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Optical tomography is an emerging and important molecular imaging modality. The aim of optical tomography is to reconstruct
optical properties of human tissues. In this paper, we focus on reconstructing the absorption coefficient based on the radiative
transfer equation (RTE). It is an ill-posed parameter identification problem. Regularization methods have been broadly applied
to reconstruct the optical coefficients, such as the total variation (TV) regularization and the 𝐿1 regularization. In order to better
reconstruct the piecewise constant and sparse coefficient distributions, TV and 𝐿1 norms are combined as the regularization. The
forward problem is discretized with the discontinuous Galerkin method on the spatial space and the finite element method on the
angular space. The minimization problem is solved by a Jacobian-based Levenberg-Marquardt type method which is equipped
with a split Bregman algorithms for the 𝐿1 regularization. We use the adjoint method to compute the Jacobian matrix which
dramatically improves the computation efficiency. By comparing with the other imaging reconstruction methods based on TV
and 𝐿1 regularizations, the simulation results show the validity and efficiency of the proposed method.

1. Introduction

Optical tomography with near-infrared light is a promising
technique for noninvasive studying of the functional charac-
ters of human tissues. One can find many applications of this
technique, for example, the early detection of breast cancer,
cervical cancer screening, monitoring of infant brain tissue
oxygenation level and functional brain activation, and the
study of dosimetry in photon dynamic therapy; see [1–4].
Unlike the X-ray tomography, optical tomography uses the
near-infrared (NIR) light as the probing radiation. Different
human tissues have different absorption and scattering prop-
erties which affect the transmission of the NIR light. There-
fore, we can identify the location and quantity of abnormal
tissues by the emerging light measured on the boundary.

Optical tomography is a high contrast imaging modality.
However, currently only low resolution reconstructions are
possible, especially when using an unmodulated continuous
wave source [5]. Another barrier of optical tomography is
that reconstructed images have a poor quality particularly

when abnormal targets are located deep in tissues. On the
other hand, due to the limited measurement data, as well
as the high scattering and high absorption properties, the
identification problem of optical tomography usually is ill-
posed and underdetermined. The ill-posedness makes the
coefficient reconstruction sensitive to small perturbation
from measurements, such as noise and computational error.
Therefore, various reconstruction algorithms based on reg-
ularization are developed to obtain reasonable and stable
reconstructions [6–9]. Recently, the regularization method
with 𝐿1 norm has been used in optical tomography [10, 11].
In [10], Levenberg-Marquardt strategy is applied for solving
the 𝐿2 regularization step of split Bregman algorithm. The
contrast tests show the superiority of 𝐿1 regularization over𝐿2 regularization. The numerical experiments therein also
show that the 𝐿1 regularization has a better utility when
the independent measurements are much more limited. In
[11], linearized Bregman iteration based on the Bregman
distance is exploited to minimize the sparse regularization.

Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2017, Article ID 2953560, 15 pages
http://dx.doi.org/10.1155/2017/2953560

http://dx.doi.org/10.1155/2017/2953560


2 Computational and Mathematical Methods in Medicine

The experimental results in numerical simulation of an in
vivo mouse demonstrate the effectiveness of the algorithm.
However, the sparsity regularization may oversparsify the
distribution of the coefficients.

Among many types of regularizations, TV regularization
is often used due to its abilities of well reconstructing the
discontinuous andpiecewise constant distributions. TV regu-
larizationwas first introduced in the field of image processing
and image reconstruction; see [12–14] and the references
therein. To date, TV regularization has been the preferred
regularization strategy of considerable recent works, like
photoacoustic tomography (PAT) [15–17], bioluminescence
tomography (BLT) [18, 19], fluorescence tomography (FT)
[20], optical coherence tomography (OCT) [21], and so on.
In [18], the split Bregman algorithm for TV regularization
(SBRTV) is applied to the reconstruction of source distri-
bution in BLT. The algorithm is evaluated with 2D and 3D
simulations and 3D in vivo experiments. In the reported
results, the source distribution can be reconstructed with
better accuracy for the location with SBRTV regularization
than with 𝐿2 or 𝐿1 regularizations. In [19], the synergistic
combination of Bregman method and TV regularization
is utilized to quantitatively improve the reconstruction of
absorption and scattering coefficients for both Jacobian-
based and gradient-based methods in quantitative PAT. The
feasibility of the algorithm is checked with 3D simulations.

For optical tomography, the coefficients are usually taken
as piecewise constant. Since TV regularization is effective
for piecewise constant reconstruction, it is a natural choice
for reconstructing coefficients of piecewise constant distribu-
tions in optical tomography.However, due to the nonsmooth-
ness and nondifferentiability, TV regularization is difficult
to realize computationally. TV regularization for optical
tomography based on the radiative transport equation has
been studied in [22], where inexact Gauss-Newton method
is used to solve the TV regularization problem. In [23], 𝑊1,2
norm is chosen as the penalty in the regularization strategy
for optical tomography based on the frequency radiative
transport equation.

In this paper, we use regularization as a combination of
TV and 𝐿1 norm. To reduce the computational complexity,
we apply the split Bregmanmethod to solve the joint regular-
ization problem. It is reasonable to combine 𝐿1 regularization
and TV regularization to improve the reconstruction quality
in optical tomography. Moreover, based on the split Bregman
method, the iterative algorithms can be computationally effi-
cient. Various experiments in 2D are performed to evaluate
the performance of the algorithm.

The rest of this paper is organized as follows. In Section 2,
we briefly describe the forward and inverse problems for
optical tomography. In Sections 3 and 4, we show the imple-
mentation details about computing the Fréchet derivative of
the forward operator and the iterative procedure. In Section 5,
numerical results are presented.

2. Optical Tomography

We consider two mathematical problems: the forward prob-
lem and the inverse problem. For the forward problem, based

on the physical model of light propagation in tissues, for a
given set of optical properties, we model the measurements
on the boundary. For the inverse problem, the optical
properties can be reconstructed by matching the predictions
calculated from the forward problem and the measurements
from the detectors.

