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Abstract: Iron (Fe), copper (Cu), and zinc (Zn) are microelements essential for the proper functioning
of living organisms. These elements participatein many processes, including cellular metabolism
and antioxidant and anti-inflammatory defenses, and also influence enzyme activity, regulate gene
expression, and take part in protein synthesis. Fe, Cu, and Zn have a significant impact on the health
of pregnant women and in the development of the fetus, as well as on the health of the newborn.
A proper concentration of these elements in the body of women during pregnancy reduces the risk of
complications such as anemia, induced hypertension, low birth weight, preeclampsia, and postnatal
complications. The interactions between Fe, Cu, and Zn influence their availability due to their
similar physicochemical properties. This most often occurs during intestinal absorption, where metal
ions compete for binding sites with transport compounds. Additionally, the relationships between
these ions have a great influence on the course of reactions in the tissues, as well as on their excretion,
which can be stimulated or delayed. This review aims to summarize reports on the influence of Fe,
Cu, and Zn on the course of single and multiple pregnancies, and to discuss the interdependencies
and mechanisms occurring between Fe, Cu, and Zn.
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1. Introduction

Macroelements and microelements are essential for the proper functioning of living organisms
(Figure 1). They participatein many processes, including cellular metabolism and antioxidant and
anti-inflammatory defenses, and also influence enzyme activity, regulate gene expression, and take
part in protein synthesis [1]. Provided in the diet, their levels in the human body depend on the
geographical location, environmental pollution, gender, and age. A considerable body of research has
been devoted to the concentrations of iron (Fe), copper (Cu), and zinc (Zn) in biological materials from
women during childbirth, including fetal membrane (FM) and serum (FS), cord blood(CB), serum (CS)
and plasma (CP), and maternal blood(MB), serum (MS) and plasma (MP), and placenta (P) (Table 1).
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Table 1. The concentrations of iron (Fe), copper (Cu), and zinc (Zn) in different biological materials collected from women during childbirth (n, number of women; FM,
fetal membrane; FS, fetal serum; C, cord; CB, cord blood; CS, cord serum; CP, cord plasma MB, maternal blood; MS, maternal serum; MP, maternal plasma; P, placenta;
dw, dry weight; ww, wet weight).

Research Area n Mean Age (Years)
Concentration of

References
Fe Cu Zn

Europe

Szczecin, Poland 170 29
P: 640.726 mg/kg dw P: 6.013 mg/kg dw P: 66.904 g/kg dw

[2]FM: 640.726 mg/kg dw FM: 8.906 mg/kg dw FM: 62.788 g/kg dw
C: 567.285 mg/kg dw C: 4.320 mg/kg dw C: 54.653 g/kg dw

Poznan, Poland 64 28.1
MS: 1.08 µg/mL MS: 0.63 µg/mL MS: 1.91 µg/mL

[3]CS (vein): 1.96 µg/mL CS (vein): 0.65 µg/mL CS (vein): 0.36 µg/mL
CS (artery): 1.63 µg/mL CS (artery): 0.65 µg/mL CS (artery): 0.36 µg/mL

Oleśnica, Poland 64 27 - MP: 1.93 mg/L MP: 0.58 mg/L [4]
CP: 0.49 mg/L CP: 0.82 mg/L

Sverdlovsk region
(non-industrial areas)

andYekaterinburg
(industrial city), Russian

Pregnant women from
non-industrial areas (29)

Age range: 17–42
- MS: 5.44 mkg/mL

P: 6.1 mkg/mL -
[5]

Pregnant women from
industrial city (127) - MS: 4.73 mkg/mL

P: 13.34 mkg/mL -

Moscow, Russian

(150) control 33.1 MS: 1.34 µg/L MS: 1.15 µg/L -

[6]
Pregnancy (169) 33.4 MS: 1.27 µg/L MS:1.60 µg/L -

Miscarriage (75) 34.8 MS: 1.43 µg/L MS: 1.12 µg/L -

Infertility (91) 35.5 MS: 1.29 µg/L MS:1.04 µg/L -

Barcelona, Spain

Appropriate for gestational
age (96) 32 - -

MS: 1181 µg /dL ww
FS: 1518 µg /dL ww

P: 8.4 µg /dL ww

[7]
Intrauterine growth

restriction (49) 32 - -
MS: 935 µg/dL ww
FS: 935 µg/dL ww
P: 8.5 µg/dL ww

Small for gestational
age (33) 30 - -

MS: 984 µg/dL ww
FS: 1134 µg/dL ww

P: 8.9 µg/dL ww
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Table 1. Cont.

Africa

Mid-Western Region,
Nigeria 22 - P: 84.3 µg/gm dw P: 6.3 µg/µm dw P: 66.6 µg/µm dw [8]

North America

New Hampshire, USA 1159 31.2 - - P: 10.26 µg/g ww [9]

Las Vegas, Nevada, USA 28 29.9 P: 1185.18 µg/L dw P: 7.81 µg/L dw P: 63.59 µg/L dw [10]

New York, USA

Women carrying
multiples (101) 30 P: 26.63 µg/g dw - P: 5.9 µg/g dw

[11]
Women carrying
singletons (132) 17.4 P: 17.99 µg/g dw - P: 2.6 µg/g dw

Chattanooga, USA 374 - P: 503,200 µg/kg dw P: 3889 µg/kg dw P: 55,120 µg/kg dw [12]

Pune, India

Normal pregnancies (47)

Age range: 19–35

MB: 120.4 µg/dL MB: 1.44 µg/dL MB: 57.5 µg/dL

[13]
CB: 153.4 µg/dL CB: 0.26 µg/dL CB: 90.8 µg/dL

Preeclamptic
pregnancies (14)

MB: 96.3 µg/dL MB: 1.58 µg/dL MB: 49.2 µg/dL
CB: 118.6 µg/dL CB: 0.81 µg/dL CB:79.9 µg/dL

Delhi, India

Females delivered full term
babies (gestational age

>37 weeks) (50)
25.54 P: 58.94 µg/dL dw P: 0.255 µg/dL dw P: 18.28 µg/dL dw

[14]
Females delivered pre-term

babies (gestational age
<37 weeks) (30)

24.63 P: 50.60 µg/dL dw P: 0.220 µg/dL dw P: 17.26 µg/dL dw

Jaipur, India
Pregnant women (80) 29.8 P: 72.7 µg/dL P: 187.3 µg/dL P: 70.5 µg/dL

[15]
Non-pregnant women (20) 20 P: 106.9 µg/dL P: 127.7 µg/dL P: 100.9 µg/dL

Ahmedabad, India

Women with spontaneous
abortion(159) 24.85 - MS: 1.59 mg/L MS: 1.43 mg/L

[16]
Woman without

spontaneous abortion (118) 23.65 - MS: 1.81 mg/L MS: 1.46 mg/L
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Hyderabad, India

Pregnant women from
rural area (30) 21.1

MS: 201.6µg/dL MS: 166.6µg/dL MS: 205.1µg/dL

[17]

CS: 279.8 µg/dL CS: 92.03µg/dL CS: 128.2 µg/dL
P: 1159.5 µg/g P: 78.4 µg/g P: 49.6 µg/g

Pregnant women from
urban area (30) 22.2

MS: 128.6 µg/dL MS: 150.7µg/dL MS: 245.6µg/dL
CS: 200.3 µg/dL CS:83.5µg/dL CS: 122.1µg/dL
P: 1458.2 µg/g P: 61.4µg/g P: 51.5 µg/g

Jakarta, Indonesia

Pregnant womens
≥37 weeks of gestational

age for the term group (25)
27.68

P: 252.16 µg/g dw P: 2.96 µg/g dw P: 58.34 µg/g dw

[18]

CB: 212.00 µg/dL dw CB: 32.20 µg/dL dw CB: 293.80 µg/dL dw
MS: 77 µg/dL dw MS: 222.65 µg/dL dw MS: 45.16 µg/dL dw

