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Introduction

Revascularization of coronary bifurcation lesions 
(CBLs) with percutaneous coronary intervention (PCI) 
entails technical challenges and carries a higher risk of 
periprocedural and long-term adverse events. Recent 

technological improvements have made the acquisition 

of three-dimensional optical coherence tomography 

(3D-OCT) datasets feasible. This article aims to provide a 

review of current clinical applications of 3D-OCT, which 

provide additive information on plaque distribution of 
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Abstract: Percutaneous coronary intervention (PCI) for coronary bifurcation disease remains one of the 
most challenging situations in interventional cardiology in terms of procedural success rates and long-term 
cardiac events. Optical coherence tomography (OCT), with a higher signal-to-noise ratio and the ability to 
distinguish plaque components, can display the true condition of bifurcation lesions without overlapping 
or shortening and achieve detailed visualization of vascular structures, which is superior to those of other 
imaging modalities. Three-dimensional (3D) reconstruction of OCT images (3D-OCT) helps to gain a 
more informed understanding of the geometry and morphology of bifurcation lesions and provide additive 
information on plaque distribution. Following stent implantation, 3D-OCT can also guide the re-crossing of 
guide wires through stent struts jailing the side branch (SB) ostium and more clearly display the jailing strut 
configuration, as well as the ideal position of the guidewire recrossing point and stent struct link connection, 
to confirm the optimal guidewire position and understand interactions between stents and vessel walls, which 
may improve clinical results after PCI. The present review provides an up-to-date overview of the clinical 
use of 3D-OCT for accurate assessment of bifurcation anatomy, guiding the optimal guidewire rewiring 
into SB during bifurcation stenting, and evaluation of post-PCI results, offering novel information about 
atherosclerotic disease or stenting process.
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bifurcation lesions, the optimal stent cell at the side branch 
(SB) ostium for recrossing the guidewire, stent expansion, 
apposition and edge dissection following stent implantation, 
and the neointimal formation for bifurcation stent during 
follow-up. Although 3D-OCT imaging presents in-depth 
insights into stent optimization for CBLs, clinical evidence 
for its improved prognosis remains to be established. 
Nonetheless, we are sanguine about its wide application 
in the future with the development and refinement of 
technology.

OCT and coronary revascularization

There are 2 primary applications of intravascular imaging: 
intravascular ultrasound (IVUS) and OCT. OCT is a 
near-infrared, interferometric, ‘histology-like’ imaging 
modality for evaluating the microstructure of coronary 
arteries with high spatial resolution of approximately 
10–15 μm available for in vivo use to date (1). Moreover, 
OCT with higher signal-to-noise ratio and the ability 
to distinguish plaque components can achieve detailed 
visualization of vascular structures, which is superior to 
those of other imaging modalities, such as angiography 
and IVUS (2-4). Nevertheless, the physical curvature 
of the coronary arteries is not captured by OCT alone 
and requires an additional modality to complement the 
OCT (such as multiple angiographic planes or coronary 
CT angiography). Systematic review and network meta-
analysis revealed that the use of OCT for guiding PCI 
improves long-term clinical outcomes compared with 
angiography-guided PCI (5,6). In fact, the latest guidelines 
from European Society of Cardiology (ESC)/EACTS have 
updated the indications for OCT for stent optimization 
to class IIa level recommendations, which is consistent 
with the recommendations for IVUS (7). In recent years, 
OCT is increasingly used to investigate the pathological 
mechanisms of coronary artery disease and/or to optimize 
the results of PCI (8-11), especially for bifurcation PCI (12).  
Overall, OCT can display the true condition of CBLs 
without overlapping or shortening, which frequently occurs 
on angiography, providing useful guidance for the treatment 
of CBL (13). 

Challenges of PCIs for bifurcation lesions

CBL refers to severe stenosis of the main vessel (MV) 
and SB either separately or simultaneously, including left 
anterior descending, diagonal branch, left circumflex, 

obtuse marginal branch, distal bifurcation of the right 
coronary artery, and bifurcation of the left main (LM). It 
involves a large variety of complex anatomic subsets due 
to several factors including plaque burden and location, 
the angle between the MV and the SB and the diameter of 
the branch (14). As estimated by the European Bifurcation 
Club, CBLs account for 15% to 20% of all PCI (15). 
PCI for CBLs entails technical challenges with high 
risk of periprocedural risk and even long-term adverse 
cardiovascular events, driven by repeat revascularization 
and stent thrombosis (16), even in the era of the latest 
generation of drug-eluting stents and in the setting of 
complex bifurcation PCI.