2.1. Forward Problem. The light propagation in tissues is
described by the radiative transport equation

𝜔 ⋅ ∇𝑢 (x,𝜔) + (𝜇𝑎 (x) + 𝜇𝑠 (x)) 𝑢 (x,𝜔)
= 𝜇𝑠 (x) ∫

Ω
𝑘 (𝜔 ⋅ 𝜔̂) 𝑢 (x, 𝜔̂) 𝑑𝜎 (𝜔̂) in 𝑋 × Ω. (1)

Here, 𝑋 ⊂ R𝑑, 𝑑 = 2 or 3, denotes a bounded convex
domain with a 𝐶1 boundary 𝜕𝑋 and Ω fl S𝑑−1 denotes
the unit sphere of R𝑑. The variables x and 𝜔 denote the
spatial position and the angular direction. 𝑢(x,𝜔) describes
the density of photons. The expression 𝜔 ⋅ ∇𝑢(x,𝜔) denotes
the directional derivative at position x along the direction
𝜔. The nonnegative normalized phase function 𝑘(𝜔 ⋅ 𝜔̂) is
the probability that photons traveling in the direction 𝜔̂ are
scattered into the direction 𝜔. In optical tomography, the
phase function usually is taken as the Henyey-Greenstein
phase function (cf. [24]): in two dimensions, it is of the form

𝑘 (𝜔 ⋅ 𝜔̂) = 1 − 𝑔22𝜋 (1 + 𝑔2 − 2𝑔𝜔 ⋅ 𝜔̂) , (2)

where the parameter 𝑔 ∈ (−1, 1) is the anisotropy factor of
the scattering medium.The absorption coefficient is denoted
by 𝜇𝑎(x), and the scattering coefficient is denoted by 𝜇𝑠(x).
For the optical parameters 𝜇𝑎(x) and 𝜇𝑠(x), the following
conditions are assumed to hold throughout this presentation.

Assumptions

(A1) The function 𝜇𝑎(x) is uniformly positive and
bounded; that is, there exist two positive constants 𝜇1𝑎
and 𝜇2𝑎 such that 0 < 𝜇1𝑎 ≤ 𝜇𝑎 ≤ 𝜇2𝑎 < ∞ a.e. in𝑋.

(A2) The function 𝜇𝑠(x) is uniformly positive and
bounded; that is, there exist two positive constants 𝜇1𝑠
and 𝜇2𝑠 such that 0 < 𝜇1𝑠 ≤ 𝜇𝑠 ≤ 𝜇2𝑠 < ∞ a.e. in𝑋.

Equation (1) is supplemented by boundary conditions.
Similar to the X-ray CT, optical tomography experiments
acquire the current distribution of detectors on the boundary
undermulti-incidents. Let 𝜁𝑖, 1 ≤ 𝑖 ≤ 𝑠, be disjoint, connected
subsets of 𝜕𝑋. Corresponding to 𝑠 incident sources 𝑢in,𝑖 on𝜁𝑖, 1 ≤ 𝑖 ≤ 𝑠, define 𝑢𝑖(x,𝜔) by
𝜔 ⋅ ∇𝑢𝑖 (x,𝜔) + (𝜇𝑎 (x) + 𝜇𝑠 (x)) 𝑢𝑖 (x,𝜔)= 𝜇𝑠 (x) ∫

Ω
𝑘 (𝜔 ⋅ 𝜔̂) 𝑢𝑖 (x, 𝜔̂) 𝑑𝜎 (𝜔̂) in 𝑋 × Ω,
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𝑢𝑖 (x,𝜔) = {{{
𝑢in,𝑖 (x,𝜔) , x ∈ 𝜁𝑖, 𝜔 ⋅ ^ (x) < 0,0, otherwise,

on 𝜕𝑋 × Ω,
(3)

where ^(x) is the unit outward normal vector at x ∈ 𝜕𝑋.
Corresponding to each independent incident 𝑢in,𝑖(x,𝜔),

the measurable quantity is the outgoing light 𝑀𝑖(x) on the
boundary of domain, which can be written as𝑀𝑖 (x) = ∫

𝜔⋅^(x)>0
𝜔 ⋅ ^ (x) 𝑢𝑖 (x,𝜔) 𝑑𝜎 (𝜔) , x ∈ 𝜕𝑋. (4)

If we assume there are d detectors located at d different
positions 𝜉𝑗, 1 ≤ 𝑗 ≤ d, then the optical tomography
experiment consists of exciting the domain𝑋with a sequence
of incident source 𝑢in,𝑖 and recording the corresponding
measurements data𝑀𝑗,𝑖 = 𝑀𝑖(x)|x=𝜉𝑗 . Here, 𝑗 and 𝑖 represent
the row index and column index in matrix𝑀𝑗,𝑖, respectively.

With above notations, amathematical description of such
an experiment is provided by the following nonlinear forward
operator: 𝐹𝑖 : 𝐷 󳨀→ 𝐿2 (𝜕𝑋) ,(𝜇𝑎, 𝜇𝑠) 󳨃󳨀→ 𝑀𝑖 (x) , 1 ≤ 𝑖 ≤ 𝑠, (5)

whichmaps prescribed optical parameters to the correspond-
ing measurements data. Here, 𝐹𝑖 denotes the 𝑖th forward
operator corresponding to the 𝑖th incident source and the
resulting measurement data on d detectors. The forward
operator 𝐹𝑖 is well defined for 𝜇𝑎 and 𝜇𝑠 in the set𝐷 = {(𝜇𝑎, 𝜇𝑠) satisfying assumptions (A1)-(A2)} (6)

(cf. [25]).
There are many references on the discretization of RTE;

see, for instance, [26–30]. In this paper, we use continuous
linear elements and discontinuous Galerkin method with
piecewise linear functions to discretize the angular variables
and the spatial variables, respectively. An upwind numerical
flux is used to approximate the incoming flux through the
surface of the control element and inflow boundary. After
assembling the full discretization formulation and forming a
system of tebra equation, we solve the linear system byGauss-
Seidel method. We use piecewise constants to approximate
the absorption and scattering coefficients. We can express(𝜇𝑎, 𝜇𝑠) as

𝜇𝑎 (x) ≈ 𝑁∑
𝑘=1

𝜇𝑎,𝑘𝜒𝑘 (x) ,
𝜇𝑠 (x) ≈ 𝑁∑

𝑘=1

𝜇𝑠,𝑘𝜒𝑘 (x) , (7)

where 𝑁 denotes the number of the elements, 𝜒𝑘(x) denotes
the character function corresponding to the 𝑘th element, and𝜇𝑎,𝑘 and 𝜇𝑠,𝑘 denote the values of absorption and scattering
coefficients on the 𝑘th element.

2.2. Inverse Problem. The inverse problem of optical tomog-
raphy is to determine the unknown coefficients 𝜇𝑎 and 𝜇𝑠
from the boundary detector readings. In this paper, we
only reconstruct the absorption coefficient assuming that the
scattering coefficient is known; then the forward operator𝐹𝑖 in fact acts on the unknown 𝜇𝑎 only. Thus, the inverse
problem of optical tomography is to determine 𝜇𝑎 from the
following system of nonlinear equations:𝐹𝑖 (𝜇𝑎) = 𝑀𝑖, 1 ≤ 𝑖 ≤ 𝑠. (8)

Then the optical tomography can be formulated as minimiz-
ing the difference between the measurement data and the
model predictions

𝜇𝑎 = argmin
𝐷

12 𝑠∑𝑖=1 󵄩󵄩󵄩󵄩𝐹𝑖 (𝜇𝑎) − 𝑀𝑖󵄩󵄩󵄩󵄩2𝐿2(𝜕𝑋) , (9)

known as data fidelity. The inverse problem (9) is ill-posed
in the sense that the amount of the measurements is quite
limited compared with the number of the unknowns and
that the measurements contain noises. To overcome the
ill-posedness, the data fidelity should be combined with
appropriate regularization. In the regularization strategy, we
minimize the following objective functional:

𝜇𝑎 = argmin
𝐷

{12 𝑠∑𝑖=1 󵄩󵄩󵄩󵄩𝐹𝑖 (𝜇𝑎) − 𝑀𝑖󵄩󵄩󵄩󵄩2𝐿2(𝜕𝑋) + 𝛼𝑅 (𝜇𝑎)} . (10)

Here, 𝑅(𝜇𝑎) is the regularization penalty functional that
enforces a prior information on 𝜇𝑎 and 𝛼 > 0 is the
regularization parameter that trades off the weight between
the discrepancy term and the penalty functional.