Pregnant womens preterm
birth in 26–36 weeks of

gestational age (26)
24.0

P: 78.45 µg/g dw P: 1.62 µg/g dw P: 28.41 µg/g dw
CB: 236.50 µg/dL dw CB: 20.60 µg/dL dw CB: 321.43 µg/dL dw
MS: 71.50 µg/dL dw MS: 215.35 µg/dL dw MS: 40.26 µg/dL dw

Fukuoka, Japan 48 29.3 - P: 3910 ng/g dw P: 48,100 ng/g dw [19]
C: 2960 ng/g dw C: 35,700 ng/g dw

Shanghai, China 1568 26.4 MS: 8.1 mmol/L MS: 23.43 µmol/L MS: 87.32 µmol/L [20]

Amman, Jordan 92 27 CB: 116 µg/dL CB: 49 µg/dL CB: 114 µg/dL [21]
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Figure 1.Effects of zinc (Zn), copper (Cu), and iron (Fe) on pregnant women. Excess Zn in the body 
during pregnancy can have teratogenic or lethal effects. A deficiency of this element may cause 
preterm birth, pregnancy-induced hypertension (PIH), low birth weight, preeclampsia, and placental 
insufficiency. High concentrations of Fe in pregnant women may increase the amount of reactive 
oxygen species (ROS,) lead to hemochromatosis and prelabor rupture of membranes. Fe deficiency, 
in turn, may lead to iron deficiency anaemia (IDA), low birth weight, and preeclampsia. 
Hypercupremia may lead to Wilson’s disease and Fenton’s reagent, and may contribute to 
premature birth, low birth weight, and gestational diabetes. Hypocupremia may lead to 
hypochromic anemia, intrauterine growth restriction (IUGR), spontaneous delivery, and 
spontaneous abortion. Large amounts of inorganic Fecan be found in lentils and spinach, while 
organic Fe is abundant in pork liver. Oysters, beef liver, and cocoa are rich sources of Cu, while calf 
liver, pumpkin, pork liver, and white beans have high concentrations of Zn. 

During pregnancy, the diet should meet the needs of the baby, as well as that of the mother, 
whose health is closely related to the provision of adequate amounts of essential elements including 
Fe, Cu, and Zn. Their levels before pregnancy can also be of significance [22]. The study by Caan et 
al. [23] showed that the Special Supplemental Nutrition Program for Women, Infants, and Children 
(WIC) initiated 5–7 months before pregnancy resulted in an increase in birth weight by 131 g and 
length by 0.3 cm. Providing the right amount of essential elements with a diet or by supplementation 
can reduce the risk of fetal malformation and preterm birth [24], including multiple 
pregnancies—associated with a higher risk of perinatal complications [25]. These complications are 
likely to cause premature birth, miscarriage, hypotrophy of one or both fetuses, preeclampsia, fetal 
death, or fetal atrophy syndrome [26]. 
  

Figure 1. Effects of zinc (Zn), copper (Cu), and iron (Fe) on pregnant women. Excess Zn in the
body during pregnancy can have teratogenic or lethal effects. A deficiency of this element may cause
preterm birth, pregnancy-induced hypertension (PIH), low birth weight, preeclampsia, and placental
insufficiency. High concentrations of Fe in pregnant women may increase the amount of reactive oxygen
species (ROS,) lead to hemochromatosis and prelabor rupture of membranes. Fe deficiency, in turn, may
lead to iron deficiency anaemia (IDA), low birth weight, and preeclampsia. Hypercupremia may lead
to Wilson’s disease and Fenton’s reagent, and may contribute to premature birth, low birth weight, and
gestational diabetes. Hypocupremia may lead to hypochromic anemia, intrauterine growth restriction
(IUGR), spontaneous delivery, and spontaneous abortion. Large amounts of inorganic Fecan be found
in lentils and spinach, while organic Fe is abundant in pork liver. Oysters, beef liver, and cocoa are rich
sources of Cu, while calf liver, pumpkin, pork liver, and white beans have high concentrations of Zn.

During pregnancy, the diet should meet the needs of the baby, as well as that of the mother,
whose health is closely related to the provision of adequate amounts of essential elements including Fe,
Cu, and Zn. Their levels before pregnancy can also be of significance [22]. The study by Caan et al. [23]
showed that the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC)
initiated 5–7 months before pregnancy resulted in an increase in birth weight by 131 g and length by
0.3 cm. Providing the right amount of essential elements with a diet or by supplementation can reduce
the risk of fetal malformation and preterm birth [24], including multiple pregnancies—associated
with a higher risk of perinatal complications [25]. These complications are likely to cause premature
birth, miscarriage, hypotrophy of one or both fetuses, preeclampsia, fetal death, or fetal atrophy
syndrome [26].

2. Iron (Fe)

Iron (Fe) is a microelement necessary for the proper functioning of living organisms.
An adult female body contains about 2 g of Fe (42 mg Fe/kg body weight, b.w.), mainly in the
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hemoglobin(Hgb;~60%), in ferritin and hemosiderin in the liver, spleen, and bone marrow, and
myoglobin and some enzymes, including catalase, peroxidases, and cytochromes [27].

Fe is involved in many metabolic processes, including oxygen respiration, detoxification of reactive
oxygen species (ROS), drugs and xenobiotics, and the synthesis and metabolism of various compounds,
such as hormones, myelin, neurotransmitters, nucleic acids, and heme. Fe participates in the transport
of molecular oxygen from the lungs to all body tissues and cells [28]. This element takes part in
erythropoiesis and immune reactions affecting the humoral and cellular immunity of the body [29–32].
The iron is essential trace elementfor collagen synthesis and the conversion of 25-hydroxyvitamin D
into an active form [33]. Fe plays an important role in electron transport [34] and takes part in the
regulation of the cell cycle by influencing the expression of certain genes, such as protein kinase C,
nitric oxide synthase, and cyclin dependent kinase inhibitor1A(p21) [32,35,36].

Iron is supplied to the human body with the food. A balanced diet for men should contain
about 1–2 mg Fe per day [37], while women, due to blood loss during menstruation, should intake
4–5 mg per day [38]. During pregnancy, this level should increase from 4 mg in the 1st trimester to
8 mg in the 2nd trimester, and 15 mg per day in the 3rd trimester [39], due to the increased demand
associated with fetal growth, placenta, Hgb formation, and the increase in maternal muscle mass,
especially in the 2nd and 3rd trimester of pregnancy [40]. During pregnancy, plasma volume increases
by 40–60% and red cell mass by 18–25% [41–43]. Hemoglobin concentration decreases to 10.5–11 g/dL
and the hematocrit value to 30–32% [42,44]. This process, known as hemodilution, usually intensifies
between the 17th and 36th weeks of pregnancy [43]. Additionally, it may result in a slightly decreased
vitamin B12 concentration (in about 10–28% of women) [45] and a slight decrease in platelet count [46].
It is also worth noting in that during this time (i.e., 17–36 weeks) the number of white blood cells
increases by about 20% due to increased hormonal activity (e.g., glucocorticosteroids) and cytokine
synthesis (an increase in granulocyte-macrophage colony-stimulating factor) [47]. The World Health
Organization (WHO) and the Centers for Disease Control and Prevention (CDC) define anemia in the
1st and 3rd trimesters as Hgb concentrations below 11.0 g/dL and hematocrit below 33%. In the 2nd
trimester the values are lower, 10.5 g/dL and 32%, respectively [48,49]. Large amounts of inorganic
Fe (non-heme Fe–Fe3+) can be found in lentils (8.6 mg/100 g), spinach (3.1 mg/100 g), and broccoli
(1.1 mg/100 g) [50]. In contrast, organic Fe (heme Fe–Fe2+) is mainly found in meat, such as pork liver
(19 mg/100 g) and beef (3.1 mg/100 g) [50]. The assimilability of Fe3+ is about 10% and Fe2+ up to 50% [51].

