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The intestinal microbiota is a complex environment that hosts 1013 to 1014 bacteria.
Among these bacteria stand multidrug-resistant enterobacteria (MDRE), which intestinal
densities can substantially vary, especially according to antibiotic exposure. The intestinal
density of MDRE and their relative abundance (i.e., the proportion between the density
of MDRE and the density of total enterobacteria) could play a major role in the infection
process or patient-to-patient transmission. This review discusses the recent advances in
understanding (i) what causes variations in the density or relative abundance of intestinal
colonization, (ii) what are the clinical consequences of these variations, and (iii) what are
the perspectives for maintaining these markers at low levels.
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INTRODUCTION
Microbiota refers to the microorganisms (bacteria, archaea, and
yeasts) that colonize the epithelial and mucosal surfaces that are
exposed to the outside environment: the skin, oropharynx, vagina,
and intestine. The microbiota that inhabit the intestines, from
the duodenum to the rectum, are defined as intestinal micro-
biota. Its composition and density vary along the digestive tract,
the colon hosting much denser and more complex microbiota
than the upstream regions of the intestine (Stearns et al., 2011).
The composition of this intestinal microbiota is reflected, albeit
incompletely, by that of the feces (Durban et al., 2011; Stearns
et al., 2011). In humans, the intestinal microbiota is composed
of 1013 to 1014 microbial cells, which exceeds the total number
of cells that compose the host body (Whitman et al., 1998). Most
intestinal bacteria are strict anaerobic bacteria which are infre-
quently human pathogens. Conversely, enterobacteria make up a
small proportion of intestinal microbiota (1/104) but are major
human pathogens whose steadily increasing antibiotic resistance
poses a significant health threat.

Increased knowledge of the composition of intestinal micro-
biota and the effect of antibiotics became evident in the last decade
because of major technological improvements in DNA sequenc-
ing (next-generation sequencing; Qin et al., 2010; Dethlefsen and
Relman, 2011; Taur et al., 2012). Antibiotics have a twofold effect
on the intestinal microbiota: (i) loss of bacterial diversity and (ii)
overgrowth of resistant bacteria in the niches left by susceptible
bacteria. Thus, antibiotic treatment can increase the density and
relative abundance of resistant bacteria in the intestinal micro-
biota. Indeed, a high density and/or high relative abundance
of resistant bacteria may be linked to a higher risk of infection
or patient-to-patient transmission. In this review, we address
this question with a special emphasis on multidrug-resistant

enterobacteria (MDRE). Finally, we will review the recent advances
in strategies to keep MDRE at low intestinal densities.

DESCRIPTION OF HUMAN INTESTINAL MICROBIOTA
COMPOSITION OF THE INTESTINAL MICROBIOTA
The human intestinal microbiota is composed of nine bacterial
divisions, which is far less than the number observed in soils
(at least 20 divisions; Ley et al., 2006). Most gut colonizers do
not grow outside the gut and are transmitted via direct person-
to-person contacts. Children inherit their microbiota from their
mothers (Dominguez-Bello et al., 2010), and intestinal microbiota
is highly similar between identical twins (Turnbaugh et al., 2010).
The MetaHIT project1, a vast metagenomics study aimed at estab-
lishing an exhaustive catalog of the genes present in the intestinal
microbiota, found that from the feces of 124 individuals, 18 species
were found to be common to all individuals, and 57 were present in
≥90% individuals (Qin et al., 2010). Among those 57 species, the
most abundant were from the phyla Bacteroidetes and Firmicutes,
yet up to 2000-fold variation in relative species abundance was
observed among individuals. Fecal enterobacteria, which mostly
comprise Escherichia coli, are subdominant bacteria, making up to
108 to 109 colony-forming units (CFU) per gram of feces.

