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Macrophage Plasticity in Skeletal Muscle Repair
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Macrophages are one of the first barriers of host defence against pathogens. Beyond their role in innate immunity, macrophages
play increasingly defined roles in orchestrating the healing of various injured tissues. Perturbations of macrophage function
and/or activation may result in impaired regeneration and fibrosis deposition as described in several chronic pathological diseases.
Heterogeneity and plasticity have been demonstrated to be hallmarks of macrophages. In response to environmental cues they
display a proinflammatory (M1) or an alternative anti-inflammatory (M2) phenotype. A lot of evidence demonstrated that after
acute injury M1 macrophages infiltrate early to promote the clearance of necrotic debris, whereas M2 macrophages appear later to
sustain tissue healing. Whether the sequential presence of two different macrophage populations results from a dynamic shift in
macrophage polarization or from the recruitment of new circulating monocytes is a subject of ongoing debate. In this paper, we
discuss the current available information about the role that different phenotypes of macrophages plays after injury and during the
remodelling phase in different tissue types, with particular attention to the skeletal muscle.

1. Role of Macrophages in Inflammation
Resolution and Tissue Remodelling

Macrophages are essential for the efficient healing of numer-
ous tissues. They contribute to homeostatic tissue remod-
elling during foetal life [1, 2] and in several tissues in the adult.
The healing process consists of overlapping phases of inflam-
mation, tissue formation, and remodelling with reorganiza-
tion of vasculature and extracellular matrix. Macrophages
participate in all the different phases of tissue repair: they
can promote phagocytosis of cellular debris and apoptotic
neutrophils and produce cytokines that may help orches-
trate the healing response. However, due to the release of
proinflammatory cytokines and cytotoxic radical species,
uncontrolled activity of macrophages may also be detri-
mental to tissue repair. Indeed, several human diseases are
characterized by attenuated repair responses and imbalances
in the inflammatory response with increased number of

infiltrating macrophages [3–5]. Heterogeneity and plasticity
of macrophages could explain these apparently contrasting
roles in tissue healing. All macrophages express common
markers such as CD11b (Mac1 or CR3), CD68, and CD115
(M-CSF receptor). However, at least two distinct macrophage
populations have been identified: the classically activated M1
phenotype and the alternative activated M2 phenotype [6].
Classically activated M1 macrophages are induced in vitro by
IFN𝛾, alone or in concert with microbial stimuli (e.g., LPS)
or selected cytokines (e.g., TNF and GM-CSF). They have
proinflammatory functions: they produce effector molecules
(reactive oxygen and nitrogen intermediates) and inflamma-
tory cytokines (IL-1𝛽, TNF𝛼, and IL-6) and participate as
inducer and effector cells in polarized Th1 responses. Alter-
natively activated M2 macrophages comprise cells exposed
to low concentrations of M-CSF in the presence of IL-4,
IL-13, or IL-10. They participate in polarized Th2 reactions,
parasite clearance, damping of inflammation, and promotion
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of angiogenesis and tissue remodelling [7, 8]. In vivo, the
identification of macrophage phenotype is complicated since
macrophages are obviously exposed to a microenvironment
that is more complex respect to cell culture conditions, and
they display characteristics that do not conform to the in
vitro defined phenotypic categories. Therefore, the in vivo
classification of macrophages in two polarized states (M1
versus M2) sounds as an oversimplification. Therefore, in
the last years characterization of macrophage phenotype
in vivo during tissue repair has been a matter of active
investigation. Macrophage activation has been described
as a dynamic process: the same cell may initially induce
proinflammatory and cytotoxic reactions and later may take
part in the resolution of inflammation and wound healing
[9]. A common scenario is emerging, in which soon after
injury infiltrating macrophages are mainly proinflammatory
M1 macrophages, whereas M2 macrophages are the primary
effectors of later stages of tissue repair or remodelling phases
[10–12]. Recent evidence has also shed light on the functional
cross-talk between macrophages and stem/progenitor cells,
which may contribute to repair and remodelling in different
tissue/organs [13–15].