Bifurcation stenting techniques are st i l l  being 
continuously refined, improved and developed. Stepwise 
layered provisional stenting (PS) is the most used 
strategy to treat CBLs, starting with implantation of a 
MV stent across the SB ostium followed by the proximal 
optimization technique and implantation of a second stent 
in the SB only when required (17). However, in clinical 
practice, it is difficult to define a “suboptimal” result for 
the SB ostium and there is no unified standard. Even in 
the absence of a suboptimal SB result, the necessity of 
clearing stent struts from the SB ostium continues remains 
controversial. If the single stent strategy cannot provide 
sufficient support for the ostium of the SB, the two-stent 
technique should be considered in patients with complex 
CBL stratified by the DEFINITION criteria (18,19). 
Nevertheless, the current high rates of restenosis and re-
intervention in CBLs treating by 2-stent strategies may 
be due to factors such as the high metal mass at the stent 
overlap, irregular overlapping of struts at the carina, 
twisting of the SB stent, polymer rupture at the origin 
of SB, and uneven distribution of stent struts, as well as 
changes in natural flow dynamics (20). 

When performing PCI for CBLs, the main challenges 
are the highly variable bifurcated anatomy and the extent 
of myocardium in jeopardy. Angiographic assessment of 
the three main sectors of the coronary bifurcation has 
limitations, including the degree of stenosis (e.g., area 
stenosis) and other predictors that jeopardize the bifurcation 
segment in question (e.g., plaque burden, carina tip angle, 
or distance from branching point to carina tip) (21), which 
affects the choice of PCI strategy for CBLs, thereby 
affecting the short-term and long-term outcomes of PCI. 
Undoubtedly, intracoronary imaging could overcome some 
important limitations of angiography. Findings from large 
observational cohort studies, randomized trials, and meta-
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analyses have shown that OCT-guided PCI might reduce 
major adverse cardiovascular events (5,6).

Advantage of 3D-OCT in PCIs

With the development of new OCT technologies, precise 
3D reconstruction of coronary arteries can more accurately 
evaluate the morphology and function of plaques (13). 
Online automatically generated 3D reconstruction is 
available. However, current techniques cannot fully capture 
the complex morphology-modulated mechanical responses 
that affect plaque stability, leading to catastrophic failure 
and muting the benefit of device and drug interventions. 
Biomechanical simulation could assist in this prediction, 
but this requires extracting morphological features from 
OCT imaging to construct accurate 3D simulations of 
patients’ arteries (22,23). 3D-OCT can be used to gain 
a more informed understanding of the geometry and 
morphology of CBL (24). Following stent implantation, 
3D-OCT can also guide the re-crossing of guide wires 
through stent struts jailing the SB ostium and more 
clearly display the jailing strut configuration, as well 
as the ideal position of the guidewire recrossing point 
and stent struct link connection, to confirm the optimal 
wiring and SB expansion and reduce acute incomplete 
stent apposition (1). 

However, the curved centerline of the artery couldn't be 
obtained by the OCT. The actual images are reconstructed 
from OCT relative to the catheter tip and imaging is 
subject to rotational artifacts, which may have an impact 
on the vessel shape estimated from OCT. The combined 
application of biplane angiography and OCT Imaging 
can achieve quantitative analysis of 3D artery volume 
reconstructions (25).