THE BARRIER EFFECT REGULATES THE DENSITIES OF COLONIZATION
AMONG THE BACTERIAL POPULATIONS OF THE INTESTINAL
MICROBIOTA
The intestinal microbiota is mostly composed of prokaryotes, even
if eukaryotes, such as fungi, are also present. However, the intesti-
nal microbiota plays a role of an organ in humans and provides
various benefits to its host. One benefit is the barrier effect or

1www.metahit.eu
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colonization resistance, which refers to the ability of intestinal
microbiota to prevent sustainable colonization by exogenous bac-
teria (Ducluzeau et al., 1977; Vollaard and Clasener, 1994). Most
ingested bacteria only transit through the digestive tube and do
not colonize the patient for a significant period of time (Buck
and Cooke, 1969; Cooke et al., 1972). The barrier effect mainly
relies on the fact that the endogenous intestinal microbiota leaves
very few niches (available nutrients and attachment sites) for use
by exogenous bacteria (Vollaard and Clasener, 1994). The intesti-
nal microbiota is also involved in the maintenance of intestinal
epithelial homeostasis (Rakoff-Nahoum et al., 2004) and pro-
motes angiogenesis (Stappenbeck et al., 2002). Moreover, a link
between the intestinal microbiota and metabolic disorders has
been proposed; in particular, low species diversity in the intesti-
nal microbiota has been linked to medical conditions, such as
obesity, inflammatory bowel diseases, atopy, and diabetes (Ley
et al., 2005; Turnbaugh et al., 2006; Round and Mazmanian, 2009;
Qin et al., 2012).

THE INTESTINAL MICROBIOTA IS A VAST RESERVOIR FOR RESISTANCE
GENES
Next-generation sequencing has not yet changed the way antibiotic
resistance is investigated, perhaps because the resistance genes that
may be harbored by subdominant bacteria remain inaccessible to
the current sequencing methods (Lagier et al., 2012b). However,
the intestinal tract is a major reservoir for antibiotic-resistant bac-
teria, including naturally resistant bacteria and those with acquired
resistance-conferring genes carried on mobile genetic elements
such as plasmids, conjugative transposons or integrative and con-
jugative elements (ICEs; Sommer et al., 2009). The diversity of
the resistance genes among intestinal bacteria (i.e., the intestinal
resistome) cannot be effectively assessed by conventional meth-
ods based upon culture on antibiotic-supplemented agar media
because most intestinal bacteria cannot be cultured using conven-
tional methods. The use of various culture media, atmospheric
conditions and mass-spectrometry identification (“culturomics”)
allowed the establishment of an inventory of bacterial species,
including many new intestinal microbiota species, in numbers
even greater than those discovered using pyrosequencing (Lagier
et al., 2012a). Thus far, this technique has not addressed the
question of global antibiotic resistance of the microbiota.

Currently, the best description of the diversity of resistance
genes present has been obtained using culture-independent meth-
ods (Sommer et al., 2009). Sommer et al. (2009) cloned the
metagenome of feces samples into susceptible E. coli and plated
it on agar media supplemented with various antibiotics. When
applied to an overnight aerobic culture of feces, 95% of the
identified genes had >90% nucleic identity with sequences in
GenBank2 found in pathogenic bacteria. Indeed, the genes iden-
tified in the aerobic fraction had been reported, repeatedly, to
occur on mobile genetic elements [blaCTX−M, blaTEM, aac(3)-II,
aac(6′)-Ib, blaAmpC] found in pathogenic bacteria, such as enter-
obacteria. Conversely, when applied to the feces metagenome with
no previous aerobic culture, the average shared identity dropped
to 60.7%. Thus, the intestinal resistome can be divided into (i) a

2http://www.ncbi.nlm.nih.gov

“resident” resistome, composed of the resistance genes naturally
present in permanent members of the intestinal microbiota, such
as the beta-lactamase gene from Bacteroides sp., and (ii) a vari-
able resistome, composed of exogenous genes present in transient
bacteria or acquired by lateral transfer (Wellington et al., 2013).
Enrichment of the variable resistome comes from ingestion of
resistant bacteria through food (Ruimy et al., 2010) or fecal peril
(Tangden et al., 2010). Although exogenous bacteria may not colo-
nize because of the intestinal microbiota barrier effect (also called
“resistance to colonization”), their resistance genes can be trans-
ferred to resident bacteria through horizontal gene transfer during
transit (Duval-Iflah et al., 1980).