Specific examples of the origin and functions of
macrophages during healing of various tissues are illustrated
below, with particular emphasis on skeletal muscle.

Macrophages play a crucial role in the restoration of
skin integrity and homeostasis and exert distinct functions
during the multiple phases of skin repair, despite the under-
lying molecular mechanisms remaining partially unclear
[16, 17]. Transgenic mice that express the human diphthe-
ria toxin receptor (DTR) under the control of the CD11b
promoter have been shown to allow a conditional depletion
of macrophages [18]. Using these transgenic mice, Mirza et
al. demonstrated that macrophage depletion during wound
healing leads to delayed reepithelialization, reduced collagen
deposition, impaired angiogenesis, and finally wound closure
[17]. Interestingly, Lucas et al. showed that during the early
phases of skin repair, infiltrating macrophages are alterna-
tively activated and express high levels of growth factors,
VEGF𝛼 and TGF𝛽, which contribute, respectively, to wound
angiogenesis and myofibroblast differentiation [16]. During
the midstage of the skin repair response, macrophages still
express VEGF𝛼 and TGF𝛽 but to a lesser extent and they
are crucial for vessels stabilization and scar formation. More
recently, TGF𝛽 has been described to regulate wound heal-
ing through TLR4 receptor. Indeed, TLR4−/− mice display
impaired skin wound healing with decreased macrophage
infiltration and reduced levels of TGF𝛽 [19].

Dynamic changes in monocyte/macrophage phenotype
have been described also in a model of myocardial injury.
Macrophages have been suggested to be beneficial for
myocardial woundhealing.Optimumoutcome ofmyocardial
injury is strictly related to the balance between debris clear-
ance and myocardial extracellular matrix repair. Liposome-
mediated depletion of infiltratingmacrophages after myocar-
dial injury results in persistence of cellular debris, impaired
vascularization, and myofibroblast infiltration and ultimately
leads to ineffective scar formation. After injury, macrophage-
depleted mice display cardiac complications and ultimately

a significant decreased survival [20]. Two different kinds of
monocyte/macrophages populations have been suggested to
infiltrate the heart after injury: Ly-6Chigh proinflammatory
monocytes firstly arrive via CCR2 receptor and scavenge
necrotic debris; subsequently Ly-6Clow preferentially accu-
mulate and promote an anti-inflammatory response and
granulation tissue formation [21]. Similar kinetics of mono-
cyte infiltration has been observed also in patients with acute
myocardial infarction [22]. Moreover, microarray analyses
on RNA of macrophages isolated from infarcted tissues
confirmed the expression of proinflammatory (M1) markers
in the tissue early after injury and of alternative activated
(M2) macrophage markers later during scar tissue formation
[23].

The plasticity of macrophages has been reported to play
a role also in parenchymal organ diseases, such as liver or
lung fibrosis. Liver fibrosis is a common consequence of
chronic liver disease and current evidence suggests that this
process is mainly driven by a local inflammatory response
[24, 25]. Experimental models of liver fibrosis highlight the
importance of hepatic resident macrophages, the Kupffer
cells, for sustaining inflammation as well as activating the
hepatic stem cells (HSC) [26]. However, fibrosis largely
depends on recruitment of monocytes into the liver [18,
27]. In a reversible model of liver fibrosis two functionally
distinct types of macrophages have been demonstrated to
regulate the outcome of the fibrotic response [18]: during
the injury phase, infiltrating macrophages promote myofi-
broblast proliferation and matrix deposition by secreting
high amounts of TGF𝛽 and TNF𝛼, whereas during the
recovery phase they sustain matrix degradation, probably
by releasing MMP13 [28]. Profibrogenic macrophages have
been shown to derive mainly from circulating Ly-6Chigh

proinflammatorymonocytes, whichmassively invade injured
liver via the CCR2 receptor both in mice and in humans
[29–31]. Similarly, a critical role of macrophages in regulating
lung fibrosis has been recently described. Evidence supports
the involvement of alternative activated macrophages (M2)
in lung fibrotic response via secretion of TGF𝛽 [32]. These
results were corroborated by recent observational studies in
humans which highlight the presence of M2 macrophages
markers in lung diseases: CD163, CCL18, CCL22, and CD206
[33, 34].

