway,
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NF-κB pathway genes were also significantly upregulated as indicated by the 10.43- and 2.84-fold
increase in the expression of RELB and NFKB2 (NF-κB p100 subunit), respectively (Table 3, Table S2).
The NF-κB family of transcription factors contain several members, including RELB and p100/p52
(NFKB2) that form various homo- or heterodimeric complexes and bind to the kappa-B sites in their
target genes, leading to activation or repression of the transcription of the target genes. The markedly
upregulated expression of RELB and NFKB2 suggests that the NF-κB signaling was active in flounder
RBCs during E. tarda infection, which was probably at least in part due to the activation of the NLRs
pathway. In the interaction networks, NOD2 displayed interactions with NFKB2 and other 14 key
immune-related genes, which further supported a signaling link between the NLRs pathway and the
NF-κB pathway in the context of E. tarda infection.

3.2. Genes Involved in Antigen Processing and Presentation

Antigen processing and presentation convert pathogenic antigens into immunogenic peptides,
which are subsequently exposed on the cell surface and recognized by immunocompetent cells [43,44].
In this study, four hub genes (TAP1, TAP2, ABCB9, and PSME2) were significantly enriched in the
category of antigen processing and presentation. In mammals, TAP1 and TAP2 function to transport
antigen peptides into the lumen of the endoplasmic reticulum, where the peptides are loaded onto
major histocompatibility complex (MHC) class I molecules [45,46]. ABCB9 is similar to TAP1 and TAP2
and shares high sequence homology with the latter [45]. PSME2 is known to facilitate antigen process
and presentation by strengthening the ability of the 20S proteasome to produce more peptides to bind
the MHC-I molecules [47,48]. In our study, TAP1, TAP2, ABCB9, and PSME2 were all exceedingly
upregulated and displayed high levels (degree of 11 and 13) of interactions with other DEGs. These
results suggest that flounder RBCs were able to elicit the process of antigen processing and presentation
following E. tarda challenge.

3.3. Genes Involved in Anti-Inflammatory Responses

Inflammation is a protective reaction of the host to clear detrimental stimulations, including
pathogens [49]. Anti-inflammatory factors play important roles in the control of inflammatory
responses [50–55]. These factors include IL-10 and members of the SOCS family [51,55]. In this
study, IL-10 and SOCS1 were identified as the top one and top two hub genes that exhibited the highest
fold changes (18.63 and 12.61, respectively) in expression upon E. tarda infection. IL-10 is one of the
most important anti-inflammatory cytokines in humans and inhibits the expression of TNFα, IL-1, IL-6,
IL-8, and other pro-inflammatory cytokines [55–57]. IL-10 also inhibits MHC-II expression and antigen
presentation [58,59]. Similarly, in fish, IL-10 suppresses the expression of pro-inflammatory cytokines
in carp, amberjack, mandarin fish, Atlantic cod, and goldfish [59–63]. In mammals, SOCS1 is induced
by a wide range of cytokines and negatively regulates a number of immune signaling pathways [64,65].
In fish, SOCS1 is known to inhibit the type I/type II IFN signaling pathways in Atlantic salmon
and suppress the JAK-STAT signaling pathway in miiuy croaker [66,67]. The dramatically elevated
expressions of IL-10 and SOCS1 in the RBCs of E. tarda-infected flounder suggest inhibition of the
inflammatory response in these cells.