MULTIDRUG-RESISTANT ENTEROBACTERIA: A FOCUS ON
BETA-LACTAMS
Antibiotics have been extensively used since the 1950s with a par-
allel increase in the proportion of resistant bacteria (Clatworthy
et al., 2007). Indeed, there are no more or no fewer bacteria since
antibiotics were initiated; yet, there are more resistant bacteria.
Between 1950 and 1980, the continuous discovery of new and more
potent antibiotics has conferred to medicine a constant advantage
over the rise of bacterial resistance. As long as new antibiotics were
made available on a regular basis, resistance was not a real problem
because clinicians always had drugs to which bacteria were sus-
ceptible to treat patients. Still, resistance never slowed down and
benefited from extensive international exchanges to spread world-
wide (MacPherson et al., 2009). Meanwhile, the pipeline of new,
effective antibiotics has nearly ceased (Spellberg et al., 2004). The
efficacy of beta-lactams, the most widely used antibiotic family
worldwide, is now challenged by the spread of the so-called “bad
bugs,” e.g., enterobacteria, Pseudomonas aeruginosa and Acine-
tobacter baumannii that produce wide-spectrum beta-lactamases
(Table 1; Peterson, 2009). Until the early 2000s, such resistant bac-
teria were isolated quasi-exclusively in healthcare structures and
did not affect community patients. Successful interventions to
control their spread in healthcare structures have been developed
and are now part of usual care (Lucet et al., 1999). Yet, the situation
has dramatically changed with the emergence and dissemination
in the community of enterobacteria that produce CTX-M – type
extended-spectrum beta-lactamases (ESBL; Pitout and Laupland,
2008). Occurrence of CTX-M beta-lactamases is especially promi-
nent in developing countries, maybe because of uncontrolled
antibiotic consumption and suboptimal hygienic living conditions
(Ruppe et al., 2009; Woerther et al., 2011).

Therapeutic options for patients infected by ESBL-producing
enterobacteria (ESBL-E) remain limited to a few antibiotics,
including carbapenems. Thus, the rise of ESBL-E fuels a cycle
of increased carbapenem consumption. This cycle leads to the dis-
semination of carbapenem-resistant enterobacteria (CRE). Car-
bapenem resistance in enterobacteria occurs through either porin
loss (Skurnik et al., 2010) or carbapenem-hydrolyzing enzyme
(“carbapenemase”; Queenan and Bush, 2007; Nordmann et al.,
2009; Kumarasamy et al., 2010; Poirel et al., 2012). There are two
main concerns regarding CRE. First, carbapenemase are deriva-
tives of class A, B, and D beta-lactamases, and some have been
repeatedly recovered from patients with no recent history of hospi-
talization or travel abroad (Vaux et al., 2011) or in the community
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Table 1 | Main acquired beta-lactamases produced by Gram-negative bacilli from the intestinal microbiota.

Name of

beta-lactamase

Type of

enzyme

Beta-lactam spectrum

of hydrolysis

First-line

alternative drugs

Bacterial hosts Presence in

community

Prevalence

CTX-M gp 1 ESBL PENI, CEPH, ATM CBP, TGC, COL Ent, Pyo, Acineto Yes Very high

CTX-M gp 2 ESBL PENI, CEPH, ATM CBP, TGC, COL Ent, Pyo Yes Very high

CTX-M gp 25 ESBL PENI, CEPH, ATM CBP, TGC, COL Ent Yes High

CTX-M gp 8 ESBL PENI, CEPH, ATM CBP, TGC, COL Ent Yes High

CTX-M gp 9 ESBL PENI, CEPH, ATM CBP, TGC, COL Ent Yes Very high

SHV-type ESBL ESBL PENI, CEPH, ATM CBP, TGC, COL Ent, Pyo, Acineto Yes Very high

TEM-type ESBL ESBL PENI, CEPH, ATM CBP, TGC, COL Ent, Pyo, Acineto No High

IMP gp 1 and 2 CP PENI, P + I, CEPH, CBP TGC, ATM, COL Ent, Pyo, Acineto No Low

KPC CP PENI, CEPH, ATM, CBP TGC, COL Ent, Pyo No High

NDM-1 CP PENI, P + I, CEPH, CBP TGC, ATM, COL Ent, Pyo, Vibrio Yes High

OXA-48 CP PENI, P + I, CBP CEPH, TGC, COL Ent Yes High

VIM gp 1 and 2 CP PENI, P + I, CEPH, CBP TGC, ATM, COL Ent, Pyo, Acineto No High

Cit-group AmpC (CMY-2) AmpC PENI, P + I, CEPH C3G, TGC, CBP Ent Yes High

Other plasmidic AmpC AmpC PENI, P + I, CEPH C3G, TGC, CBP Ent No Low

ESBL, extended-spectrum beta-lactamase; PENI, penicillins; CEPH, cephalosporins; ATM, aztreonam; CBP, carbapenems; TGC, tigecycline; COL, colistin; Ent,
Enterobacteriaceae; Pyo, Pseudomonas aeruginosa; Acineto, Acinetobacter baumannii; CP, carbapenemase; P + I, penicillin + class A beta-lactamase inhibitor;
AmpC, cephalosporinase.