2. A Case for Macrophages in Acute and
Chronic Muscle Damages

The plasticity of macrophages in response to environmental
cues has been largely investigated in the skeletal muscle [35–
37]. Muscle inflammation is a common physiologic response
to exercise and a typical feature of acute and chronic muscle
damages. Muscle regeneration and healing after damage
mainly depend upon quiescent muscle stem cells, the satellite
cells, localized between the basal lamina and the muscle fiber
membrane [38]. Upon muscle injury, satellite cells activate,
start proliferating, and, subsequently, differentiating into new
myotubes that replace damaged muscle [39, 40]. Beside
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satellite cells, the inflammatory cells that infiltrate the injured
muscle deeply influence the outcome of muscle regeneration.

2.1. Acute Muscle Injury and Macrophage Activation. Skeletal
muscle sterile injury triggers a potent inflammatory response
characterized by a rapid and sequential invasion of leukocyte
populations that persist during muscle repair, regeneration,
and growth. The regeneration process includes an initial
proinflammatory phase characterized by release of cytokines
and chemokines which promote infiltration of immune cells
to the site of damage in order to remove cellular debris [41].

Neutrophils are the first leukocyte population in damaged
tissue. They appear within 2 h of muscle damage, reaching a
maximum in concentration between 6 and 24 h postinjury
and then rapidly decreasing. The actual role of neutrophils
in damaged skeletal muscle is still debated. They release
molecules (proteolytic enzymes, oxygen-derived reactive
species) that may contribute to muscle membrane lysis and,
therefore, to damage extension [42]. However, neutrophils
have also been suggested to facilitate muscle regeneration
by removing tissue debris from the injured area as well as
by activating satellite cells [43]. Recent results indicated that
the supportive and/or deleterious effects of neutrophils on
skeletal muscle might rely on the degree of their activation.
Indeed, during modified mechanical loading, neutrophils
are efficiently eliminated with no significant muscle fiber
injury. Conversely, the presence of microbial products leads
to significant neutrophil infiltration andmuscle fiber damage
[44].

Shortly after neutrophil invasion, macrophages begin
to accumulate and, subsequently, become the dominant
leukocyte population [45, 46]. They are mainly derived from
blood monocytes that have crossed the vessel endothelial
barrier to reach the tissue [47]. Macrophages are professional
scavengers of apoptotic cells and debris and produce a pattern
of signals involved in myogenic precursors activation, matrix
remodelling, and neovessel formation [48, 49]. In vivo studies
have unequivocally shown that macrophages play a pivotal
role in the muscle repair process [15, 50–54]. Indeed, data
from several models of muscle injury (hindlimb ischemia,
freeze-injury, unloading/reloading sequences, and myotoxic
agent injections) indicate that impairment of macrophage
recruitment in injured muscle results in delayed tissue regen-
eration in terms of appearance of regenerating centronucle-
ated myofibers and persistence of intramuscular adipocytes
and fibrosis [55]. More recently, other cell types, including
eosinophils andfibroadipogenic precursors, have been shown
to contribute to the rapid clearance of necrotic debris and,
subsequently, proper muscle regeneration [56].