Human food most often contains Fe3+, reduced by ferrireductase to Fe2+ in the intestinal lumen [52].
Fe2+ absorption is based on the principle of active transport with a divalent metal transporter (DMT-1)
in the apical membrane of the duodenum and the upper part of the small intestine [53,54]. The divalent
metal transporter 1 (DMT1) is a non-selective transporter of bivalent metal ions, including iron,
zinc, copper, manganese, cobalt, and cadmium, whose transport through the membrane occurs
via proton-coupled divalent metal ion transporters [55,56]. Fe levels may also be influenced by
the expression of intestinal copper transporting P-type ATPases copper-transporting ATPase α

(ATP7A), which indirecly impairs Fe absorption by affecting the expression of Fe transporters [57].
Some researchers suggest a separate mechanism for the absorption of heme Fe which involves
heme carrier protein (HCP1), where Fe2+ is transported through the apical membrane of the small
intestine to enter the enterocytes, and then binds to apoferritin to form ferritin, a compound used to
store Fe2+ [58,59]. However, not all researchers agree that HCP1 plays this role [60]. For example,
a study by Qiu et al. [61] confirms the thesis that patients with a mutation in the gene encoding
HCP1/PCFT have a folate deficiency, with Fe metabolism intact. This shows that mechanism of
heme absorption via the intestines is still undefined [60]. The surplus Fe2+ in the enterocytes is
transported to the bloodstream by ferroportin (IREG1) and reoxidized to Fe3+ by hephaestin and
ceruloplasmin, then immediately bound to the major iron-binding plasma proteinapotransferrin
to form transferrin [62,63]. In a study on zebrafish (Danio rerio), Donovan [64] demonstrated that
IREG-1 on the surface of placental syncytiotrophoblasts is involved in the transport of Fe from the
mother to the fetus. The main protein transporting Fe3+ to cells is transferrin [65]. Equally important



Biomolecules 2020, 10, 1176 7 of 34

in Fe turnover is lactoferrin found in breast milk—a source of Fe3+ for newborns and infants [66].
The assimilability of Fe from lactoferrin is about 50%, while the assimilability of Fe from cow’s milk
is only about 5% [29]. Another important source of Fe in the body are macrophages, which recover
Fe2+ from erythrocytes [67]. Macrophagesdegrade Hgb, resulting in the release of Fe2+, which is then
transported by the transmembrane ferroportin transporter (FPN1) and oxidized by ceruloplasmin
to Fe3+, to finally bind to transferrin [68]. The whole process is controlled by hepcidin, a peptide
synthesized in hepatocytes, which regulates both the amount of Fe absorbed by enterocytes and Fe2+

released by macrophages [69,70].
The bioavailability of Fe in the bloodstream affects the absorption of Fe in the placenta and

increases with gestational age [71]. It is likely that the Fe balance between the woman and the fetus is
controlled by hepcidin [72]. Thanks to transferrin receptor 1 (TFR 1), Fe combined with transferrin can
be transferred to placental syncytiotrophoblasts from the bloodstream [73–75]. Bastin et al. [76] showed
the expression of TFR 1 on the apical maternal-facing membrane and, additionally, the expression
of ferroportin (FPN) which was localized on the basal fetal-facing membrane. This is the direction
that suggests the transport of Fe from mother to fetus. Moreover, the authors noted that ferritin was
strongly expressed in the stroma fetal tissue, which suggests iron storage. In the next stage, Fe3+ is
reduced to Fe2+ by ferrireductases STEAP 3 and STEAP 4 [77]. Subsequently, the transport of Fe from
the endosome, through the basale membrane to the fetus, takes place via DMT-1 [78] and/or ZIP 8
and ZIP 14 [79]. However, Gunshin et al. [80] challenged the theory of DMT-1 involvement in the
transport of Fe in the placenta. In their study, the mouse gene DMT-1 was inactivated, but this did
not prevent the birth of live offspring and confirmed the effective transfer of Fe through the placenta.
Therefore, ZIP 8 and 14 are more important than DMT-1, but current reports are not conclusive for
humans in this case [79,81]. The second interesting source of Fe supply to the fetus may be ferritin,
heme, and non-transferrin-bound iron (NTBI), but unfortunately at this point it has not been confirmed
by research. The entire mechanism described in this paragraph is not fully understood and we need
considerably more research on how exactly the placenta delivers Fe to the fetus [82,83].

Small amounts of Fe are excreted from the body with urine, saliva, sweat, and also as a result
of physiological blood loss in the digestive tract [84–86]. In women, epithelial exfoliation and blood
loss during menstruation cause a loss of about 1 mg of Fe [38]. To compensate for this loss, a similar
amount of Fe is absorbed from the gastrointestinal tract [87]. During pregnancy, intestinal absorption
of Fe in the 2nd and 3rd trimester increases by about 3 mg compared to the physiological state [88].
The high loss of Fe from the body is compensated by reserves stored in hepatocytes or macrophages [89].
The correct Fe concentration in blood should be 80–130 µg/L and remains in dynamic equilibrium with
the concentration of this element in erythrocytes, bone marrow, and in its free form [27].

Fe deficiency may occur as a result of a low Fe supply [90], increased blood loss [91], intravascular
hemolysis with hemoglobinuria occurring in malaria [92], Ancylostoma duodenale [93], Fe absorption
disorders from the gastrointestinal tract in the course of e.g., Helicobacter pylori infections, inflammatory
bowel diseases, coeliac disease [94], congenital or acquired transferrin deficiency [95], cancer [96], and
increased demand for Fe, e.g., during pregnancy [97]. The risk of Fe deficiency is high among women
during pregnancy and lactation, children and adolescents during intensive growth, vegetarians, and
in the elderly [98]. In addition, poisoning or oversupply of certain heavy metals, including lead,
manganese or cobalt may also cause Fe deficiency. [99]. Fe homeostasis is particularly vulnerable to Pb
due to its ability to bind to DMT1, which results in the secondary inhibition of Fe absorption [100].

In a study on laboratory animals (C57BL/6 mice), Hubbard et al. [101] found that removal
of Fe from the diet reduced the birth weight of the offspring and increased the risk of stillbirth.
Woodman et al. [102], in a study on Sprague-Dawley rats, evaluated mitochondrial function and ROS
generation in animals totally or partially deprived of Fe in their diet. The authors showed an increase
in the number of mitochondria in male kidneys. Additionally, they found an increase in cytosolic
superoxide inmale kidneys and liver and in female kidneys. The results suggested that male fetuses
were more susceptible to mitochondrial disorders and oxidative stress than female fetuses.



Biomolecules 2020, 10, 1176 8 of 34

At the beginning of pregnancy, a woman’s body uses tissue reserves of Fe (e.g., from
hepatocytes) [103]. In laboratory tests, the only indicator is a decrease in serum ferritin concentration
at normal serum Fe levels [104]. Then, as a result of increased hematopoiesis and the development
of the fetus and placenta, the Fe reserves in the mother’s body are exhausted [105]. This results in
hypochromic microcytic anemia, especially in the 2nd and 3rd trimester, which may give adverse
symptoms of organ and tissue dysfunction [106]. Premature birth or a low weight birth may occur [107],
as well as myocardial hypoxia (e.g., tachycardia) [108], cerebral hypoxia (e.g., weakness, drowsiness,
headaches, and dizziness) [109–111], immunosuppression [111], and appetite disorders (e.g., eating
chalk) [112]. The prevalence of anemia in pregnant women ranges from 17% to 31% in Europe and
North America, 53–61% in Africa, and 44–53% in Southeast Asia [113]. Milman et al. [114] found
that the prevalence of iron deficiency (ID) and iron deficiency anemia (IDA) in pregnant women
from Europe is 10–32% and 2–5%, respectively, and the lack of Fe supplementation during pregnancy
increased the prevalence. Only 20–35% of women of childbearing age did not require additional
Fe supplementation.