According to different ways of treating the derivative of
data fidelity, there are two sorts of approaches for solving
(10). One is to linearize the forward operator 𝐹𝑖 near the 𝑛th
iteration of 𝜇𝑎, which is denoted as 𝜇𝑛𝑎 , as follows:𝐹𝑖 (𝜇𝑎) ≈ 𝐹𝑖 (𝜇𝑛𝑎) + 𝐹󸀠𝑖 (𝜇𝑛𝑎) (𝜇𝑎 − 𝜇𝑛𝑎) , (11)

where 𝐹󸀠𝑖 (𝜇𝑛𝑎) is the derivative of the forward operator 𝐹𝑖
with respect to 𝜇𝑛𝑎 . The linearized formulation provides a
good approximation when 𝜇𝑛𝑎 is close to the true value. As
a result, the minimized problem (10) is treated by an iterative
procedure as follows:

𝜇𝑛+1𝑎 = argmin
𝐷

{12
⋅ 𝑠∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝐹󸀠𝑖 (𝜇𝑛𝑎) (𝜇𝑎 − 𝜇𝑛𝑎) + 𝐹𝑖 (𝜇𝑛𝑎) − 𝑀𝑖󵄩󵄩󵄩󵄩󵄩2𝐿2(𝜕𝑋)
+ 𝛼𝑅 (𝜇𝑛𝑎)} .

(12)

This Jacobian-based minimization problem can be solved
with many iteratively optimization techniques, such as the
Levenberg-Marquardt typemethod (LM). LM typemethod is
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the special case of Gauss-Newton type method.The standard
LMmethod (or Gauss-Newtonmethod) uses ‖𝜇𝑎−𝜇𝑛𝑎‖2𝐿2(𝑋) as
the penalty. The LM type method defines the update 𝜇𝑛+1𝑎 in
a region around 𝜇𝑛𝑎 , while the Gauss-Newton method always
defines 𝜇𝑛+1𝑎 in a neighbourhood of the initial guess 𝜇0𝑎 for
each 𝑛 ≥ 0. Hence, from the optimization point of view,
LM type method is more favourable in nature. Based on the
Jacobian-based method, many optimization techniques such
as split Bregman method can be used to solve (12). On the
other hand, when 𝜇𝑛𝑎 is close to the true value, the Jacobian-
based method shares the typical quadratic convergence from
Newton method.

Alternatively, (10) can be solved directly by minimizing
the nonlinear functional with some gradient-based methods,
like Quasi-Newton method, nonlinear conjugate gradient
method, limited-memory BFGS method, and so on. Thus,
the computation of the linearized Jacobian matrix is avoided
and only the gradient of the nonlinearminimizing functional
needs to be computed.The gradient-basedmethod in general
has superlinear convergence and is economic in memory
storage which is suitable for large scale problems, such as
3D problems. Since our numerical experiments are all done
in two dimensions and the problem scale is not so large as
that in three dimensions, we use the Jacobian-based LM type
method to solve (10).

3. Adjoint Problem

Since we adopt the Jacobian-based minimization method
to solve (10) in this paper, the derivative of the forward
operator becomes a matrix which is called Jacobi matrix.
For convenience of representing the element of Jacobi matrix
hereinafter, we use [𝐽𝑖𝜇𝑎] to represent the Jacobi matrix of𝐹𝑖, with respect to 𝜇𝑎 = (𝜇𝑎,1, . . . , 𝜇𝑎,𝑁), 1 ≤ 𝑖 ≤ 𝑠; here𝜇𝑎,𝑖 denotes the 𝑖th element of the discretized 𝜇𝑎. For each 𝑖,[𝐽𝑖𝜇𝑎] ∈ Rd×𝑁 is defined as follows:

[𝐽𝑖𝜇𝑎] = (((((((
(

𝜕𝑀1,𝑖𝜕𝜇𝑎,1 𝜕𝑀1,𝑖𝜕𝜇𝑎,2 ⋅ ⋅ ⋅ 𝜕𝑀1,𝑖𝜕𝜇𝑎,𝑁𝜕𝑀2,𝑖𝜕𝜇𝑎,1 𝜕𝑀2,𝑖𝜕𝜇𝑎,2 ⋅ ⋅ ⋅ 𝜕𝑀2,𝑖𝜕𝜇𝑎,𝑁⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅𝜕𝑀d,𝑖𝜕𝜇𝑎,1 𝜕𝑀d,𝑖𝜕𝜇𝑎,2 ⋅ ⋅ ⋅ 𝜕𝑀d,𝑖𝜕𝜇𝑎,𝑁

)))))))
)

,

1 ≤ 𝑖 ≤ 𝑠.
(13)

[𝐽𝑖𝜇𝑎] can be computed by direct method which differentiates𝑀𝜁𝑖(𝜉𝑗) with respect to the perturbation of 𝜇𝑎 on each
element. In order to compute [𝐽𝑖𝜇𝑎], for each 𝑖, we need to solve
forward problems d × 𝑁 times. For a total of 𝑠 sources, we
need to compute 𝑠 ×d×𝑁 times, so the direct method is very
time consuming.Therefore, we use the adjoint formulation to
compute [𝐽𝑖𝜇𝑎] instead of direct method.

We first consider the analytic Fréchet derivative of the
forward operator for the boundary value problem of RTE
given by [25].

𝐹󸀠𝑖 (𝜇𝑎)∗𝑀𝜁𝑖 (x) = −∫
Ω
𝑢𝑖 (x,𝜔) 𝜑 (x,𝜔) 𝑑𝜎 (𝜔) , (14)

where 𝐹󸀠𝑖 (𝜇𝑎)∗ denotes the adjoint operator of 𝐹𝑖(𝜇𝑎) and𝜑(x,𝜔) is the solution of the adjoint RTE− 𝜔 ⋅ ∇𝜑 (x,𝜔) + (𝜇𝑎 + 𝜇𝑠) 𝜑 (x,𝜔)
= 𝜇𝑠 ∫

Ω
𝑘 (𝜔, 𝜔̂) 𝜑 (x, 𝜔̂) 𝑑𝜎 (𝜔̂) in 𝑋 × Ω (15)

with boundary condition𝜑 (x,𝜔)
= {{{

(𝜔 ⋅ ^ (x))𝑀𝑖 (x) , x ∈ 𝜕𝑋, 𝜔 ⋅ ^ (x) > 0,0, otherwise,
on 𝜕𝑋 × Ω.