In addition to IL-10 and the SOCS1, other DEGs, including PTGS2, TGFBR2, and CYLD, involved
in anti-inflammation were also identified among the hub genes in our study. PTGS2 plays a key
role in the generation of prostaglandin E2 (PGE2) that exerts anti-inflammatory function [52,68].
In mammals, PGE2 inhibits the production of pro-inflammatory molecules and enhances the secretion of
anti-inflammatory cytokines, such as IL-10 [69]. TGFBR2 functions via TGF-β1, which mainly regulates
immune suppression/tolerance and anti-inflammatory responses [70–72]. CYLD is a deubiquitinating
enzyme that removes polyubiquitin chains from target proteins such as NF-κB, BCL3, and TRAFs [73,74].
CYLD has also been shown to promote anti-inflammation [75,76]. In fish, PGE2 is known to induce IL-10,
suppress the expression of TNFα and MHC-II, and inhibit the immune response of neutrophils [77–85].
TGF-β1 has been reported to block LPS- and TNFα-induced activation of macrophages and peripheral
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blood lymphocytes in goldfish and grass carp [86,87]. The greatly heightened expressions of IL-10,
SOCS1, PTGS2, TGFBR2, and CYLD, as well as their high degrees of interactions in the networks,
observed in our study indicate intense and extensive inductions of anti-inflammatory responses in
flounder RBCs following E. tarda challenge, which might be the result of bacterial manipulation of the
host’s immune reactions to facilitate the invasion and survival of the pathogen in the host.

3.4. Genes Involved in Spliceosome and Splicing

In eukaryotic organisms, most genes are firstly expressed as precursor mRNA (pre-mRNA) and
then converted to mRNA by splicing [88]. This process is catalyzed by the spliceosome. In our study,
19 key DEGs were significantly enriched in the spliceosome and splicing pathway (Figure 5). Among
these genes, SNRPG, PPIL1, and PHF5A were identified as hub genes. In mammals, SNRPG is a
core component of the spliceosome small nuclear ribonucleoproteins, and PHF5A is also a part of the
spliceosome and acts as a DNA binding protein [88,89]. PPIL1 participates in pre-mRNA splicing and
is recruited into the spliceosome at the stage of complex B formation [88]. In our study, SNRPG, PPIL1,
and PHF5A were all significantly downregulated by 4.04- to 4.74-fold in E. tarda-infected RBCs, which is
in line with a previous report showing that spliceosome-associated genes were mostly downregulated
in rainbow trout RBCs exposed to VHSV [9]. However, in another report of rock bream RBCs exposed
to rock bream iridovirus (RBIV), spliceosome-related proteins were mostly upregulated [20]. These
results indicate pathogen-specific regulations of spliceosome activity. The strong downregulation in
the expression of multiple spliceosome genes observed in our study suggests a systematic inhibition of
mRNA processing, which could be a strategy of E. tarda to interfere with the expression of the host
genes required for pathogen clearance.

4. Materials and Methods

4.1. Japanese Flounder

Clinically healthy Japanese flounder (average 250 g) were purchased from a local fish farm
in Qingdao, China. The fish were acclimatized in the laboratory for one week, during which time
the fish were maintained at ~20 ◦C in aquariums and fed daily with commercial food as reported
previously [27,90]. Before the experiment, the fish were verified to be clinically healthy as reported
previously [91]. In experiments requiring tissue collection, the fish were euthanized with tricaine
methane sulfonate (Sigma, St. Louis, MO, USA) to minimize suffering as described previously [92].
The study with live fish was approved by the Ethics Committee of Institute of Oceanology, Chinese
Academy of Sciences (permit No. MB1807) on July 20, 2018.

4.2. Isolation of Erythrocytes from the Blood and Spleen of Flounder

Blood was collected from Japanese flounder as reported previously [27]. Briefly, fish were
euthanized with tricaine methane sulfonate (Sigma, St. Louis, MO, USA), and the blood was collected
from the caudal vein and diluted with PBS (Solarbio, Beijing, China) containing 10 units/mL heparin
(Solarbio, Beijing, China). The diluted blood was placed on the top of 1.070 g/mL Percoll (GE Healthcare,
Uppsala, Sweden) and centrifuged at 400× g for 10 min. Red blood cell pellet was collected and
resuspended with RPMI-1640 medium (Gibco, Waltham, MA, USA). The cell suspension was purified
with 1.070 g/mL Percoll for 2–3 times to obtain high purity RBCs. The purified RBCs were added
into RPMI-1640 medium containing 10% calf serum (Gibco, Carlsbad, CA, USA), 100 U/mL penicillin
(Solarbio, Beijing, China), 100 µg/mL streptomycin (Solarbio, Beijing, China), and 50 µg/mL gentamicin
(Solarbio, Beijing, China). To isolate spleen RBCs, spleen tissues were collected from the fish aseptically
and gently ground in a cell culture dish (Corning, Jiangsu, China) containing 10 units/mL heparin
(Solarbio, Beijing, China). RBCs were then isolated and purified as described above.
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4.3. In Vitro Infection of E. tarda in RBCs