Insufficient supply of Fe can cause disorders in oxygen transport and consequently lead to
anemia [100]. It is particularly dangerous for women of reproductive age due to blood loss during
menstruation and also during pregnancy [115]. Fe deficiency may cause preeclampsia and premature
fetal membrane rupture in pregnant women [116], and also lead to a decrease in the child’s vital
signs [117,118]. The meta-analysis of Figueiredo et al. [119] proved that maternal anaemia was
associated with a higher risk of low birth weight. Pregnant women, especially those with multiple
pregnancies, should monitor Fe levels from the beginning of the pregnancy. Low Fe concentration at
the beginning of pregnancy significantly correlates with the occurrence of anemia in the last trimester
of pregnancy [120]. Therefore, it is recommended to supplement pregnant women’s daily diet with
27 mg of Fe per day, and with as much as 60 mg if they are diagnosed with anemia [121,122].

Fe-containing preparations have been found to have a positive effect on the course of pregnancy
and in the perinatal period. The supplementation of pregnant women with this micronutrient may
increase the bodyweight of newborns by 200 g on average [123]. On the other hand, excessive Fe
supplementation may lead to an increase in ROS formation, which in turn leads to tissue and organ
damage [124]. Peña-Rosas et al. [125] evaluated the effect of Fe supplementation in pregnant and
perinatal women and noted that daily Fe supplementation had a beneficial effect on the course of
pregnancy, reducing the risk of low birth weight of the newborn, and preventing the occurrence of
anemia in women. Abioye et al. [126] studied the effect of taking Fe supplementation in a group of
pregnant women with a deficiency of this element, assessing the value of hematological parameters
in patients before and after birth. The authors demonstrated a significant increase in the levels of
ferritin, hepcidin, and Hgb, and a decreased level of soluble transferrin receptor (sTfR). The increase in
Hgb concentration in the mothers also resulted in a reduced risk of newborn death. Similar results
concerning an increase in Hgb concentration and a decrease of anemia in women were described
by Zhao et al. [127]. Peña-Rosas et al. [128] found that pregnant women taking daily preparations
containing Fe were less at risk of adverse events and anemia during pregnancy than women who
supplemented this element irregularly. In contrast to other researchers, Ziaeii et al. [129] showed that
there was no significant relationship between the dosage of Fe-containing supplements and ferritin
concentration in pregnant women. Ali et al. [130] also studied the effects of different levels of Fe
supplementation in women pregnant with twins from 12 to 36 weeks of pregnancy. One group of
women received 27 mg of Fe daily and the other group 54 mg. In both groups, Hgb and hematocrit
(Hct) levels were normal throughout the study period, and in only one group was the mean ferritin
level higher. The authors concluded that a daily intake of 27 mg Fe is as effective as a higher dose of Fe.
The higher level of in Fe supply did not affect Hgb and Hct levels, but it did increase the incidence of
side effects (nausea or vomiting). In the study by Shinar et al. [131] on 172 women pregnant with twins
with IDA, divided into two groups receiving 34 and 68 mg of Fe sulfate, showed that higher doses of
Fe caused higher Hgb values in the examined women.
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Acute poisoning was observed as a result of an overdose of Fe from a pharmaceutical
preparation [132]. If the transferrin potential is exhausted or exceeds 85% in the blood,
non-transferrin-related Fe (NTBI) may occur, increasing the risk of intraocular and cardiac Fe
accumulation [133]. NTBI initially appears in the bloodstream and then is transported to the interstitial
cells via a transferrin-independent mechanism [134]. It was initially assumed that DMT1 transporter is
responsible for the transfer of NTBI to the liver and then its removal, but a study on DMT1-negative
mice showed they were not protected against the accumulation of Fe in the liver. Therefore, another
mechanism was proposed, consisting in the ability of Zip14 to uptake NTBI [135]. Two types of
hemochromatosis have been identified: primary (hereditary) and secondary (acquired, due to excessive
accumulation of Fe in the body) [136]. As a result of excessive Fe accumulation in organs, such as the
heart, liver, and endocrine glands, their function is impaired, producing cardiomyopathy, cirrhosis, or
insulin-dependent diabetes [136,137]. In case of pregnancy, the liver metabolism error described above
had a negative effect on the fetus’s Fe balance, which was emphasized in the study by Silver et al. [138].
The placenta acquired excessive amounts of Fe and passed them to the fetus, although the authors
could not identify any underlying mechanism of this effect, indicating the necessity for further research
on the metabolism and kinetics of Fe transport to the fetus.

A high accumulation of Fe results in the reduced absorption of other essential elements including
zinc, copper, molybdenum, chromium, manganese, and magnesium, and the production of ROS [139].
Oxidative stress is particularly dangerous for pregnant women, who may suffer damage to the placental
tissue and consequently a premature birth [124]. Oxidative stress leads to faster aging of the cells,
which gives a signal to the uterus to contract, resulting in premature birth. This process can also lead
to the rupture of the fetal membrane [140].

3. Copper (Cu)

Copper is an essential micronutrient. It has been estimated that the amount of this element
in an adult human body ranges from 50 to 120 mg [141]. The highest concentrations of Cu were
found in the brain and the liver [142]. Cu is involved in the formation and metabolism of bone tissue
and participation in oxidation–reduction reactions as a coenzyme, a regulator of Fe metabolism and
transport, as well as collagen metabolism [122,143]. Cu participates in the metabolism of fatty acids,
in RNA synthesis, supports the absorption of Fe in the gastrointestinal tract, and participates in the
synthesis of myelin [144,145]. Cu also participates in the synthesis of melanin and—as a component of
tyrosinase—is involved in the conversion of tyrosine to melanin [27].

The copper is delivered with the food. The greatest source of this element is oysters (44,996 µg/100 g),
beef liver (6434 µg/100 g), cocoa (5000 µg/100 g), sunflower seeds (1770 µg/100 g) [146]. The daily
supply of Cu should be 0.9–1.3 mg per day, although it is mostly consumed in larger amounts—about
2 mg per day [147]. During pregnancy, the demand for Cu increases to 1 mg/day [122]. Cu homeostasis
is determined by the balance between intestinal absorption and biliary secretion [148]. About 50–70% of
Cu from food is absorbed in the duodenum and upper sections of the small intestine, and small amounts
in the stomach [143,149]. In the stomach, Cu2+ is reduced to Cu1+ and then absorbed into the intestinal
endothelium [150]. Uptake, intracellular transport, and removal of excess Cu is strictly regulated and
involves specific proteins. Copper is transported to cells via two transmembrane proteins: high affinity
copper uptake protein 1 (CTR1) and DMT1 [151–153]. CTR1 is responsible for the transport of 80% of
Cu and other metals to cells [154,155]. It is believed that the Ctr1 mutation may lead to the abnormal
functioning of intracellular signaling pathways during embryonic development. Kuo et al. [156] found
early embryonic lethality associated with a Ctr1 null mutation in mice. In cytoplasm, Cu is complexed
mainly with metallothionein (MT). Copper ions serve as cofactors of certain enzymes to which they
bind via cytoplasmic copper chaperones. Copper chaperone for superoxide dismutase 1 (CSS) and
cyclooxygenase (COX) and synthesis of cytochrome c oxidase (SCO) proteins are responsible for the
transport of Cu to superoxide dismutase type 1 (SOD1) and cytochrome c oxidase (CCO), respectively.
Antioxidant protein 1 (ATOX1) transports Cu ions to copper transporting P-type ATPases ATP7A
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and copper-transporting ATPase β (ATP7B), which regulate the concentration of Cu ions in the cell
and mediate the incorporation of cations of this element into enzymatic proteins [157]. The lack of
ATOX1 results in the accumulation of Cu and inhibition of its secretion. The role of six-transmembrane
epithelial antigen of the prostate (STEAP) and duodenal cytochrome b (Dcytb) in Cu metabolism
is poorly understood [153]. In the blood, Cu occurs in complexes with histidine, threonine, and
glutamic acids transported to the liver, kidney, intestines, and other tissues [143,158]. The main
organ responsible for Cu metabolism is the liver, which accumulates this element in the prenatal and
postnatal period, as well as synthesizing ceruloplasmin and producing bile, which has a high Cu
concentration [122,143–145,148–150,158–162].