During the early stages of acute muscle injury, infil-
trating and muscle-resident macrophages associated with
the epimisyal and perimysial connective tissue contribute
in locally attracting monocytes from the blood by secret-
ing chemokines, such as MCP1/CCL2 [57]. Indeed, the
expression of MCP1/CCL2 receptor (CCR2) on bone mar-
row derived cells is critical for normal skeletal muscle
regeneration. Mice defective for CCR2 (CCR2−/−) display
severe impairments in macrophage recruitment and skeletal

muscle regeneration following cardiotoxin (CTX)-induced
injury [58]. Interestingly, MCP1−/− mice exhibit an inter-
mediate phenotype compared with CCR2−/− mice in terms
of macrophage recruitment to the site of injury, resolution
of necrosis, and muscle regeneration, thus suggesting that
other chemokines, in addition to MCP1, may activate CCR2-
dependent regenerative processes [59]. Similarly, CXCL16 has
also been shown to regulate monocyte/macrophage entry
into the injured muscle [60]. Genetic disruption of CXCL16
pathway resulted in defective homing of macrophages and
persistent infiltration of neutrophils, leading to sustained
inflammation, impaired muscle regeneration, and scar depo-
sition.

Two different macrophage populations have been
described in injured/regenerating skeletal muscle. Arnold
et al. [61] identified a population of circulating monocytes,
which are selectively recruited to the site of damage
and display a proinflammatory phenotype. They secrete
inflammatory signals, including TNF𝛼, IL-1𝛽, and MCP1,
and dispose of fiber remnants. Moreover, macrophages
infiltrating damaged muscle have been recently shown to
express inducible nitric oxide synthase (iNOS), a typical
marker of M1 macrophages [62]. The phagocytosis of either
apoptotic or necrotic myogenic cells apparently sustains
the functional polarization of macrophages towards an
anti-inflammatory phenotype. M2 macrophages contribute
to dampen the inflammatory response by secreting TGF𝛽
and IL-10. Moreover, they sustain fiber reconstitution by
secreting cytokines that may play a trophic function, such
as IGF1 and IL-10. In particular, IL-10 is mainly produced
by infiltrating macrophages and its secretion is necessary
to sustain viability and allow differentiation and fusion of
the myogenic progenitor mesoangioblasts into terminally
differentiated myofibers [15]. The sequential presence of
proinflammatory and then anti-inflammatory macrophages
has been also demonstrated in human muscles. Both subsets
of macrophages have been identified in injured/regenerating
human muscles. Macrophages expressing M1 markers
preferentially associate with proliferating satellite cells,
whereas at the time of myogenic differentiation macrophages
mainly express anti-inflammatory M2 markers [63].

The cellular and molecular pathways involved in the
regulation of macrophage phenotype transition during mus-
cle injury/regeneration have been deeply investigated in the
latest years. The cAMP response element-binding protein
(CREB) has been demonstrated to be a crucial transcription
factor for the upregulation of M2-associated gene while
repressingM1 activation. Deletion of two CREB binding sites
from the C/EBP𝛽 gene promoter blocks the downstream
induction of anti-inflammatory genes associated with M2-
like macrophage activation, whereas the inflammatory (M1)
genes are not affected. Uponmuscle injury, mice carrying the
mutated C/EBP𝛽 promoter efficiently clear injured muscle
fromnecrotic debris but display severe defects inmuscle fiber
regeneration, thus confirming that the persistence of inflam-
matory macrophages in damaged muscle of these mice is not
sufficient for effective regeneration [64]. Another molecule
playing a key role in regulating macrophage phenotypic
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transition and muscle recovery is the MAP kinase phos-
phatase (MKP)-1 [65]. Gene-expression analyses on sorted
MKP-1−/− muscle macrophages indicated that MKP-1 con-
trols the inflammatory response as well as the switch from
early pro- to late anti-inflammatory macrophage phenotype
via p38 MAPK downregulation. Mice deficient in MKP-1
display defective muscle regeneration with persistence of
damage and impaired growth of regenerating myofibers.
Interestingly, this phenotype could be completely restored by
MKP-1+/+ bone-marrow transplantation, strongly suggesting
dispensability of this protein for satellite cell-dependent
myofiber repair [65]. Recently, AMP-activated protein kinase
(AMPK)-𝛼1 has also been demonstrated to play a signifi-
cant role in the regulation of macrophage skewing during
skeletal muscle regeneration. Increase in AMPK activity has
been associated with a decreased proinflammatory status
of macrophages [66]. Indeed AMPK𝛼1−/− macrophages fail
to adopt an anti-inflammatory (M2) phenotype and display
a defect in the phagocytic activity [67]. Consistently, mice
bearing a specific deletion of AMPK𝛼1 in myeloid-cells show
a significant delay in skeletal muscle regeneration paralleled
by a decreased number of M2 macrophages [67]. More
recently, a population of regulatory T cell (Treg) has been
shown to infiltrate injuredmuscles and supportmuscle repair
by modulating the several steps of the regeneration process.
Interestingly, muscle Treg cells promote the switch between
pro- and anti-inflammatorymacrophages; the precisemecha-
nisms and the potentially responsible molecules are currently
under investigation [68].