environment, such as in tap water in India (Walsh et al., 2011).
The dissemination of CRE in the community would be exceed-
ingly difficult to halt, as observed for CTX-M. Second, very few
or no antibiotics have activity toward CRE, and infections caused
by some of these bacteria are not treatable with our current arma-
mentarium. The WHO has classified antibiotic resistance as one of
the three major current threats to health3. More efficient control
of ESBL-E should lead to the decreased use of carbapenems, which
in turn, should slow down the dissemination of carbapenemases.

ANTIBIOTICS AS A CAUSE OF VARIATIONS IN THE
INTESTINAL DENSITY OF COLONIZATION OF RESISTANT
BACTERIA
QUANTITATIVE IMPACT: LOSS OF DIVERSITY
Antibiotic effects on the intestinal microbiota depend on (i) the
colonic concentrations of the antibiotic (luminal and mucosal)
and/or its active metabolites and (ii) the activity of these concen-
trations on the bacterial species present. The growth of susceptible
bacteria will either be impeded (bacteriostatic effect), or they will
be killed (bactericidal effect; Dethlefsen et al., 2008; Antonopou-
los et al., 2009). Thus, the extent and persistence of the impact of
antibiotics on the intestinal microbiota is highly drug-dependent
(Nord et al., 1984; Taur et al., 2012). Even antibiotics of the same
family and spectrum of activity can have a very different impact
depending on their rate of intestinal excretion (Brautigam et al.,
1988; Michea-Hamzehpour et al., 1988). Using next-generation
sequencing, Dethlefsen and Relman (2011) precisely observed the
fecal diversity of three healthy subjects during 300 days, during
which they received 2 × 5-day courses of ciprofloxacin, at days

3http://www.who.int/topics/drug_resistance/en

60 and 250. Ciprofloxacin caused a loss of diversity and a shift in
community composition occurring within 3–4 days of drug ini-
tiation. This effect was somewhat surprising because most of the
microbiota is composed of anaerobes that are weakly susceptible to
ciprofloxacin (Nord and Edlund, 1989). However, concentrations
of ciprofloxacin that accumulate in the colon during treatments
(Fantin et al., 2009) are so high that they most likely overcame their
minimal inhibitory concentrations. The perturbation created by
antibiotic use took weeks to be resolved; furthermore, the compo-
sition of the intestinal microbiota remained altered from its initial
state.

In newborns treated by a combination of ampicillin and gen-
tamicin, the Actinobacteria and Firmicutes phyla, comprising
bacteria with potential benefit (Bifidobacterium and Lactobacil-
lus) were replaced by Proteobacteria, including Enterobacteriaceae
(Fouhy et al., 2012). This effect could be of importance con-
sidering that Proteobacteria are enriched with mobile genetic
elements, including antibiotic resistance encoding genes (Baquero
et al., 2013). The increase of Proteobacteria was persistent after
8 weeks. Indeed, in patients undergoing allogeneic hematopoi-
etic stem cell transplantation, metronidazole (an antibiotic with
broad-spectrum activity against anaerobes) strongly reduced the
diversity of the intestinal microbiota (Taur et al., 2012). In mice
receiving a combination of amoxicillin, metronidazole, and bis-
muth, the composition of the intestinal microbiota was altered,
but the perturbation was resolved within 2 weeks; in contrast,
resolution took approximately 6 weeks for mice treated with cef-
operazone, a wide-spectrum cephalosporin (Antonopoulos et al.,
2009). The resilience of the composition of the intestinal micro-
biota is thus likely to be different according to the type of antibiotic
given.
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QUALITATIVE IMPACT: LOSS OF THE BARRIER EFFECT
As described above, the barrier effect is mainly exerted by anaer-
obes (Ducluzeau et al., 1977; Vollaard and Clasener, 1994). Thus,
antibiotics with high activity against anaerobes, such as clin-
damycin, potently affect the capacity of the microbiota to prevent
colonization by exogenous microorganisms (van der Waaij et al.,
1971). In the study by Donskey et al. (2000), 13 vancomycin-
resistant enterococci (VRE)-carriers received antibiotics active
against anaerobes, while 10 VRE-carriers received antibiotics
poorly active against anaerobes . Strikingly, the average density
of VRE (expressed in log CFU/g of feces) significantly increased
(by 2.2 logs) in patients who received antibiotics that were active
against anaerobes, whereas the average density decreased by 0.6
log in those patients receiving antibiotics with minimal activity
against anaerobes. In a subsequent study, the same group has
reported that the density of resistant Gram-negative bacilli also
increased under exposure to antibiotics that were active against
anaerobes (Bhalla et al., 2003). In the latter case, the resistant
bacteria occupied niches that appeared to be left by anaerobes
(Figure 1).