Examination of the intracellular replication of E. tarda was carried out as reported previously [93].
Briefly, RBCs were incubated with E. tarda as described above at a MOI of 10. After 3 h of incubation,
the RBCs were collected by centrifugation at 4 ◦C and gently washed twice with PBS. The bacteria
attached to the surface of RBCs were killed by adding gentamicin (200 µg/mL) and incubation at 20 ◦C
for 2 h. The cells were washed two times with PBS and cultured in RPMI-1640 medium containing
10 µg/mL gentamicin for 0 h, 2 h, or 4 h. At each time point, 1% Triton X-100 was added to lyse the
RBCs, and the lysate was diluted and plated onto LB agar plates. After overnight incubation at 28 ◦C,
the colonies that appeared on the plates were counted. The experiment was performed three times.

4.4. In Vivo Infection of E. tarda in Flounder

E. tarda was suspended in PBS to a final concentration of 5 × 108 colony forming units (CFU) mL−1.
Flounder were randomly divided into two groups. The experimental group was intraperitoneally
injected with 200 µL of the above bacterial suspension per fish, and the control group was injected
with the same volume of PBS. At 12 h and 24 h post-infection (hpi), blood and spleen tissues were
taken aseptically from the fish (3 individuals at each time point from each group) and isolated and
purified as described above. The purified RBCs were divided into two parts and used to determine the
numbers of cell surface-attached E. tarda and intracellular E. tarda. For this purpose, one part of the
PBCs was directly lysed, while the other part was firstly incubated with gentamicin (200 µg/mL) for
2 h to kill extracellular E. tarda and then lysed. The cell lysates from the two parts were each plated
onto LB agar plates, which were incubated as described above, and the colony numbers were counted.
The number of cell surface-attached E. tarda was obtained by subtracting the bacterial number in the
second part of lysate from the bacterial number in the first part of lysate.

4.5. RNA Sequencing Library Construction and Sequencing

Flounder were divided into two groups and infected with E. tarda or treated with PBS (control
group) as described above. At 24 hpi, RBCs were collected from the spleen of the fish (6 fish from
each group) and purified as described above. The purified RBCs were inspected by light microscopy
to confirm purity (Figure S1). For transcriptome analysis, six RNA-seq libraries (triplicates of the
infected group (2 fish/group) and the uninfected control group (2 fish/group)) were constructed
using the purified RBCs. Total RNA extraction was performed using Trizol RNA extraction reagent
(Invitrogen, CA, USA) following the manufacturer’s protocol. The quality of the purified RNA was
assessed using Agilent 2100 Bioanalyzer. RNA integrity was determined by agarose gel electrophoresis.
The sequencing libraries were constructed according to the Illumina’s standard protocol as previously
reported [94]. Briefly, mRNA was enriched from total RNA using Oligo (dT) beads (Qiagen, Hilden,
Germany) and fragmented into short fragments, which were reverse transcribed into first-strand cDNA.
Second-strand cDNA was then synthesized with DNA polymerase I (Thermo Scientific, Waltham, MA,
USA), dNTP, and RNase H. The cDNA fragments were purified, end repaired and added with poly (A),
and ligated to Illumina sequencing adapters. Finally, the libraries were sequenced with the Illumina
Hiseq-novaseq 6000 platform by the Gene Denovo Biotechnology Co. (Guangzhou, China).