Cu is excreted from the body with urine and feces. Only 2% of Cu1+ is excreted through the
kidneys because in proximal tubules Cu is mostly reabsorbed by ATP7A proteins and then returned to
the bloodstream [163]. In the liver, the excess Cu is transported via ATP7B and bound with substances
contained in the bile and passed to the digestive tract where it is removed with the feces [164,165].
In this way, more than 90% of the excess Cu is excreted, and its incorporation into ceruloplasmin
prevents reabsorption from the intestines.

The process of transporting Cu to the placenta from the maternal circulation is probably caused
by the copper transport protein 1 (CTR1), as shown by Lee et al. [166], who deprived the mouse
of CTR1 and observed teratogenicity or fetal mortality in the uterus. When Cu is delivered to the
placenta, the element is attached to the copper-transporting P-type ATPases (ATP7A or ATP7B) [167].
The ATPases are coordinated with each other as ATP7A is located on the basolateral membrane and
is responsible for the excretion of Cu into the fetal circulation. In contrast, ATP7B is in a perinuclear
compartment or the microvillar membrane, releasing excess Cu into maternal circulation [168].
In contrast, McArdle et al. [169] do not agree with this model of transporting Cu in the placenta and
believe that this mechanism should be further investigated.

Cu deficiency is rare due to the high availability of this element in food [170]. Cu deficiency
may lead to pancytopenia and the occurrence of hypodermic anemia which does not respond to
the administration of Fe [171,172], loss of appetite [173], damage to internal organs [174,175], bone
deformities [176], reduced reproductive capacity [177], myocardial fibrosis [178,179], and chronic
debilitating diarrhea [180]. It may lead to neurological disorders, and hair depigmentation [181,182].
A deficiency of this micronutrient during pregnancy may lead to oxidative stress, which often results
in reduced fetal growth [122]. Cu has an important role in the production of collagen and elastin,
and an insufficient amount of this element can lead to a reduction in the tensile strength of the fetal
membrane, resulting in its interruption and premature birth [183]. On the other hand, excessive
administration of Cu causes vomiting, diarrhea, as well as liver necrosis, acute kidney damage,
and—ultimately—death [184,185].

Several diseases related to abnormal Cu metabolism have been described, especially those caused
by Cu deficiency. An example is Menkes disease which is caused by the absence of or defecst in two
Cu-transporting ATPases encoded by the ATP7A gene, which affects the absorption of Cu ions in
the gastrointestinal tract [186]. This condition, found in one per 300,000 live birthsin the European
population [186], is due to the mutation of the ATP7A gene on the chromosome 3 that causes X-linked
recessive disorders [187]. It affects almost exclusively men, with women considered to be only
carriers of the mutation, except a few isolated female cases reported in literature [188]. Menkes
disease is characterized by significant physical and mental impairment of patients and death in early
childhood [187]. In rare cases, the activity of ATP7A protein is partially preserved and the symptoms
milder (occipital Horn syndrome), with patients living as long as 50 [171]. The mutation in the ATP7A
gene does not necessarily lead to Menkes disease; it has also been described in patients suffering from
hereditary motor neuropathy which results in the weakness of the upper limbs that progresses with
age [189]. Another disease leading to the disorder of Cu metabolism is Huppke-Brendel syndrome,
resulting from the mutation of the SLC33A1 gene encoding the AT-1 protein, first described in 2012 [190].
People with this syndrome have very low levels of Cu and ceruloplasmin, and often do not reach the age
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of 6. The symptoms of this disease include psychomotor disability, hypoplasia, and hypomyelination,
probably due to the lack of ATP7A protein acetylation. Another disease affecting Cu homeostasis
is MEDNIK syndrome (mental retardation, enteropathy, deafness, ichthyosis, keratoderma), caused
by the mutation of the AP1S1 gene located on the long arm of chromosome 7 at position q22 [191].
The patients suffer from mental and motor impairment and deafness; other characteristic symptoms
include dermatological changes including excessive keratosis and exfoliation of the epidermis with
features of fish scale (lat. ichthyosis) and erythroderma.

Kashaninet al. [192] studied the effects of Cu on pregnancy. They showed that women who had
been supplemented with 1000 mg of Cu daily from the 17th week of pregnancy experienced reduced
depression symptoms in the 2nd and 3rd trimesters of pregnancy compared to the control group.
Jankowski et al. [193] demonstrated in an in vitro study on rat embryos that Cu is essential for early
embryonic development. The fetus is sensitive to a lack of Cu, which may lead to irreversible changes
in the nervous system [194,195]. Meta-analysis by Lewandowska et al. [196] showed that reduced
serum Cu levels at the beginning of pregnancy were associated with a higher risk of pregnancy-induced
hypertension. Prohaska and Brokate [197] showed that a correct amount of Cu in the body has
a protective effect during pregnancy. Vukelići et al. [198] found that in women with normal fetal
development, Cu levels were significantly higher than in women with fetal developmental disorders.
Another study also showed that Cu protects against spontaneous miscarriages [16]. However, elevated
Cu levels in the first trimester of pregnancy may lead to later pregnancy complications, including
spontaneous miscarriages [199]. Li et al. [200] concluded that too much Cu can increase the incidence
of gestational diabetes, which—if untreated—can lead to macrosomia, intrauterine hypotrophy, birth
defects, and miscarriages.

An excess of Cu is harmful but rare [201]. It results in the formation of free radicals that damage cell
membranes and proteins in the body (the so-named Fenton Reaction) [202]. Excess Cu has been observed
in the course of Wilson’s disease (WD) as a result of abnormal cellular transport [203]. In pregnant
women with WD, it is important to take early treatment to prevent spontaneous miscarriages [204,205].
In pregnant women, Cu levels may be elevated due to increased levels of Cu-bearing proteins [206] and
may cause premature births and low birth weight compared to pregnancies with normal Cu levels [122].

4. Zinc (Zn)

As an essential trace element (micronutrient), Zn has several important roles in human bodies,
and after Fe, it is the second most abundant trace element [207]. The total Zn content in the human
body is 2–4 g, with a plasma concentration of 12–16 µM/L [208–210]. In cells, Zn is present as a divalent
ion (Zn2+) [211]. The highest Zn concentrations have been found in skeletal muscle (60%), bones (30%),
liver (5%), and skin (5%) [212].

Zn is a co-factor of more than 300 enzymes that regulate a variety of cellular processes and cellular
signaling [213]. It is responsible for the DNA-binding ability of many transcription factors through the
unique ability to form molecules known as Zn finger (Znf) proteins [214]. Zn is essential for cell division,
differentiation, and the development of organs, such as the kidneys and heart [215]. It is required
for normal testicular development [216]. Zn regulates reproduction, fetal development, membrane
stability, digestion, wound healing, and homeostasis of the central nervous system [217–219]. As a
cofactor for the enzymes, Zn participates in bone mineralization and collagen structure development
of the bone [220]. Zn influences the function of many hormones, including growth hormone, insulin,
testosterone, and gonadotropins [221]. It plays a role in the synthesis, storage, and secretion of insulin.
This element is also a component of thymulin, a thymus hormone, essential for maturation and
differentiation of T cells [222,223]. Zn participates in the elimination of free peroxide radicals, as part of
peroxide dismutase (Zn-SOD) [224]. It inhibits the oxidation of unsaturated fatty acids [225], regulates
the concentration of vitamin A in plasma [226], and acts as an antagonist of cadmium and lead [227].

Recommended daily intake of Zn depends on several factors such as age, sex, weight, and phytate
content of the diet [228]. Food products containing the most Zn (per 100 g) are calf liver (8.4 mg),
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pumpkin (7.5 mg), pork liver (4.5 mg), and white beans (3.8 mg) [159]. Zn is best assimilated from
meat products (red meat, fish) than from plant products [229]. The degree of bioavailability of Zn
from food depends on the concentration of Zn in the body, stress [230,231], functional state of the
kidneys [232] and/or liver [233], pH of the nutrient content [234]. The presence of citric acid [235],
a high intake of animal proteins [236], the presence of highly processed products and lactose [237]
have a positive influence on the bioavailability of Zn. Negative effects on Zn absorption are by heavy
metals (cadmium and mercury), calcium, Fe, Cu, oxalates, phosphates, alcohol, folates, and phytates,
alkaline drugs, contraceptives, and diuretics [238–241].