(16)

From the adjoint RTE (15) and the boundary condition (16), it
seems that the adjoint problem should be solved in the reverse
direction of propagation with a completely new computation
solver. However, by the standard reciprocity theorem for the
Boltzmann equation given in [31],𝐺 (x,𝜔; x0,𝜔0) = 𝐺 (x0, −𝜔0; x, −𝜔) , (17)

which states that the angular density at x in direction𝜔 due to
a source at x0 in direction𝜔0 is the same as the angular density
at x0 in direction −𝜔0 due to a source at x in direction −𝜔.
Here, 𝐺(⋅; ⋅) presents the Green function of (1) for isotropic
point source on the boundary. Then the adjoint problems
(15) and (16) can be transformed into the same form as the
forward problem, simply replacing direction𝜔with−𝜔.Then
we just need to solve the following equation for the radiance𝜑(x, −𝜔) = 𝜑(x,𝜔) by the same forward solver:

𝜔 ⋅ ∇𝜑 (x,𝜔) + (𝜇𝑎 + 𝜇𝑠) 𝜑 (x,𝜔)
= 𝜇𝑠 ∫

Ω
𝑘 (𝜔, 𝜔̂) 𝜑 (x, 𝜔̂) 𝑑𝜎 (𝜔̂) , (18)

with adjoint boundary condition𝜑 (x,𝜔)
= {{{

(𝜔 ⋅ ^ (x))𝑀𝑖 (x) , x ∈ 𝜕𝑋, 𝜔 ⋅ ^ (x) < 0,0, otherwise. (19)

This means we need to solve (18) and (19) with the forward
solver firstly and then reverse all directions on solution.

If we consider one source position 𝜁𝑖 and one detector
position 𝜉𝑗, then the 𝑘th column of the Jacobi matrix [𝐽𝑖𝜇𝑎]
can be computed as follow:

[𝐽𝑖𝜇𝑎] (:,𝑘) = ∫
𝑋
𝜒𝑘 (x) ∫

Ω
𝑢𝑖 (x,𝜔) 𝜑𝑗 (x,𝜔) 𝑑𝜎 (𝜔) 𝑑x, (20)
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where 𝜑𝑗 is the solution of the following boundary value
problem:− 𝜔 ⋅ ∇𝜑𝑗 (x,𝜔) + (𝜇𝑎 (x) + 𝜇𝑠 (x)) 𝜑𝑗 (x,𝜔)

= 𝜇𝑠 (x) ∫
Ω
𝑘 (𝜔 ⋅ 𝜔̂) 𝜑𝑗 (x, 𝜔̂) 𝑑𝜎 (𝜔̂) ,

𝜑𝑗 (x,𝜔) = {{{
(𝜔 ⋅ ^ (x))𝑀𝑖 (x)󵄨󵄨󵄨󵄨x=𝜉𝑗 , 𝜔 ⋅ ^ (x) > 0,0, otherwise.

(21)

Thus for the adjoint method to compute [𝐽𝑖𝜇𝑎], for each 1 ≤𝑖 ≤ 𝑠, we only need to solve forward problems d times. For 𝑠
sources, we need to solve forward problems 𝑠×d times, which
dramatically reduces the computation burden and improves
the efficiency of the algorithm.

4. Iterative Procedure

Theunknown 𝜇𝑎 can be estimated through the regularization
method.The quality of reconstructed image strongly depends
on the choice of the penalty term 𝑅(𝜇𝑎). If we choose the 𝐿2
norm as penalty, that is, 𝑅(𝜇𝑎) = ‖𝜇𝑎‖22, the reconstructed
image usually blurs with a low resolution. If we choose 𝐿1
norm as the penalty, that is, 𝑅(𝜇𝑎) = ‖𝜇𝑎‖1, the reconstructed
image tends to find a sparse solution [10, 18]. To treat the
discontinuity and the edges of different distribution regions,
total variation is usually chosen as the penalty functional, that
is,

𝑅 (𝜇𝑎) = ∫
𝑋

󵄨󵄨󵄨󵄨∇𝜇𝑎󵄨󵄨󵄨󵄨 . (22)

The symbol ∫
𝑋
|∇𝜇𝑎| denotes the total variation seminorm

[32] of 𝜇𝑎 ∈ 𝐿1(𝑋) as follows:
∫
𝑋

󵄨󵄨󵄨󵄨∇𝜇𝑎󵄨󵄨󵄨󵄨 fl sup {∫
𝑋
𝜇𝑎div 𝜑𝑑𝑥 | 𝜑

∈ 𝐶∞0 (𝑋;R𝑑) , 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿∞(𝑋;R𝑑) ≤ 1} . (23)

To improve the reconstruction quality, we consider the
total variation mixed with the 𝐿1 norm as the penalty. The
functional to be minimized is of the form

𝐽 (𝜇𝑎) = 12 𝑠∑𝑖=1 󵄩󵄩󵄩󵄩𝐹𝑖 (𝜇𝑎) − 𝑀𝑖󵄩󵄩󵄩󵄩2𝐿2(𝜕𝑋)
+ 𝛼∫
𝑋

󵄨󵄨󵄨󵄨∇𝜇𝑎󵄨󵄨󵄨󵄨 + 𝛽 󵄩󵄩󵄩󵄩𝜇𝑎󵄩󵄩󵄩󵄩𝑙1 , (24)

where 𝛼, 𝛽 are the regularization parameters. We will apply
the split Bregman method to solve (24) [33]. Instead of (24),
we consider the following constrained optimization problem:

inf
(𝜇𝑎 ,D)

12 𝑠∑𝑖=1 󵄩󵄩󵄩󵄩𝐹𝑖 (𝜇𝑎) − 𝑀𝑖󵄩󵄩󵄩󵄩2𝐿2(𝜕𝑋) + 𝛼∫
𝑋

󵄨󵄨󵄨󵄨∇𝜇𝑎󵄨󵄨󵄨󵄨 + 𝛽 ‖D‖𝑙1
such that D = 𝜇𝑎. (25)

Solution of the above minimization problem can be obtained
by solving the unconstrained optimization problem

(𝜇𝑎,D) = argmin 12 𝑠∑𝑖=1 󵄩󵄩󵄩󵄩𝐹𝑖 (𝜇𝑎) − 𝑀𝑖󵄩󵄩󵄩󵄩2𝐿2(𝜕𝑋)
+ 𝛼∫
𝑋

󵄨󵄨󵄨󵄨∇𝜇𝑎󵄨󵄨󵄨󵄨 + 𝛽 ‖D‖𝑙1 + 𝜂2 󵄩󵄩󵄩󵄩D − 𝜇𝑎󵄩󵄩󵄩󵄩2𝑙2 , (26)

where 𝜂 > 0 is the split parameter. Now let us iteratively solve
the following subproblems [34]:

(𝜇𝑛+1𝑎 ,D𝑛+1)
= argmin 12 𝑠∑𝑖=1 󵄩󵄩󵄩󵄩𝐹𝑖 (𝜇𝑎) − 𝑀𝑖󵄩󵄩󵄩󵄩2𝐿2(𝜕𝑋)

+ 𝛼∫
𝑋

󵄨󵄨󵄨󵄨∇𝜇𝑎󵄨󵄨󵄨󵄨 + 𝛽 ‖D‖𝑙1 + 𝜂2 󵄩󵄩󵄩󵄩D − 𝜇𝑎 − 𝑏𝑛𝑑󵄩󵄩󵄩󵄩22 ,
(27)

with the following update for 𝑏𝑑:𝑏𝑛+1𝑑 = 𝑏𝑛𝑑 + 𝜇𝑛+1𝑎 −D
𝑛+1. (28)

The minimization of subproblems in (1) can be iteratively
solved by splitting it into the minimizations of 𝜇𝑎 and D
separately. This suggests the following steps.

Step 1.

𝜇𝑛+1𝑎 = argmin
𝜇𝑎

12 𝑠∑𝑖=1 󵄩󵄩󵄩󵄩𝐹𝑖 (𝜇𝑎) − 𝑀𝑖󵄩󵄩󵄩󵄩2𝐿2(𝜕𝑋) + 𝛼∫
𝑋

󵄨󵄨󵄨󵄨∇𝜇𝑎󵄨󵄨󵄨󵄨
+ 𝜂2 󵄩󵄩󵄩󵄩D𝑛 − 𝜇𝑎 − 𝑏𝑛𝑑󵄩󵄩󵄩󵄩22 . (29)

Step 2.

D
𝑛+1 = argmin

D
𝛽 ‖D‖𝑙1 + 𝜂2 󵄩󵄩󵄩󵄩󵄩D − 𝜇𝑛+1𝑎 − 𝑏𝑛𝑑󵄩󵄩󵄩󵄩󵄩22 . (30)

Step 3. 𝑏𝑛+1𝑑 = 𝑏𝑛𝑑 + 𝜇𝑛+1𝑎 −D
𝑛+1. (31)

For the solution of Step 1, we use the Levenberg-Marquardt
method, which has a high convergence rate. Thus we solve a
minimization problem as follows.

Step 1∗

𝜇𝑛+1𝑎 = argmin
𝜇𝑎

12 𝑠∑𝑖=1 󵄩󵄩󵄩󵄩󵄩𝐹𝑖 (𝜇𝑛𝑎) + [𝐽𝑖𝜇𝑛𝑎] (𝜇𝑎 − 𝜇𝑛𝑎) − 𝑀𝑖󵄩󵄩󵄩󵄩󵄩22
+ 𝛼∫
𝑋

󵄨󵄨󵄨󵄨∇𝜇𝑎󵄨󵄨󵄨󵄨 + 𝜂2 󵄩󵄩󵄩󵄩D𝑛 − 𝜇𝑎 − 𝑏𝑛𝑑󵄩󵄩󵄩󵄩22 , (32)

where [𝐽𝑖𝜇𝑛𝑎 ] denotes the Jacobi matrix of the forward operator𝐹𝑖 with respect to 𝜇𝑛𝑎 . For solving Step 1∗, in order to avoid
the nondifferentiability of the total variation term ∫

𝑋
|∇𝜇𝑎|
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at a zero point, we approximate it with a smooth functional‖𝜇𝑎‖TV,𝜀 defined as󵄩󵄩󵄩󵄩𝜇𝑎󵄩󵄩󵄩󵄩TV,𝜀 = ∫
𝑋

√󵄨󵄨󵄨󵄨∇𝜇𝑎󵄨󵄨󵄨󵄨2 + 𝜖2 𝑑𝑥, 𝜖 > 0. (33)

The parameter 𝜖 is a constant, and it cannot be too large or
too small. The Euler-Lagrange equation for Step 1∗ is
𝑠∑
𝑖=1

[𝐽𝑖𝜇𝑛𝑎]𝑇 ([𝐽𝑖𝜇𝑛𝑎] (𝜇𝑎 − 𝜇𝑛𝑎) − 𝑅𝑖 (𝜇𝑛𝑎)) + 𝛼𝐿 (𝜇𝑛𝑎) 𝜇𝑎
+ 𝜂 (D𝑛 − 𝜇𝑎 − 𝑏𝑛𝑑) = 0, (34)

where [⋅]𝑇 denotes the transpose,𝑅𝑖(𝜇𝑛𝑎) is the short notion of𝐹𝑖(𝜇𝑛𝑎) − 𝑀𝑖, the term 𝐿(𝜇𝑛𝑎)𝜇𝑎 is defined as

𝐿 (𝜇𝑛𝑎) 𝜇𝑎 = −∇ ⋅ {{{{{
∇𝜇𝑎√󵄨󵄨󵄨󵄨∇𝜇𝑛𝑎󵄨󵄨󵄨󵄨2 + 𝜖2

}}}}} . (35)

Then we can get the iterative update by solving the above
equation with Newton method as follows:

( 𝑠∑
𝑖=1

[𝐽𝑖𝜇𝑛𝑎]𝑇 [𝐽𝑖𝜇𝑛𝑎] + 𝛼𝐿 (𝜇𝑛𝑎) + 𝜂𝐼) (𝜇𝑎 − 𝜇𝑛𝑎)
= 𝑠∑
𝑖=1

[𝐽𝑖𝜇𝑛𝑎]𝑇 𝑅𝑖 (𝜇𝑛𝑎) + 𝛼𝐿 (𝜇𝑛𝑎) 𝜇𝑛𝑎
+ 𝜂 (D𝑛 − 𝜇𝑛𝑎 − 𝑏𝑛𝑑) .

(36)

Step 2 is an 𝐿1 norm regularization problem and it can be
solved efficiently through the shrinkage operator, that is,

D
𝑛+1 = shrink(𝜇𝑛+1𝑎 + 𝑏𝑛𝑑 , 𝛽𝜂 ) , (37)

where the shrinkage operator

shrink (𝑥, 𝑡) = sin (𝑥)max (|𝑥| − 𝑡, 0)
= {{{{{{{{{

𝑥 − 𝑡, 𝑥 ≥ 𝑡,0, |𝑥| < 𝑡,𝑥 + 𝑡, 𝑥 ≤ −𝑡.
(38)

Implementation of the split Bregman formulation for ourTV-𝐿1 regularization is described in Algorithm 1.