The barrier effect can also be studied by considering one
species, such as E. coli. In healthy volunteers, the E. coli popu-
lation is composed of a variable number of clones of different
abundances: dominant and subdominant clones (Lidin-Janson
et al., 1978). When these E. coli have different susceptibilities,
antibiotic exposure will change their respective proportions and
promote the growth of the resistant strains over that of the sus-
ceptible ones (Figure 1). This phenomenon has recently been
reported for fluoroquinolones, which cause a sharp decrease
in total counts of intestinal enterobacteria during treatments.
The available niches can then be occupied by resistant enter-
obacteria that were initially present in low fecal concentrations
(Fantin et al., 2009) or from a new acquisition (de Lastours et al.,
2012). If the number of total enterobacteria remains unchanged,
then the relative abundance of resistant enterobacteria increases
(Figure 1).

CONSEQUENCES OF INCREASED DENSITY OF
COLONIZATION ON INFECTIONS
ANTIBIOTICS INCREASE THE RISK OF INFECTIONS CAUSED BY
RESISTANT ENTEROBACTERIA
Several studies have shown that patients with infections caused
by resistant bacteria were more likely to have taken antibiotics
recently (Ben-Ami et al., 2009). Indeed, the link between antibi-
otic exposure and antibiotic-resistant infection could lie in the
intestinal microbiota, as antibiotics would allow the overgrowth
of resistant bacteria (i.e., increase the density of resistant bac-
teria). Interestingly, the association between antibiotic use and
infections caused by resistant bacteria is also found for antibiotics
with little effect on anaerobes, e.g., co-trimoxazole or quinolones,
suggesting that it is not only the overgrowth of resistant bacte-
ria within niches left empty by anaerobes that increases the risk
of infection by resistant bacteria, but more likely the augmen-
tation of the relative abundance of resistant bacteria (i.e., the
augmentation of the proportion of resistant bacteria) within spe-
cific niches (Figure 1). MDRE are extensively antibiotic-resistant
and not only to beta-lactams, but also to many other antibiotics
including among others fluoroquinolones, aminoglycosides, or
co-trimoxazole (Pitout, 2009). Thus, MDRE can overgrow and
increase the risk of their involvement in further infection under
almost any antibiotic exposure.

URINARY-TRACT INFECTIONS
Urinary-tract infections (UTIs) are the most common bacterial
infections (Hooton, 2012) and are most often caused by enterobac-
teria, and especially E. coli. There is some evidence that in most
cases, the infecting clone originates from the intestinal micro-
biota (Yamamoto et al., 1997), even if it cannot always be retrieved
in the stool at the onset of the symptoms (Moreno et al., 2008).
Specific strains of E. coli appear to have the ability (through viru-
lence factors) to colonize the urethra and bladder, causing cystitis;
others are able to further colonize the ureter to cause pyelonephri-
tis (Plos et al., 1995). According to this “virulence theory,” some

FIGURE 1 | Schematic representation of the effects of various antibiotic

regimens on the intestinal microbiota with regard to multidrug-resistant

enterobacteria (MDRE). Blue, green, and red circles represent anaerobes,
antibiotic-susceptible enterobacteria, and MDRE, respectively. (A,B)

Antibiotics active against anaerobes (e.g., metronidazole, clindamycin,
vancomycin) in an MDRE–non-carrier (A) and in an MDRE–carrier (B).