Accurate assessment of CBL anatomy by 3D-OCT

A thorough understanding of the anatomical structure 
of CBLs is crucial for better procedural planning and 
clinical outcomes. The definition of coronary bifurcation 
angle is the angle between centerlines of the distal MV 
and the SB; the angle between crossing lines of the 
proximal MV line before the branch point and the SB 
axis at the point of divergence was defined as carina angle 
(Figure 1). At present, the bifurcation angle and carina 
angle are all considered as the critical factors influencing 
flow disturbance, plaque formation, PCI procedure, SB 
occlusion, and clinical outcomes (26). Both plaque shift 
(dilation or stent implantation can cause the lesion at the 
proximal or distal of the bifurcation to shift towards the SB) 
and carina shift (stent-induced increase in lumen diameter 
of the MV shifted the carina into the SB ostial) have been 
considered as a potential mechanism in the pinching of the 
SB during bifurcation stenting (Figure 2), since atheroma is 
rarely seen at the carina alone because of its high wall shear 
stress area. Therefore, accuracy and precision of bifurcation 
and carina angle measurements could help us better analyze 
the anatomical characteristics of CBLs and optimize stent 
implantation strategies.

Images of coronary computed tomography angiography, 
quantitative coronary angiography, IVUS or OCT can 
be used for 3D reconstruction of CBL (26). However, 
coronary computed tomography angiography is limited by 
cardiac and lung motion and calcium blooming artifacts; 
3D quantitative coronary angiography cannot provide the 
accurate bifurcation angle due to the inherent shortcomings 
of using two 2D angiography images which result in 
overlapping of branches and vessel foreshortening; IVUS 
lacks the imaging resolution to fully appreciate the complex 
architecture of the bifurcation (27). Notably, the bifurcation 
reconstructed by 3D-OCT can inform the operator about 
the precise anatomical structure (26,27). Using 3D-OCT 
to determine the type of CBLs, whether vertical or parallel, 
can serve as another supplement to visual assessment of 
bifurcation appearance (28). The perpendicular type was 
defined as a bifurcation in which the SB opening was visible 
as an elliptical shape and was not concealed by the carina 
when viewed perpendicular to the vessel wall on the cut-
away view of the 3D-OCT image. In contrast, parallel 
type bifurcation was defined as a bifurcation in which the 
proximal course of the SB was concealed behind the carina. 
Nishimura et al. analyzed 60 CBLs treated by MV stenting 
with kissing balloon inflation under OCT guidance and 

Figure 1 Coronary bifurcation angle and carina angle.
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found that the optimal cut-off distal bifurcation angle for 
predicting vertical bifurcations was 51.0° (29). Nonetheless, 
clinical implications of 3D-OCT bifurcation type are 
needed to be further investigated. In brief, evaluating the 
anatomical structure of CBLs through 3D-OCT is accurate, 
feasible, highly reproducible, and can be completed in a 
short time.

3D-OCT guided optimal guidewire rewiring into 
SB during bifurcation stenting

The optimal stenting procedure in bifurcations is still 
under debate (18,30), despite various techniques, devices 
and diagnostic methods currently available. In clinical 
practice, SB orifices would usually be narrowed or occluded 
due to plaque embolization, carina or plaque shift, spasm 
and dissection at the ostium, and interference by the 
stent struts after the implantation of stents in the MV. 
Especially, 3D-OCT can not only evaluate the anatomical 
characteristics of CBLs, but also clearly display the stent 
struct link location overhanging the SB ostium and guide 
rewiring of the distal cell of the jailed SB ostium prior to 
the final kissing balloon inflation to minimize the risk of 
struts pushed inside the MV creating a so-called de novo 
“metal carina” (31,32). Overhanging metallic struts in the 
SB ostium could lead to neointima bridges between the 
SB ostium and the metal structure, and when performing 
revascularization in the distal SB in future, it may hinder the 
entry of stents or balloons into SB (33). The computational 
flow simulation of the shear rate showed that after proximal 
re-crossing the remaining unopposed metal carina (strut 
jailing the SB) could cause an abnormal high shear rate 
level above 2,000 s−1, whereas after distal crossing and 
kissing balloon less disturbance of shear rate exists (34). 
Furthermore, the metal carina leads to flow disturbances, 

which is an important reason for the induction of platelet 
activation and stent thrombosis at the bifurcation stent site.