5. Reconstruction Results and Discussion

In this section, the TV-𝐿1 regularization with the split Breg-
man formulation is applied to 2D test problems. We assume
the distribution of the scattering coefficient is known. Recon-
structions of spatially dependent distributions of absorption
coefficient inside the medium are performed and discussed.
In our simulation, a circular domain 𝑋 which contains
different inclusions is investigated. The radius of the circle

is 10mm. 12 sources and 12 detectors are located on the
boundary of the domain with equal space. This yields totally144 source-detector pairs to be used in the inversion.

Noise-free synthetic data are generated by solving the
forward problem on triangular meshes with the method we
mentioned in Section 2.1. Note that themeshes for the inverse
problem are coarser than themeshes for the forward problem
in order to avoid the “inverse crime” [35] and for the purpose
of testing the robustness of the proposed algorithm. We will
describe the meshes in each case. In all the cases, the angular
space is discretized into 32 directions which equally divide
the interval [0, 2𝜋].

The background medium has scattering coefficient of
10mm−1 and absorption coefficient of 0.01mm−1, respec-
tively, and these values keep the same throughout this paper.
The initial guess of reconstruction is set to be identical
to the properties of the background medium. That is, the
iterative procedure started with the background value of the
absorption coefficient.

The incident impulse on the inflow boundary is settled as𝑢in,𝑖 (x,𝜔) = 𝐵𝑖,𝜔𝑖 ,(x,𝜔) ∈ 𝜕𝑋 × Ω,
𝜔 ⋅ ] (x) < 0, 1 ≤ 𝑖 ≤ 𝑠,

(39)

where 𝐵𝑖,𝜔𝑖 is a piecewise linear function whose spatial
support is 𝑆𝑖 and achieves the value 1 at the center node of𝑆𝑖, where 𝑆𝑖 is the element through which the ith incident
impulse passes. The direction of 𝑢in,𝑖 points approximately
from the center of 𝑆𝑖 to the center of𝑋.

Based on above settings, we use various simulations to
validate the proposed split Bregman algorithm for our TV-𝐿1
regularization. Our purpose is to show the following results.

First, by comparing the reconstruction with different
anisotropic factors 𝑔, the proposed algorithm works better
when 𝑔 is bigger.

Second, for small sparse inclusions, the TV-𝐿1 regular-
ization can reconstruct the location and the quality of the
coefficient more accurately than the TV regularization and
the 𝐿1 regularization.

Third, the proposed split algorithm for TV-𝐿1 needs less
computation time than the Levenberg-Marquardt algorithm
for TV regularization. Even though our proposed algorithm
needs more computation time than the split Bregman algo-
rithm for 𝐿1 regularization [10], the reconstruction quality
with the proposed algorithm is much better than that with
the split Bregman algorithm for 𝐿1 regularization.
5.1. Simulation 1: Reconstruction with Different Anisotropic
Factors. In this simulation, we reconstruct one circle inclu-
sion with the radius 0.5mm centered at (7.0mm, 0.0mm). In
this circle, the absorption coefficient 𝜇𝑎 = 0.02mm−1 and𝜇𝑠 = 20mm−1. Our goal is to reconstruct 𝜇𝑎. For solving
the inverse problem, we use a mesh of 772 nodes and 1484
triangular elements. To avoid the inverse crime, we use a
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Input: Given the initial guess 𝜇0𝑎; the regularization parameter 𝛼 > 0, 𝛽 > 0, 𝜂 > 0;
D0 = 𝑏0𝑑 = 0, and the tolerance 𝜀.

while ‖𝜇𝑛+1𝑎 − 𝜇𝑛𝑎‖ > 𝜀 do
For 1 ≤ 𝑖 ≤ 𝑠, compute 𝜇𝑛+1𝑎 with (36);
ComputeD𝑛+1 = shrink(𝜇𝑛+1𝑎 + 𝑏𝑛𝑑 , 𝛽/𝜂);
Compute 𝑏𝑛+1𝑑 = 𝑏𝑛𝑑 + 𝜇𝑛+1𝑎 −D𝑛+1.

end while
Output: Output an approximation 𝜇𝑎 = 𝜇𝑛+1𝑎 .

Algorithm 1: Reconstruction algorithm based on the split Bregman method for TV-𝐿1 regularization.
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Figure 1: The forward mesh, inverse mesh, and the true distribution of 𝜇𝑎 in simulation 1.

mesh of 1296 nodes and 2440 triangular elements for the
synthetic data. The simulated absorption distributions and
themeshes can be seen in Figure 1.We solve theminimizer of𝐽(𝜇𝑎) by using the split Bregman method for TV-𝐿1 method
with exact data, that is, 𝛿 = 0, in this example. Then we
compare the reconstruction results for different anisotropic
factors 𝑔. For the comparison purpose, we use the same
parameters 𝛼, 𝛽, 𝜂, and 𝜀 for different 𝑔. Noticing that the so-
called exact data in fact contains noise, so the regularization
parameter 𝛼, 𝛽 should not be too small. Since the inclusion

is very small in this example, we enhance more weight of 𝐿1
penalty than the weight of TV penalty. Here we take 𝛼 = 10−4
and 𝛽 = 10−3.The other two parameters are taken as 𝜂 = 10−5
and 𝜖 = 10−6, respectively.

The reconstruction results can be seen in Figure 2. The
first row of Figure 2 is the reconstruction results for 𝑔 = 0.1
and 𝑔 = 0.4 from the left to the right. The second row
of Figure 2 is the reconstruction results for 𝑔 = 0.7 and𝑔 = 0.9 from the left to the right. As it can be seen, the
reconstructions for the bigger 𝑔 are more clear than that for
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Figure 2: Reconstruction results with and without scaling strategy. (a) Reconstruction of 𝜇𝑎 for 𝑔 = 0.1; (b) reconstruction of 𝜇𝑎 for 𝑔 = 0.4;
(c) reconstruction of 𝜇𝑎 for 𝑔 = 0.7; (d) reconstruction of 𝜇𝑎 for 𝑔 = 0.9. The reconstructions are done by using the split Bregman algorithm
for TV-𝐿1 regularization with noise-free synthetic data.

smaller 𝑔. There are some apparent blurred parts in the left
side of the inclusion in Figures 2(a) and 2(b). The blurred
parts are much smaller in Figure 2(c) than in Figure 2(b) and
almost disappeared in Figure 2(d).

From this example, we can find that the proposed algo-
rithm works better for the bigger anisotropic factor 𝑔. The
following simulations in this paper are all performed with𝑔 = 0.9.
5.2. Simulation 2: Reconstruction with TV-𝐿1 Regularization
and the Standard TV Regularization. There are two groups of
experiments in this section. In the first group of experiment,
we design three types of inclusions to compare the perfor-
mance of the TV-𝐿1 regularization and the TV regularization
with noise-free synthetic data. In the first case, a small
inclusion with radius 0.5mm centered at (7.0mm, 0.0mm)
is designed for 𝜇𝑎 = 0.02mm−1 and 𝜇𝑠 = 20.0mm−1,
respectively. In the second case, a middle inclusion with
radius 2mm centered at (5.0mm, 0.0mm) is designed for𝜇𝑎 = 0.02mm−1 and 𝜇𝑠 = 20mm−1, respectively. In the
third case, a middle inclusion with radius 4mm centered
at (3.0mm, 0.0mm) is designed for 𝜇𝑎 = 0.02mm−1 and𝜇𝑠 = 20mm−1, respectively. The simulated true absorption
coefficient can be seen on the first column of Figure 3.