(C,D) Antibiotics with no activity against anaerobes, but are active against
enterobacteria (e.g., fluoroquinolones, cefepime, co-trimoxazole) in an
MDRE–non-carrier (C) and in a MDRE–carrier (D). (E) Antibiotics with
activities against both anaerobes and enterobacteria (e.g., ceftriaxone,
co-amoxiclav) in an MDRE–carrier. DC, density of colonization of MDRE;
RA, relative abundance of MDRE.
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strains of E. coli could cause UTIs, even if they are subdominant
in the intestines (low relative abundance). Alternatively, the rel-
ative abundance of the various clones of E. coli present in the
feces may also play a key role in the pathogenesis of UTIs, in
that the dominant clone of E. coli would have the maximum
likelihood to colonize the urinary tract (Moreno et al., 2008). In
42 women with cystitis caused by E. coli, Moreno et al. (2008)
compared the UTI-causing strain to 30 randomly picked colonies
from concomitant stool samples. In 90% of the women, the urine
clones were found in the feces. In 71% of the women, the urine
clone that was present in the feces was also the dominant fecal
clone. Urine clones mostly belonged to B2 and D phylogroups
and had an increased content of urovirulence factors. For one
given fecal clone, predictors of infection were that the urine clone
belonged to the B2 phylogroup and was dominant. Thus, the find-
ings of this study reconciled the dominance and the virulence
theories.

BACTEREMIA
Translocation is defined as the passage of viable indigenous bacte-
ria from the gastrointestinal tract to the mesenteric lymph nodes
(Berg and Garlington, 1979). This passage is the first step for
bacteria to settle in other locations, such as the bloodstream,
or cause secondary forms of infections, such as in the cardiac
valves. Bacterial translocation can be part of normal physiolog-
ical processes in healthy subjects, but to a limited extent and
without deleterious consequences. By contrast, sustained translo-
cation is observed in subjects with specific deficiencies, such as
neutropenia, starvation, or hemorrhagic shock and then leads
to severe septic consequences (Tancrede and Andremont, 1985;
Youssef et al., 1998). A key point determining bacterial translo-
cation is the intestinal density: the translocating bacteria are
mostly dominant within the intestinal microbiota (Youssef et al.,
1998; Taur et al., 2012). Furthermore, translocation of enter-
obacteria has been reported in immunocompetent mice exposed
to penicillin, clindamycin, and metronidazole (Berg, 1981). In
the same report, the measured intestinal density of enterobac-
teria increased by 3–5 logs. Thus, antibiotics that increase the
density of resistant bacteria would increase the risk of their
translocation.

PATIENT-TO-PATIENT CROSS-TRANSMISSION
In the above-mentioned study from Donskey et al. (2000), the
surrounding environment of 10 VRE-carrying patients was inves-
tigated for the presence of VRE. Environmental samples from 21
patients were analyzed and compared according to the intestinal
density of VRE. Strikingly, when the density was <4 logs CFU/g of
stool, VRE were found in the patient’s environment only in one out
of nine sample sets (11%). Conversely, when density was ≥4 logs
CFU/g of stool,VRE were found in 10 of 12 sets (83%). Other stud-
ies have shown that patients can acquire resistant bacteria from a
former occupant of the room through the persistence of the bac-
teria on environmental surfaces (Datta et al., 2011). Although no
study has shown that cross-transmission occurs less often when
the density of resistant bacteria was low, the results from Donskey
et al. (2000) support this notion. To date, no data are available for
MDRE.

PERSPECTIVES: HOW TO DECREASE THE DENSITIES OF
COLONIZATION OF RESISTANT BACTERIA (Table 2; Figure 2)
SELECTIVE DIGESTIVE DECONTAMINATION
Selective digestive decontamination (SDD) aims to eliminate
MDRE from the intestinal lumen and prevent further infection
and dissemination. In SDD, the patient receives orally and/or par-
enterally administered wide-spectrum antibiotics for a short time,
with the aim of eradicating most potentially pathogenic bacteria
and/or the resistant bacteria from the intestinal microbiota, while
sparing anaerobes as much as possible. SDD has mostly been used
to eliminate all enterobacteria in patients at risk of infections, such
as in onco-hematology and intensive care ones. In 1985, SDD was
successfully employed in France for the control of a major outbreak
involving MDRE (Brun-Buisson et al., 1989). The SDD regimen
comprised oral neomycin, colistin, and nalidixic acid. The rate
of MDRE infections decreased, yet the overall rate of nosocomial
infections did not.