Daily Zn supply according to WHO should be 6.5 mg/day for women and 9.4 mg/day for men
(both over 19 years of age) [242]. Due to hemodilution and decreased albumin levels, Zn serum
concentration declines during pregnancy [243]. Since intestinal absorption is not increased during
pregnancy, an additional Zn requirement for fetal and placental tissues must be covered by increased
intake and from maternal tissues. Therfore, daily requirements for Zn during pregnancy range from
7.3 to 13.3 mg [244]. Zn enters the human body through the digestive and respiratory systems,
and skin. Zn is absorbed by passive diffusion in the intestine by specific zinc transporting proteins [245].
The most important Zn transporters include Zrt-/Irt-like protein (ZIP) zinc transporters and ZnTs (zinc
transporters) [246]. The zinc transporter protein-1 (ZnT1)–ZnT10 which decrease cytoplasmic zinc
level by zinc export, and Zip (Zip 1–14) which increase cytoplasmic zinc level by zinc import [246].
The ZIP4 transporter can be found in the entire digestive tract and is responsible for Zn transport from
the apical membrane into enterocytes [247]. Additionally, similar to Cu, DMT1 transporter may help
in the absorption of Zn, by transporting Zn from the intestinal lumen into the enterocytes [248].

The average absorption of Zn from food is 33% [249]. Zn2+ ions in the plasma are transported
to the cells mainly as complexes with albumin (84%), alpha-2-macroglobulin (15%), and amino acids
(1%) [250,251]. They also form complexes with cysteine and histidine [252,253]. Metallothioneins
(MT) play an important role in cellular transport [254]. These low-molecular proteins, rich in cysteine
residues, are located in the extra- and intracellular environment [255]. Their intracellular pool acts
as a reservoir of important heavy metals, including Zn, and participates in the detoxification of
ROS, nitrogen, excess heavy metals, and organic compounds [256–259]. Their extracellular pool is
responsible for the transport of Zn2+ (and other heavy metals) and organic compounds, and is also
a free radical scavenger [256]. One MT molecule is capable of binding seven Zn2+ ions and up to
12 monovalent Cu ions [260,261]. The intra- and extracellular Zn concentration is controlled by two
families of transporters: ZnT (SLC30-Soluble Carrier 30) and ZIP (SLC39A1-A14) [262,263]. ZIP
proteins are responsible for the transport of Zn2+ to the cell cytoplasm [264]. ZnT proteins originate
from a large family of Cation Diffusion Facilitator (CDF) proteins and are responsible for transporting
Zn ions from the cytoplasm of the cell to cell organelles or outside the cell [265]. The main organ
responsible for the metabolism and systemic Zn homeostasis is the liver [266]. Zn is excreted mainly in
feces (90%) and the rest of Zn is excreted in the urine, sweat, and saliva, and incorporated into hair [267].

The transport of Zn to the fetus is fully dependent on its concentration in the mother’s blood [268].
Its low intake will reduce the expression of ZnT, resulting in less Zn being transported in the placenta,
protecting the mother against Zn homeostasis disorder. Zinc released from enterocytes into the
mother’s blood through ZnT1 reaches placental syncytiotrophoblasts using ZIP proteins [269]. In the
next step Zn can be intercepted by transporters including ZIP 14 and ZIP 8, ZnT2 and DMT-1 or bind to
MT and in this form delivered to the fetus [81,270,271]. This mechanism requires further investigation.

A Zn deficiency caused by inadequate dietary intake is a common phenomenon and affects up to
two billion people in the world, mainly in developing countries [272,273]. Marginal Zn deficiency is
estimated to affect 82% of pregnant women worldwide [274]. Zn deficiency can be classified as primary
or secondary. Primary Zn deficiency may lead to growth retardation, puberty delay, immune deficiency,
and the impairment of cognitive function, taste, and smell [275]. Major manifestations of Zn deficiency
include growth retardation, testicular and ovarian dysfunction, immune dysfunctions, and cognitive
impairment [276]. Maternal Zn deficiency during pregnancy is linked with adverse pregnancy
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outcomes including abortion, preterm delivery, stillbirth, and fetal neural tube defects [277–279].
Secondary Zn deficiency is caused by gastrointestinal diseases, including malabsorption syndrome
and Crohn’s disease [280]. It may also be caused by heavy hemorrhage, cirrhosis, kidney disease, and
alcoholism [281–283].

Zn takes part in the embryogenesis and formation of the fetus, and so its low level may result in
impaired development and affect the final phenotype of the newborn’s organs [284,285]. Additionally,
during pregnancy, a deficiency may contribute to preterm delivery, pregnancy-induced hypertension,
low birth weight, and preeclampsia [286]. Zn deficiency may lead to faulty estrogen function, resulting
in uterine spasms, cervical dilation, and amniotic fluid integrity [287]. Zn deficiency is also involved in
the synthesis of prostaglandins, as well as collagen synthesis and degradation, and so its absence may
result in premature fetal membrane rupture [280]. In laboratory animal studies, Zn deficiency during
the early stages of pregnancy is associated with reduced fertility [288] and the increased incidence of
nervous system congenital malformations [289]. Zn deficiency in later stages of a pregnancy negatively
affects neuronal growth and brain function and synaptogenesis and may be associated postnatally
with impaired brain function and behavioral abnormalities [290].

Scientific literature data on the influence of Zn supplementation on the course of pregnancy and
fetal development are divergent. Nossier et al. [291] concluded that Zn intake minimizes the risk of
premature birth in women and infections in newborns. A double-blind and randomized controlled
study shows that Zn supplementation during pregnancy improves birth length after adjusting for
maternal height and pre-pregnancy weight [292]. Wang et al. [293] in a cohort study on 3187 pregnant
women from China, concluded that Zn deficiency in the diet of pregnant women increases the risks of
low birth weight and small gestational size. Merialdi et al. [294] noted that prenatal supplementation
of Zn-deficient mothers may be beneficial to fetal neurobehavioral development. In an earlier study,
Merialdi et al. [295] concluded that the fetuses of mothers who received Zn supplementation showed
fewer episodes of minimal fetal heart rate variability, increased fetal heart rate range, an increased
number of accelerations, an increased number of movement bouts, an increased amount of time spent
moving, and an increased number of large movements. Further, Merialdi et al. [296], studying the
effect of Zn supplementation of pregnant women on fetal bone growth found that supplementing
Zn-deficient mothers with 25 mg Zn/day caused a higher fetal femur diaphysis length. This was caused
by this microelement stimulating osteoblast production and inhibiting osteoclast activity.

In a study in laboratory animals (C57B1-6J mice) Wilson et al. [297] proved that the lack of Zn in
the diet negatively affected the growth and development of the offspring in the uterus mainly due
to impaired placenta development. Additionally, they noted that a lack of Zn affected the capacity
of the heart and organ perfusion. Correct blood pressure in the pregnant woman is essential to
properly maintain the growth of the fetus and provide appropriate nutrients [298]. Many studies
have shown a slight effect of Zn supplementation or lack of it on maternal and fetal bodies [299–301].
Meta-analysis by Chaffee and King [302] concluded that the additional supply of Zn does not affect
fetal morphometric results. Discrepancies in study results may have been caused by a different study
area. In developing countries, shortages of Zn occur quite frequently, compared to developed countries,
where such a phenomenon is probably related to low social status, as confirmed by Mori et al. [303].
Finally, King [304] concluded that Zn supplementation is essential to counteract the effects of smoking,
alcohol abuse, infections, injuries, and impaired gastrointestinal function.