For the small inclusion case, we use a mesh of 772 nodes
and 1484 triangular elements for the inverse problem and
a mesh of 1267 nodes and 2440 triangular elements for the
forward problem, the simulated true absorption coefficient
and reconstruction results with TV-𝐿1 regularization and TV
regularization are shown in Figure 3. For themiddle inclusion
case, we use amesh of 575 nodes and 1080 triangular elements
for the inverse problem and a mesh of 813 nodes and 2642
triangular elements for the forward problem, the simulated
true absorption coefficient and reconstruction results with
TV-𝐿1 regularization and TV regularization are shown in
Figure 4. For the big inclusion case, we use a mesh of 583
nodes and 1096 triangular elements for the inverse problem
and a mesh of 871 nodes and 3124 triangular elements for the
forward problem, the simulated true absorption coefficient
and reconstruction results with TV-𝐿1 regularization and
TV regularization are shown in Figure 5. The values of the
parameters are shown in Table 1. Since we use the same 𝜀 =10−6 as the last section, we will not present it repeatedly in
Table 1.

Observing from the results, we can see that, for small
and middle inclusions, the TV-𝐿1 regularization performs
better than the TV regularization in both localizing the
location and quantifying the values; see Figures 3(b) and 4(b)
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Figure 3: Reconstruction results with TV-𝐿1 regularization and TV regularization for one small inclusion. (a) True 𝜇𝑎; (b) reconstruction of𝜇𝑎 with TV-𝐿1 penalty; (c) reconstruction of 𝜇𝑎 with only TV penalty.

Table 1: Parameters corresponding to various regularization.

Cases Small inclusion Middle inclusion Big inclusion(𝛼, 𝛽, 𝜂) for TV-𝐿1 (0.0003, 0.003, 0.0003) (0.003, 0.003, 0.0003) (0.003, 0.0003, 0.0003)(𝛼, 𝛽, 𝜂) for TV (3 × 10−4, 0, 0) (3 × 10−4, 0, 0) (3 × 10−4, 0, 0)
for TV-𝐿1 regularization and Figures 3(c) and 4(c) for TV
regularization. In fact, these results are reasonable and can
be interpreted. The TV-𝐿1 regularization imposes both TV
penalty and 𝐿1 penalty on 𝜇𝑎. The TV penalty tends to find
edges and the 𝐿1 penalty tends to find the sparse details of the
inclusion. As can be seen from Table 1, for the big inclusion,
we enhance theweight of TVpenalty.When the inclusion gets
smaller, we enhance the weight of 𝐿1 penalty.

For the big inclusion, TV-𝐿1 regularization and TV regu-
larization perform no big differences, but we still can see that
the blurred parts in Figure 5(b) with TV-𝐿1 regularization
are smaller than that in Figure 5(c) with TV regularization.
We can see from Figures 5(b) and 5(c) that there are large
area of blurs in the big inclusion case. It is reasonable in
the sense that large area of absorption inclusion means more
photons are absorbed in propagation process. Hence, we can
alleviate this phenomenon by increasing the source-detector
pairs. In other words, by increasing the measurements, one
can alleviate the effect of absorption to some extent.

In the second group of experiments of this section, three
types of complicated and multi-inclusions are designed for
comparing the reconstruction results by TV-𝐿1 regulariza-
tion, TV regularization, and 𝐿1 regularization.

In the first case, we reconstruct two small circle inclusions
centered at (7mm, 0mm) and (0mm, 0mm) with the same
radius 0.5mm. In both of the two inclusions, 𝜇𝑎 = 0.02mm−1

and 𝜇𝑠 = 20mm−1. We use a mesh of 1277 nodes and
2488 triangular elements for the inverse problem and a mesh
of 1861 nodes and 3616 triangular elements for the forward
problem. The true distributions of 𝜇𝑎 and reconstruction
results with various regularizations can be seen in Figure 6.

In the second case, we reconstruct three small circles cen-
tered at (7mm, 0mm), (0mm, −7mm), and (0mm, 0mm)
with the same radius, 0.5mm. In all the three inclusions, 𝜇𝑎 =0.02mm−1 and 𝜇𝑠 = 20mm−1. We use a mesh of 1671 nodes
and 3264 triangular elements for the inverse problem and a
mesh of 2141 nodes and 4176 triangulations for the forward
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Figure 4: Reconstruction results with TV-𝐿1 regularization and TV regularization for one middle inclusion. (a) True 𝜇𝑎; (b) reconstruction
of 𝜇𝑎 with TV-𝐿1 penalty; (c) reconstruction of 𝜇𝑎 with only TV penalty.
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Figure 5: Reconstruction results with TV-𝐿1 regularization and TV regularization for one big inclusion. (a) True 𝜇𝑎; (b) reconstruction of 𝜇𝑎
with TV-𝐿1 penalty; (c) reconstruction of 𝜇𝑎 with only TV penalty.
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Figure 6: Reconstruction results with various regularization for two small inclusions. (a) True𝜇𝑎; (b) reconstruction of𝜇𝑎 withTV-𝐿1 penalty;
(c) reconstruction of 𝜇𝑎 with TV penalty; (d) reconstruction of 𝜇𝑎 with 𝐿1 penalty.

problem. The true distributions of 𝜇𝑎 and reconstruction
results with various regularizations can be seen in Figure 7.

In the third case, we design three inclusions. One big
circle centered at (−5mm, 2mm) with radius 2mm. Two
small circles centered at (0mm, −7mm) and (7mm, 0mm)
with the same radius 0.5mm. In all the three cases, we
take the same coefficient values 𝜇𝑎 = 0.02mm−1 and𝜇𝑠 = 20mm−1. We use a mesh of 1323 nodes and 2568
triangulations for the inverse problem and a mesh of 1809
nodes and 3512 triangulations for the forward problem.
The true distributions of 𝜇𝑎 and reconstruction results with
various regularizations can be seen in Figure 8.