More recently, two decontamination regimens have been
compared: selective oropharyngeal decontamination (SOD: an
oropharyngeal topical administration of tobramycin, colistin, and
amphotericin B, an antifungal agent) and SDD (SOD + intra-
venous cefotaxime), each given for 4 days (de Smet et al., 2011).
SDD and SOD caused a slight reduction in mortality compared to
the control group. Unexpectedly, SDD-receiving patients carried
fewer enterobacteria resistant to ciprofloxacin, ceftazidime, or
aminoglycosides than the standard care group. In a later study, the
authors showed that when no Gram-negative bacilli were found
in the intestinal microbiota, the rate of Gram-negative bacilli bac-
teremia decreased threefold (Oostdijk et al., 2011). However, if
patients continued to be colonized, the rate of bacteremia was not
different from that of patients receiving standard care (Oostdijk
et al., 2011).

A recently published post hoc analysis focused on a subgroup of
507 patients with detectable Gram-negative bacilli in their intesti-
nal microbiota prior to SDD (Oostdijk et al., 2012). As expected,
the eradication rates for enterobacteria differed according to the
resistance pattern. The difference was statistically significant for
aminoglycoside resistance (62 vs. 81% in the standard care group;
p < 0.05), but only a trend was evidenced for third-generation
cephalosporins resistance (73 vs. 80% in the standard care group;
p = 0.053). The study did not mention whether colistin-resistant
bacteria were eradicated or not. Indeed, SDD raises the issue of
using a last-resort antibiotic, colistin, with the risk of selecting
MDRE in the microbiota which would also be resistant to the
drug (Kumarasamy et al., 2010). So far, SDD has mainly been
studied in countries with low MDRE prevalence (de Smet et al.,
2011; Overdevest et al., 2011) and this risk could be much higher
in countries where it is high.

A study in Israel, a country with a high prevalence of bacteria
that produce the Klebsiella pneumoniae carbapenemase (KPC)-
type carbapenemase, has tested a 7-day colistin + gentamicin
SDD regimen in patients colonized with such bacteria (Saidel-
Odes et al., 2012). The results showed that at day 7 (at the end of
SDD), KPC-producing bacteria were no longer detectable in the
feces of 61% of patients vs. 16% in placebo. Nevertheless, when
SDD was discontinued, KPC-producing bacteria could be detected
again in some formerly negative patients, suggesting that the
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FIGURE 2 | Schematic representation of solutions employed to

maintain a low density of colonization of multidrug-resistant

enterobacteria in the intestinal microbiota. Blue, green, and red,
respectively, represent anaerobes, antibiotic-susceptible enterobacteria,
and MDRE. (A) Selective digestive decontamination (SDD) eradicates
all enterobacteria, including MDRE. (B) Fecal microbiota transplantation

(FMT) reinstalls the original intestinal microbiota or an intestinal
microbiota from a healthy donor after antibiotic-induced perturbations.
(C) Antibiotic colonic inactivation (ACI) inactivates antibiotics and
residues when they reach the colon. (D) Antibiotic stewardship program
(ASP) favors antibiotics with minimal impact on the intestinal
microbiota.

concentrations of these bacteria were below the limit of culture
detection while SDD was being applied. Nevertheless, keeping
MDRE at low intestinal concentrations in the absence of total
eradication may be sufficient to prevent further infections or cross-
transmission. Interestingly, no colistin or gentamicin resistance
emerged among the recovered KPC-producing bacteria.

INACTIVATION OF ANTIBIOTICS IN THE INTESTINE
Instead of killing resistant bacteria, another approach would be
to prevent their overgrowth by inactivating the antibiotics in
the intestine during treatments. Orally administered antibiotics
are primarily absorbed in the proximal jejunum, yet a fraction
reaches the colon, where the density of bacteria is maximal. Par-
enterally administered antibiotics are filtered by the liver, and a
fraction is excreted through the gall bladder into the jejunum

and then reaches the colon. Thus, the concept of designing drugs
or beta-lactamases capable of inactivating antibiotics in the colon,
but not earlier, has arisen.

The protective effect of a recombinant beta-lactamase, P1A,
has been evaluated in 34 human volunteers taking ampicillin
(Tarkkanen et al., 2009). In the ampicillin group without P1A,
a decrease of Bifidobacterium, Streptococcus, Lactobacillus, and an
increase of E. coli and yeasts, were noted in the intestinal micro-
biota. Conversely, in the ampicillin + P1A group, no significant
changes in the composition of the intestinal microbiota could
be observed. Furthermore, the relative abundance of ampicillin-
resistant E. coli increased from 2.1% at baseline to >72.7% at
day 5 under ampicillin only, while it remained under 10% in the
ampicillin + P1A group. In addition to target-specific inactivation
strategies, adsorbents, such as colonic delivery of activated
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charcoal, were shown to be efficient in trapping ciprofloxacin
in a rat model (Khoder et al., 2010). Further clinical studies are
expected to assess the efficacy of such a strategy.