There are not many reports on Zn supplementation in women with multiple pregnancies.
Goodnight et al. (2009) concluded that in this group additional supplementation could bring positive
benefits [305]. Mahomed et al. [306] noted that 15–44 mg of Zn supplementation per day was associated
with a 14% reduction in preterm birth. Campbell et al. [307] noted the Zn concentration in plasma in
twin pregnancies was similar to that in single pregnancies. It may suggest that the body regulates Zn
deficiency in case of multiple pregnancies without additional supplementation.
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High doses (100–300 mg/d) of Zn disturb many biochemical processes [308]. Excess Zn can
manifest itself through nausea, vomiting, abdominal cramps, and diarrhea [309]. According to
WHO [310], excess Zn during embryogenesis can be teratogenic or ultimately fatal.

5. Fe vs. Cu

Dietary Fe and Cu are absorbed in the proximal small intestine [311]. These elements must be
reduced before uptake into enterocytes, then both metals are oxidized after export into the interstitial
fluids [312]. Chen et al. [313] showed that Cu-deficient C57BL/6J mice had significantly lower hephaestin
and ceruloplasmin (Cp) ferroxidase activity. Cu facilitates the absorption and utilization of Fe [314],
which takes part in red cell regeneration [315] and bone formation [316].

Ha et al. [312] proved that with a high supply of Fe, there is a lower Cu concentration in diseased
tissue, and serum Cu activity decreases. Ha et al. [317] also analyzed the mechanism responsible for
the impairment of Cu absorption by feeding mice with a feed containing an appropriate amount of Fe
and low/suitable/high Cu levels. The mice showed no disruption in Cu absorption and utilization in
rodents. However, an increased supply of Fe did impair the utilization of Cu in the body, although the
absorption of Cu was normal. The authors investigated the locations of absorbed Cu with a radioactive
marker, but could not identify most of the absorbed Cu in any of the tested tissues. They concluded
that additional experiments should be performed to investigate the mechanism of distribution, storage,
and bioavailability of Cu under elevated condition of Fe. The Cu activity affects the transport of Fe
mainly during blood loss. Hephaestin (protein homolog of ceruloplasmin) is not able to make up for
this deficiency on its own and the body replaces it with Cp [318]. Additionally, the reduced Cp activity
prevents the release of stored Fe from the spleen and liver macrophages [319]. This is probably caused
by the reduction or inhibition of Fe oxidation via Cp [320].

Harris [321] confirmed the role of Cp in the metabolism and release of tissue Fe. This study was
conducted on a ceruloplasmin genetic defectin proteinsynthesis in patients who were diagnosed with
excessive accumulation of Fe in the brain and pancreas. This resulted in retinal degeneration and
diabetes. The patients were given Cu intravenously which resulted in increased serum Fe concentration.
These results confirm a significant influence of Cu on the release of tissue Fe. Ha et al. [322] showed
that Cu metabolism is impaired when dietary Fe intake is >10 times higher than the normal Fe supply
established by WHO. Significantly elevated levels of Fe may result in anemia, likely due to a lack of Cu
in the diet [323]. This is because Cu is a component of cytochrome oxidase, necessary for oxidative
phosphorylation, which allows the incorporation of Fe into heme. Additionally, the lack of Cu may
shorten the erythrocyte life span [324]. This may be due to the inhibition of superoxide dismutase,
which contains Cu, leading to cell membrane damage by ROS. In addition, there is a decrease in
Cu activity, which inhibits peroxide formation [325]. Hepatic Fe overload also causes liver damage,
causing hypertriglyceridemia and hypercholesterolemia [326] and elevated Fe levels may lead to
fibrosis or cirrhosis of the liver, via a decrease in superoxide dismutase activity [327]. On the other
hand, when the supply of Cu is increased, the absorption of Fe may be impaired due to the affinity of
Cu to transferrin [328]. However, Cu overload is very rare because there is a difference between Fe and
Cu in the final metabolism of both elements. Cu is removed from the body with bile, and there is no
mechanism of removing excess Fe.

Sebio et al. [329] concluded that elevated concentrations of Fe or Cu in the body cause brain
damage due to oxidative stress. Lan et al. [330] found that the accumulation of Fe, Cu, and cobalt in
the brain causes a decrease in glutathione, which is responsible for oxidative protection of neurons.
In rats, Fe supplementation lowers the level and absorption of Cu. In patients who received 3 mg of
Cu from 100 or 400 mg of Fe in the form of Fe gluconate, no effect of Fe on Cu absorption has been
demonstrated [331].

The study by Christian et al. [332] on 235 pregnant women showed no negative effect between Zn
and Fe when these elements were administered at a 2:1 ratio. The additional effect of supplementation
with these elements was shown by Saak [333] carried out in Ghana on 354 pregnant women given
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a dose of 40 mg of Fe and Zn—an increase in HgB and ferritin values was reported. Although the
results of that study suggest a beneficial effect of such a supplementation model, it was effective only
for women with Fe deficiency. This was also confirmed in the subsequent study by Saaka et al. [334].
Harvey et al. [335] estimated that even taking 100 mg of Fe with a meal does not affect Zn metabolism.
The authors suggest that Zn status is maintained after the effective absorption of Zn from food meals.
In the opposite situation, when Zn was supplemented in a diet, it also did not affect the balance of
Fe [336]. However, in the study by O’Brien et al. [337] daily Fe supplementation (60 mg) significantly
reduced the absorption of Zn and only the inclusion of 15 mg Zn supplementation in the diet of these
women reduced this adverse effect of Fe. The authors also noted the need for additional studies in this
direction and the establishment of the mechanism that causes such interaction.

6. Fe vs. Zn

Zn and Fe interact competitively during intestinal absorption [338]. In a study on animals, Bodiga
and Krishnapillai [339] found that the interactions between Fe and Zn during absorption in Fe- and
Zn-deficient rats are mutually antagonistic. The competition of Fe and Zn for metaltransporter1
(DMT-1) at the site of absorption results in reduced uptake of these elements during concurrent
administration [340]. This was confirmed in a study by Espinoza et al. [56] in which DMT-1 was
involved in the active transportof Fe, Cu, and Zn, although Zn showed a different relative capacity.
Kordas and Stoltzfus [341] showed that althoughFedoes seem to reduce the absorption ofZn, DMT-1
is an unlikely site for this absorptive antagonism because Znis not transported by DMT-1. Zrt- and
Irt-like protein-14 (Zip14) is a transmembrane metal iron transporter that is abundantly expressed in
the liver, heart, and pancreas [342].

It was found that a 1:1 mass ratio of Fe/Zn in the diet causes a slight inhibition of Zn absorption,
whereas when the Fe/Zn ratio is higher, 2:1 or 3:1, the absorption of Zn is limited. It has been noted
that the intake of heme Fe together with inorganic Zn in the appropriate ratio does not impair the
absorption of Zn. Organic Zn does not affect the absorption of Fe [343,344].

Pregnant women have an increased demand for Zn and Fe [345]. The administration of Fe at more
than 100 mg/day to pregnant women resulted in a reduction in serum Zn compared to the women who
were given less than 100 mg of Fe [346]. Women in the first trimester of pregnancy who additionally
received multivitamin preparations containing 60–65 mg of Fe showed a reduction in Zn absorption
compared to women receiving less than 30 mg Fe/day [347]. Ziaei et al. [348] estimated that HgB
greater than 13.2 g/dL in pregnant women reduces serum Zn levels. Andersen et al. [349] suggested
that Cu deficiency has not only a direct effect on the concentration of Fe, but also an indirect effect
through regulation of Fe transporters, which, inter alia, affects the delivery of Fe to the fetus. On the
other hand, Gambling et al. [350] suggests that there is no connection between Fe and Cu in their
research. Additionally, Shidfar et al. [351] reports that Fe supplementation does not have a significant
effect on Cu levels in the body.