In Table 2, for all the three cases, we present the parameter
settings for the iterative procedure (𝛼, 𝛽, 𝜂), the steps of the
iterations Iters, the relative residual error𝐸resi, and the relative
solution error 𝐸𝜇𝑎 in the sense of 𝐿2 norm corresponding to
each regularization method. 𝐸resi and 𝐸𝜇𝑎 are defined as

𝐸resi = 󵄩󵄩󵄩󵄩𝐹 (𝜇𝑛𝑎) − 𝐹 (𝜇true
𝑎 )󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹 (𝜇true

𝑎 )󵄩󵄩󵄩󵄩 ,
𝐸𝜇𝑎 = 󵄩󵄩󵄩󵄩𝜇𝑛𝑎 − 𝜇true

𝑎
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜇true

𝑎
󵄩󵄩󵄩󵄩 . (40)

We say that in the first and the second case, compared
with the inclusions near the boundary, the inclusion deep
in the domain is difficult to identify. In the third case, it
is more difficult to reconstruct the small inclusion than the
big inclusion. From the reconstruction results, we can see
that the TV-𝐿1 regularization can preferably identify the
location and the value of the inclusions. In other words, the
advantages with TV-𝐿1 regularization are indeed apparent
over TV regularization and 𝐿1 regularization; see Figures
6(b), 7(b), and 8(b) for the reconstructions results with TV-𝐿1 regularization. The LM type algorithm for the TV reg-
ularization converges slowly especially when the inclusions
are very small; see Figures 6(c) and 7(c). When big inclusion
is included, the LM for TV regularization can well identify
it, but it still cannot perfectly reconstruct the value of the
small inclusions; see Figure 8(c).The split Bregman algorithm
for 𝐿1 regularization is an efficient algorithm with high
convergent rate; we can see this from the number of iterations
in Table 2. But, in our simulations, although the algorithm
converges quickly, it loses validity when the inclusions are
very small; see Figures 6(d) and 7(d). In Figure 8(d), the big
inclusion is identified, but we only can see two blurred circles
at where the two small inclusions are located. Moreover, we
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Figure 7: Reconstruction results with various regularization for three small inclusions. (a) True 𝜇𝑎; (b) reconstruction of 𝜇𝑎 with TV-𝐿1
penalty; (c) reconstruction of 𝜇𝑎 with TV penalty; (d) reconstruction of 𝜇𝑎 with 𝐿1 penalty.
can find that the reconstruction may be oversparsified by
using the 𝐿1 regularization.
5.3. Simulation 3: High Absorbing and Low Scattering Inclu-
sions with TV-𝐿1. As the last simulation, our purpose is to
show the validity of our algorithm in the situation that high
absorbing inclusion and low scattering inclusion are con-
tained in the domain𝑋. Moreover, we investigated the recon-
struction under different noise level to show the robustness of
the proposed algorithm. The noises added to the exact data𝑀true
𝑖 are by the following rule:𝑀𝑖 = 𝑀true

𝑖 (1 + 𝛿 ∗ random),
where 𝛿 is the signal-to-noise ratio; random is a Gaussian
random variable with zero mean and unity variation. The
background values of the absorption and the scattering are0.05mm−1 and 5mm−1, respectively.The absorbing inclusion
for which we set the absorption coefficient is 𝜇𝑎 = 0.1mm−1
which is centered at (3.5mm, 3.5mm) with radius 2mm.The
scattering inclusion for which we set the scattering coefficient
is 𝜇𝑠 = 10mm−1 which is centered at (0mm, −5mm) with
radius 2mm. For the discretization, we use a mesh of 463
nodes and 856 triangulations for the inverse problem and a
mesh of 681 nodes and 1288 triangulations for the forward
problem. See the first row of the Figure 9(a) for the true
distribution of 𝜇𝑎. In Figure 9(b), the reconstruction of 𝜇𝑎

with exact data is presented. The parameter value in this case
is chosen as𝛼 = 0.0005,𝛽 = 0.0005, and 𝜂 = 10−6. Figure 9(c)
presents the reconstruction with noise level 0.1%, in which
the parameter is taken as 𝛼 = 0.0005, 𝛽 = 0.0005, and 𝜂 =10−6. In Figure 9(d), the reconstruction with noise level 1% is
shown, in which the parameter value is taken as 𝛼 = 0.005,𝛽 = 0.0005, and 𝜂 = 10−6. From the four reconstructions
under four different noise levels, we can find that as the noise
level increased, the quality of the reconstruction gets worse.
Here, we take the noise level under 1%, since the iteration will
not converge if the noise level is bigger than 1%which reflects
the severe ill-posedness of the problem. We also find that in
order to obtain the reconstruction results with the relative
error in 𝐿2 norm no more than 20% the noise level on the
synthetic data should be less than 1%.

6. Summary

In this paper, forward and inverse problems of the radiative
transfer equation are considered. An image reconstruction
method based on the TV-𝐿1 regularization is proposed.
The forward problem is discretized with the discontinuous
Galerkin method on the spatial space and the finite element
method on the angular space which both are implemented on
the piecewise linear basis. We discretize the absorption and
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Figure 8: Reconstruction results with various regularization for one big and two small inclusions. (a) True 𝜇𝑎; (b) reconstruction of 𝜇𝑎 with
TV-𝐿1 penalty; (c) reconstruction of 𝜇𝑎 with TV penalty; (d) reconstruction of 𝜇𝑎 with 𝐿1 penalty.

Table 2: Regularization parameters, error estimates, and iteration number for different cases in the second example in Section 5.2.

Cases Parameters TV-𝐿1 TV 𝐿1
Two small inclusions

(𝛼, 𝛽, 𝜂) (10−4, 10−3, 10−5) (10−4, 0, 0) (0, 10−3, 10−5)
Iters 11 39 5𝐸resi 7.3 × 10−5 6.4 × 10−5 3.3 × 10−4𝐸𝜇𝑎 13.29% 14.78% 15.76%

Three small inclusions

(𝛼, 𝛽, 𝜂) (10−4, 10−3, 10−5) (10−3, 0, 0) (0, 10−3, 10−5)
Iters 8 79 6𝐸resi 8.6 × 10−5 7.0 × 10−5 6.3 × 10−4𝐸𝜇𝑎 15.02% 15.80% 15.88%

One big and two small inclusions

(𝛼, 𝛽, 𝜂) (10−3, 10−3, 10−5) (10−3, 0, 0) (0, 10−4, 10−6)
Iters 32 53 6𝐸resi 9.5 × 10−4 6.8 × 10−4 0.0019𝐸𝜇𝑎 15.75% 15.47% 15.17%

scattering coefficients on the piecewise constant basis. The
minimization problem is solved by a Levenberg-Marquardt
type method which is equipped with a split Bregman algo-
rithm for the 𝐿1 penalty. The adjoint method is used to
compute the Jacobian matrix which is the discretized Fréchet
derivative of the forward operator. We numerically compare
the proposed reconstruction method with the other imaging

reconstruction methods based on TV and 𝐿1 regularizations.
The simulation results show the validity and robustness of the
proposed method.
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Figure 9: Reconstruction of 𝜇𝑎 with Algorithm 1 for high absorption and low scattering situation. (a) True 𝜇𝑎; (b) reconstruction of 𝜇𝑎 with
exact data; (c) reconstruction of 𝜇𝑎 with noise level 0.1%; (d) reconstruction of 𝜇𝑎 with noise level 1%.
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