PROBIOTICS AND FECAL MICROBIOTA TRANSPLANTATION
Probiotics are defined as live microorganisms that may confer a
health benefit to their host. The most used probiotics are lactic
acid bacteria, Bifidobacteria, E. coli Nissle 1917 or Saccharomyces
boulardii, a yeast. It is unknown if these probiotics could exert
a barrier effect for resistant bacteria. A study from New Zealand
competed E. coli Nissle with a fluoroquinolone-resistant E. coli in
elderly residents, and the results showed that there was eventually
no difference in terms of carriage of the fluoroquinolone-resistant
E. coli between the Nissle group and the placebo group (Tannock
et al., 2011). Another growing concern about probiotics is that
there remains little evidence that the massive ingestion of one
single species can restore all the intestinal microbiota at a signifi-
cant extent. Another potential way to restore microbiota is a fecal
microbiota transplantation (FMT), which refers to the process of
instilling a liquid suspension of stool from a healthy donor into the
gastrointestinal tract of a patient to restore the intestinal micro-
biota immediately after any perturbation, such as that caused by
antibiotics.

When mice with intestinal microbiota affected by antibiotics,
were caged with mice without previous antibiotic exposure, a
faster restoration of the intestinal microbiota was observed. It
was suggested that this was due to the transfer of a normal micro-
biota to the antibiotic treated mice, likely through coprophagy
(Antonopoulos et al., 2009). In humans, FMT has demonstrated
high efficacy in patients with recurrent Clostridium difficile infec-
tions (Gough et al., 2011; van Nood et al., 2013). The main
limitation of FMT is its obvious repellence, which could be over-
come by rectal instillations instead of oral routes (Bakken, 2009).
Another caveat is that the fecal samples administered could include
undetected pathogens. This caveat could be overcome by auto-
banking (Tosh and McDonald, 2012) or by using preparation
containing a cocktail of defined strains (Hamilton et al., 2012).
This has recently been done to lower the density of VRE in mice
(Ubeda et al., 2013) and of MDRE in chickens (Nuotio et al., 2013).
However, these approaches have not been used in humans so far. If

data support the efficacy of FMT in resolving C. difficile infections,
studies assessing its efficacy in the context of outbreaks of MDRE to
lower the risk of their transmissions and infections are warranted.

ANTIBIOTIC STEWARDSHIP PROGRAMS
Another strategy for combating antibiotic-induced perturbations
and to keep MDRE at low densities is to improve the use of
antibiotics through antibiotic stewardship programs (ASPs; Mac-
Dougall and Polk, 2005). Indeed, these programs can be beneficial
to the intestinal microbiota at three levels: (i) avoid prescriptions
when antibiotics are not justified (Willemsen et al., 2010), (ii) scale
down from the use of empirical wide-spectrum antibiotics to the
narrowest spectrum possible, guided by antibiotic-susceptibility
tests (Cosgrove et al., 2007), and (iii) choose the antibiotic with
the lowest impact on the intestinal microbiota whenever possible
(Lesprit and Brun-Buisson, 2008). In a Cochrane-based review,
ASPs have been showed to decrease the overall antibiotic resistance,
as well as C. difficile infection, suggesting their role in intestinal
microbiota preservation (Davey et al., 2005). To reduce the use of
wide-spectrum antibiotics further, new rapid diagnostic tests that
identify resistance traits in strains in clinical samples or feces are
being developed and have attracted interest from clinicians (Cuzon
et al., 2012).

CONCLUSION
The intestinal microbiota has to be considered an organ that
is mistreated with every antibiotic administration. The intesti-
nal microbiota provides several benefits to its hosts, including
colonization resistance. When it is disrupted, resistant bacteria
overgrow in the empty niches. Although few data are available to
date, it appears as though high densities of MDRE may increase
the risk of further infections and transmissions between patients.
Indeed, controlling levels of MDRE may be a key point in terms
of care in the next few years; further studies in this regard are
expected. In this perspective, simple methods to measure these
quantitative parameters, such as qPCR instead of serial dilutions,
are promising (Lerner et al., 2013).
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