Donangelo et al. [352] examined adult women (n = 23; aged 20–28 years), non-anemic but
with low Festores. The authors investigated the effect of Fesupplementation (100 mg Fe/day) or
Znsupplementation (22 mg Zn/day) for 6 weeks. They found that theuse ofFe supplements in
those womenimprovedFeindices with no effect onZnstatus. However, modestZn supplementation
improvedZnindices, appeared to induce a cellularFedeficiency and, possibly, further reducedFestatus.
In the study by De Brito et al. [353], healthy children of both sexes, aged 8–9 years (n = 15), were given
a placebo (control group) or 10 mg Zn/day (experimental group) for 3 months. The researchers
showed that the decrease in serum Fe was likely due to the effects of chronic Zn administration.
The supplementation did not influence levels of Hgb, mean corpuscular volume, ferritin, transferrin,
transferrin saturation, ceruloplasmin, or total protein. Similarly, in a study by Antunes et al. [354]
on the acute and chronic effects of Zn on the serum Fe profile of children aged 6–9 years, there was
a decrease in Fe levels due to Zn supplementation, but no negative effect of Zn on hematocrit and
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Hgb levels. Wieringa et al. [355] confirmed the positive effect of Fe and Zn supplementation in the
prevention of anemia and Zn deficiency.

Holmes et al. [356] studied the effects of multiple micronutrient (MMN) supplementation (15 mg
Zn, 65 mg Se, 2 mg Cu) with or without Fe on serum Zn, Se, and Cu concentrations in women from
Cambodia. Predominantly anemic nonpregnant women (aged 18–45) received daily 60 mg of Fe
(I group); MMN, but no Fe (II group); 60 mg Fe plus MMN (III group); or a placebo (IV group). It was
found that 60 mg Fe and the daily MMN formulation may be interfering with the absorption and/or
metabolism of supplemental Zn. However, patients took the supplement together with food which
was not controlled, and so it is possible that Zn competed for metabolic transporters not only with Fe
and minerals contained in the MMN complex but also with elements from the diet. Troost et al. [331]
noted that oral Fe therapy may impair Zn absorption. A significant decrease in Zn absorption was
observed with 100 and 400 mg of Fe administered in aqueous solution. Unfortunately, that study was
limited to a very small group of patients (n = 11).

Nguyen et al. [357] conducted a randomized control study on women (n = 459) from Guatemala
where they received for 12 weeks: (i) weekly 120 mg Fe with 30 mg Zn, (ii) weekly 120 mg Fe, (iii) daily
60 mg Fe with 15 mg Zn, and (iv) daily 60 mg Fe. The combined Fe-Zn supplementation was as
effective as Fe alone in improving Fe status, but not effective in Zn status. This may be because Zn and
Fe compete with each other only when given in aqueous solution, and if supplementation takes place
in the form of a solid meal, such an effect is not recorded, although studies are inconclusive in this
case [241,358].

7. Cu vs. Zn

The high concentration of Zn in the body caused by the supplementation of this element leads to an
increase in the production of metallothionein in the intestinal cells [257]. Cu accumulates in enterocytes
due to its high affinity for metallothionein, displacing Zn [359]. As a result of exfoliation of enterocytes
in the gastrointestinal tract, Cu concentration is reduced, which may lead to Cu deficiency [360]. A study
by Sutton et al. [361] showed that cytopenia in patients can be caused by a high Zn concentration in
the body combined with Cu deficiency, and Cu supplementation leads to a reversal of hematologic
levels. According to Prasad et al. [362], increased Zn concentration may be caused by improperly
fitting dentures, resulting in increased use of dental adhesive, which contains high levels of Zn. Excess
Cu can lead to both anemia and neutropenia as a result of the mechanisms in which Cu participates.

Deur et al. [363] concluded that in the case of anemia, Cu deficiency may affect Fe metabolism,
including inhibition of Fe absorption from the gastrointestinal tract and shortening of red blood cell
life. In the case of neutropenia, on the other hand, an abnormal synthesis of progenitor cells and
abnormal maturation and release of neutrophils into the bloodstream occur. Moreover, the removal
of granulocytes containing a low Cu concentration is increased [364]. Zn concentration in the body
influences SOD activity and Cu level [365]. Extracellular superoxide dismutase and Cu/Zn superoxide
dismutase react differently to Zn levels in the body. The extracellular SOD activity increases in response
to an increase in Zn levels, as opposed to SOD Cu/Zn whose activity decreases [366].

Zn is used to treat Wilson’s disease, a condition that leads to an excessive accumulation of Cu in
the liver [367,368], as Zn supplementation may reduce Cu concentration in the body [344]. Although
Zn therapy is often insufficient, it plays an important role as a second-line treatment, supplementing
the use of trientine or penicillamine [369]. Sometimes, Zn monotherapy is effective and has therapeutic
effects, especially in the neurological Wilson’s disease [370]. Malik et al. [371] reported positive effects
of Zn supplementation during pregnancy in WD patients. Optimized doses of Zn have helped to carry
out the pregnancy. However, the authors emphasize that pregnancy in these patients has a high risk
of preeclampsia. In the case of acrodermatitis enteropathica (AE) patients in Sandström et al. [241]
the status of Zn and Cu was measured in response to 1000 and 525 µM/d supplementation. High
doses of Zn supplementation were found to decrease Cu absorption and during the dose correction the
concentration of Cu was normalised. The authors argue that the primary lesion in AE is a cellular
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defect in Zn metabolism and not a Zn absorption disorder. Moreover, they point out that in AE it is
important to control Zn and Cu concentration due to teratogenic effects of Cu deficiency or excess.

The antagonistic action of Zn and Cu has been the subject of many studies. Wu et al. [372]
investigated the effects of dietary Cu and Zn on apparent mineral retention and serum biochemical
indicators in young male mink on a corn-fishmeal based diet. It was observed that moderately high
Cu in the diet increased Cu retention, but did not reduce Zn absorption, while moderately high Zn in
the diet reduced plasma Cu levels.

Eckert et al. [373] showed that the concentration of Zn in the liver does not change after the
administration of Cu in the diet, which suggests no interaction between these elements. However,
Du et al. [374] observed that the relationship between Zn and Cu depends on the form of Cu
administration. Complexes of Cu with protein or lysine caused an increase in the liver concentration
of Zn compared to the administration of Cu in the form of inorganic salts, which did not induce any
changes in Zn levels.

Zetzsche et al. [375] determine the effect ofhighdietaryZn oxide on trace elementaccumulationin
various organs in pigs. They found that dietary Zn supplementation led to Cu co-accumulationin
thekidneysofthe pigs.

A study by Baecker et al. [376] in an animal model investigated the effect of high Cu concentration
and Zn deficiency on the formation of autism spectrum disorder (ASD). Cu supplementation of
pregnant female rats caused a significant decrease in Zn in the brain, above all in the hippocampus.
Additionally, the antagonistic action of Cu against Zn caused abnormalities in nerve synapses.
Those results suggest that Cu and Zn homeostasis disturbances in pregnant females may contribute
to brain underdevelopment and nerve impulse transmission disorders, which may lead to ASD
development. Similar conclusions were reached by Reinstein et al. [377] showing an increased risk of
fetal malformations with insufficient supply of Zn in the diet and with an increase in Cu. Moreover,
Kinnamon [378] reported that Cu and Zn are competing with each other in the fetus and placenta.
The result of this competition is a greater absorption of Cu, which is pushing out Zn. Although,
Garg et al. [379] in a study on pregnant women who were supplemented with Zn did not report
hypocupremia. However, the ratio of both elements should be optimized in pregnancy, to improve
reproduction results and reduce the chance of spontaneous abortion [16].

8. Conclusions

The presented literature review suggests that Fe, Cu, and Zn are crucial for the proper course of
pregnancy. The results should be approached with caution, but most studies indicate the influence of
metals on the parameters of mother and child. Moreover, Fe, Cu, and Zn may be promising biomarkers
in predicting complications in pregnancy.

Additionally, the results of the researchers show important relationships between Fe, Cu, and Zn
in the body. An increase or decrease of one element may significantly affect the action of the other two.
It is particularly significant to note that the elements do not exhibit antagonistic actions against each
other when they are within daily reference values.

Fe, Cu, and Zn play a key role in the homeostasis of the body, and any changes in their
concentrations can cause interactions that are dangerous to the health of the mother and fetus.
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