4.6. Data Preprocessing

The raw reads of the libraries were filtered by removing low-quality reads, including reads
containing nucleotide with a Q quality score of ≤20, reads containing adapters, and reads with
undetermined nucleotides larger than 10%, before mapping to the ribosome RNA (rRNA) database in
Bowtie 2 (v2.2.8) [95]. The rRNA-mapped reads were removed, and the remaining reads were mapped
to the Japanese flounder genome sequence (GenBank project accession PRJNA369269) with TopHat2
(v2.0.3.12) [96]. The reconstruction of the transcripts was conducted with Cufflinks (v2.2.1) [97].
The abundance of each transcript was quantified with the software RSEM v1.2.19 [98]. The gene
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expression level was normalized by using the FPKM (Fragments Per Kilobase of transcript per Million
mapped reads) method [99].

4.7. Identification, Validation, and Functional Enrichment Analysis of Differentially Expressed Genes (DEGs)

Differential expression analysis was carried out using the R package edgeR (v3.12.1) (http://www.
r-project.org/). The exact negative binomial test [100] was applied to perform pairwise comparison
between the infected group and the control group. Transcripts with a false discovery rate (FDR) of
<0.05 and an expression fold change (FC) of >2 (log2|FC| > 1) were considered as DEGs. The expressions
of 12 DEGs were validated by quantitative real-time reverse transcription-PCR (qRT-PCR) as reported
previously [26,101]. Briefly, gene-specific primers were designed using Primer designer of NCBI
(https://www.ncbi.nlm.nih.gov) and listed in Table S1. qRT-PCR was carried out in a QuantStudio
3 Real-Time PCR Systems (Thermo Fisher Scientific, CA, USA) using SYBR Premix Ex Taq II (Takara,
Dalian, China) following the manufacturer’s protocol. The melting curve analysis was conducted
to confirm that the specific PCR product was amplified and detected. The expression levels of the
target genes were analyzed using the comparative threshold cycle method (2−∆∆CT) with β-actin
as an internal reference [2]. The DEGs were subjected to Gene Ontology (GO) functional analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment based on GO database
(http://geneontology.org) and KEGG database (http://www.genome.jp/kegg/). A p-value of <0.05
was set as a threshold to identify significantly enriched GO terms and KEGG pathways using
hypergeometric test.

4.8. Construction of Interaction Network and Hub Genes Identification

The immune-related DEGs in Table 2 were used to construct protein–protein interaction (PPI)
networks using the String software (http://string-db.org/) [102] as reported previously [26,101]. The hub
genes were further identified from PPI networks based on the following degrees: log2|FC| > 2 and
PPI > 3.

4.9. Statistical Analysis

All experiments were performed three times or in triplicate, and graphic representation and
statistical analyses were carried out with Graphpad Prism 6 (www.graphpad.com). Data were analyzed
with the Student’s t-test, and statistical significance was defined as p < 0.05.

5. Conclusions

In this study, transcriptome analysis reveals a large scale immune response induced by E. tarda
in flounder RBCs. A core set of DEGs significantly enriched to 12 immune-related pathways were
found to form complicated interaction networks. The hub genes of the networks are involved in key
immune processes that, for some, promote pathogen elimination and, for some others, may facilitate
pathogen infection. These results indicate that flounder RBCs are capable of mounting profound
immune responses in an effort to fight against E. tarda, but some of the immune responses are likely
manipulated by E. tarda to the advantage of optimum bacterial invasion. Our results add new insights
into the immune role of flounder RBCs in association with bacterial infection and provide a genetic
basis for future study of the immune mechanisms of flounder RBCs. In future studies, it should be
interesting to compare the immune responses of RBCs in different tissues and see whether there is any
tissue-specificity in the response.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/9/3094/s1,
Table S1. List of the primers used for qRT-PCR. Table S2. List of the 91 immune-related DEGs used in Figure 6.
Figure S1. Microscopic observation of purified flounder spleen red blood cells (RBCs). Figure S2. Comparison of
the relative expressions of selected DEGs by qRT-PCR and RNA-Seq. The relative expression levels of 12 DEGs
were determined by qRT-PCR, and the results are compared with that of RNA-Seq. Red dotted line represents the
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control group. Figure S3. The top 20 enriched KEGG pathways of differentially expressed genes (DEGs). The color
and size of the dots indicate p-value and DEG number, respectively.
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