After the implantation of  stent in bifurcation, 
configurations for the stent-link location overhanging the 
SB ostium displayed by 3D OCT can be divided into the 
link-free type and the link-connecting type. Results from 
a retrospective study (35) and a prospective multicenter 
registry (28) both showed that the incidence of incomplete 
stent apposition in cases with the link-free type was 
significantly lower than in those with the link-connecting 
type after the final kissing balloon inflation with distal 
cell guidewire rewiring. In a multicenter center registry 
study by Nagoshi et al. (36), 150 CBLs treated with single 
stenting following kissing balloon inflation, and results 
demonstrated that compared with 2D-OCT guidance, the 
incidence of incomplete stent apposition under 3D-OCT 
guidance was significantly reduced. The above study results 
indicate that it is feasible to select the guidewire recrossing 
point and consider the stent link position prior to the final 
kissing balloon inflation and that the stent link location 
in the SB ostium is out of control after stent implantation 
(35,36). Nowadays, the reconstruction of 3D-OCT images 
during the surgical process can be quickly completed online, 
and stent optimization can be completed simultaneously 
based on the results.

After MV stent implantation, when the guidewire passes 
through the stent cell to SB, the success rate of guidewire 
successfully passing through the distal stent cell to SB is 
55–66% under angiography guidance, but under 3D-OCT 
guidance, the success rate can be increased to 87–100% 
(28,32,37). 3D-OCT imaging can also contribute to detect 
the guidewire partially or entirely recrosses outside the stent 
through the SB (38). Based on 3D-OCT images, although 
the guidewire passes through the optimal distal cell to 
SB, if the stent link is located at the SB ostia, severe stent 
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Figure 2 Plaque shift and carina shift. (A) Plaque distribution before bifurcation stenting; (B) plaque shift after bifurcation stenting; (C) 
carina shift after bifurcation stenting.
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deformation may occur during kissing balloon inflation, 
which may affect patients’ clinical outcomes. Surprisingly, 
the balloon-push technique (39), by which an inflated 
balloon is forced into the SB from the proximal MV is a 
feasible way to remove jailed struts without causing severe 
stent deformation. Nagoshi et al. analyzed the imaging 
data of 51 cases of bifurcation stent and found that it 
was feasible to remove jailed struts with the balloon-
push technique, which would not cause severe stent 
deformation, and factors related to failure to remove jailed 
struts included a smaller balloon diameter/SB diameter 
ratio and trifurcation lesions (40). Thus, 3D-OCT guided 
guidewire rewiring into SB during bifurcation stenting 
significantly improves the success rate for optimal guidewire 
crossing, resulting SB ostia to have a large opening area.

In the multicenter-prospective 3D-OCT Bifurcation 
registry, 75 patients with LM (n=35) and non-LM (n=40) 
CBLs treated with single stent strategy were enrolled, and 
the relationship between the optimal rewiring position at 
the SB ostium and the SB ostial area was investigated (41).  
They found that the SB ostial areas with the optimal 
rewiring position showed no significant change at the post-
procedure and at the 9-month follow-up regardless of 
whether LM or non-LM, however, the areas of SB ostia 
with the sub-optimal rewiring were significantly decreased 
at the 9-month follow-up.

Evaluation of post-PCI results by 3D-OCT

By utilizing the superior resolution of OCT, it is now 
possible to assess a broad spectrum of post-PCI stent- 
and vessel-related anomalies in three dimensions with 
a high resolution, including malapposed stent struts, 
underexpansion with calcification, stent edge dissection, 
residual focal lesion, jailed SB, geographic miss, residual 
stent edge disease (42). Additionally, by combining 
3D-OCT with automatic strut detection and longitudinal 
view, the stent platform can be accurately identified (43). 
Especially exciting, the latest OCTOBER trial showed that 
OCT-guided PCI has a lower 2-year incidence of major 
adverse cardiac events at 2 years compared with angiography-
guided PCI in patients with complex CBLs (12). 

After using a single stent strategy for the treatment of 
CBLs, angiography usually reveals narrowing of the SB 
ostium (44,45), which may increase the subsequent risk 
of adverse clinical events. However, numerous studies 
reported that pressure wire detected no impairment 
of blood flow supply in jailed SB stenosis evaluated 

by angiography (46-48). After stenting in the MV, the 
pullback from the SB is not always feasible and implies 
additional contrast medium administration. Quantitative 
measurements of  the SB ostial  area based on 3D 
reconstructed OCT pullback from the MV may therefore 
have clinical application, facilitating the assessment as to 
whether the SB is hemodynamically obstructed. In the 
3D-OCT analysis, the morphology of the SB ostium 
appeared elliptical instead of circular after MV stent 
crossover implantation, which leads to the appearance of 
stenosis in the SB ostium on angiography, overestimating 
the degree of stenosis in the SB ostium. Meanwhile, 
3D-OCT measurements did not find any statistically 
significant changes in the minimum lumen area of the SB 
ostium during the subsequent 1–2 years follow-up (49).  
Therefore, 3D-OCT analysis may be helpful to guide 
decisions about additional intervention after CBL stent 
implantation compared with quantitative coronary 
angiography measurements.

The jailed strut at the SB orifice may be a cause of 
delayed neointimal coverage after single stenting to 
bifurcation, which would have an effect on the SB ostium 
area and might result in SB flow disturbance during long-
term follow-up. A retrospective study showed that tissue 
coverage thickness and the ratio of uncovered to total struts 
was correlated, with high intra-observer and inter-observer 
agreement (41). It could also be a useful tool for assessing 
the safety of stent. Additionally, Kume et al. (50) analyzed  
29 cases of 3D OCT-guided single-stent implantation for 
the treatment of CBLs and followed at 18 months after PCI, 
they found that although neointimal obstruction at the SB 
ostium was significantly greater in the link group than that 
in the no-link group, SB flow was not affected during the 
follow-up period. Just as inevitably, jailing of a stent strut 
link at the SB orifice after MV stent implantation should be 
avoided as much as possible. Similarly, Nakamura et al. (51)  
classified the configuration of overhanging struts at the SB 
orifice into three groups according to the 3D aspect of the 
jailing configuration: “No-jail type” (N-type), in which 
there were no overhanging struts at SB orifice; “Simple jail 
type” (S-type), in which there were overhanging struts, but 
no longitudinal stent link between crowns at the carina; 
and “Complex jail type” (C-type), in which there were 
overhanging struts with a longitudinal link connecting to 
the carina (Figure 3). Comparison of the change in the side-
branch flow area from baseline to 6- to 12-month follow-
up based on cut-plain 3D-OCT analysis revealed that the 
side-branch flow area in the N-type and S-type groups did 
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not change remarkably, whereas that in the C-type group 
was significantly decreased and some of the compartments 
were filled with tissue. Serial changes in side-branch flow 
area were similar between different stents and might be 
influenced by jailed type complexity rather than by the 
type of drug eluting stent, suggesting that the complexity 
of the stent jail is associated with the progression of SB 
ostial stenosis. Thus, stents with fewer stent strut links 
at SB orifice might be better for CBL PCI employing a 
provisional single stent strategy. It is necessary to conduct 
further large-scale studies with long-term follow-up to 

determine the exact relationship between the jailed strut 
pattern at the SB orifice and SB flow disturbance as well as 
clinical outcomes due to delayed neointimal coverage.

Conclusions

In general, the potential clinical applications of 3D-OCT 
include accurate assessment of CBL anatomy, optimal 
guidewire rewiring into SB during bifurcation stenting and 
evaluation of post-PCI results. Although the information 
from 3D-OCT imaging offers us with in-depth insights 

Figure 3 The configuration of overhanging stent struts at the side branch orifice. (A) Simple jail type; (B) complex jail type.
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into stent optimization for CBL, its clinical evidence still 
needs to be established. In the future, 3D-OCT should 
be further improved in frame rates, pullback speeds and 
electrocardiogram-gated image acquisition, automated strut 
identification algorithms and quantitative measurements 
to provide more sensitive, specific, reproducible, and high-
resolution measurements and improve early diagnosis 
and monitor diseases and expand its clinical application 
scenarios. Furthermore, a hybrid IVUS-OCT system can 
overcome the limitations associated with each technology 
and integrate the advantages of both modalities (52). Based 
on this fusion imaging system, 3D reconstruction may 
provide more information on blood vessels and lesions, 
thereby providing more accurate guidance for PCI for 
CBLs.
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