2.2. ChronicMuscle Injury. The study of themolecularmech-
anisms underlying the role of macrophage subpopulations in
muscle repair after acute muscle injury could blaze new trails
in the comprehension of onset and progression of chronic
muscle diseases, even if in these conditionsmacrophagesmay
exert amore complex role, in response to amore complex and
heterogeneous scenario.

In genetic diseases of the muscle, such as the muscle
dystrophies, the noxa cannot be eliminated. The genetic
defect usually affects the structure of the muscle fiber:
membranes become more fragile, leading to necrosis [69].
Since the stem cell compartment undergoes a progressive
depletion/exhaustion and necrosis does not abate, the tissue
architecture is progressively disrupted [70]. In addition, the
release of adjuvant stimuli, that activate the innate and
acquired immune responses, and the generation of reactive
oxygen and nitrogen species, may impinge on macrophage
survival/polarization and function [54, 68, 71].

Several mouse models of chronic muscle damage exist
and allow a better understanding of the role of macrophage
plasticity during the onset and progression of diseases. More-
over they are essential in developing a new pharmacological
or stem cell based clinical strategy.

In the mdx mice, a model for Duchenne muscle dys-
trophy, the early stage of the disease is characterized by an
innate immunity response that is similar to that occurring
after an acute injury, with a massive invasion of neutrophils
and M1-like macrophages. The classical activation of M1

macrophages is driven by proinflammatory Th1 cytokines,
especially TNF𝛼 and IFN𝛾. Both cytokines are highly
expressed inmdxmuscles and they possibly promote muscle
damage during the acute stage of the pathology [37, 72].
Antibody and pharmacological blockade of TNF𝛼 in young
mdx mice results in a delayed and significantly reduced
amount of skeletal muscle damage [73, 74]. IFN𝛾 stimulation
of macrophages isolated from mdx muscles significantly
increases muscle cell lysis in vitro [72]. However, in vivo
ablation of IFN𝛾 in young mdx mice does not affect muscle
fiber damage and only partially reduces iNOS expression
without decreasing macrophage cytotoxicity [75]. Classically
activated M1 macrophages persist in the dystrophic muscle
due to the unremitting inflammatory response and induce
further muscle damage through the production of cytotoxic
levels of nitric oxide (NO) by iNOS [72].

The role of NO in the muscle is nevertheless more
complex. The lack of dystrophin [76, 77] disrupts indeed
the recruitment of another nitric oxide synthase isoform, the
neuronal NOS (nNOS), to the sarcolemma, thus affecting
NO production in muscle fibers [78, 79] and contributing to
the severity of the dystrophic phenotype [80, 81]. The rescue
of function inmdx or dystrophin/utrophin double-knockout
mice by overexpressing annNOS transgene has demonstrated
thatNO controls disease progression and corrects the balance
in macrophage subpopulations [82, 83]. In dystrophic mice
the early M1 invasion is indeed followed by the recruitment
of a subpopulation of M2 macrophages, expressing CD206,
IL-10, and Arginase, that are referred to as M2a; these cells
reduce NO mediated cytotoxicity of M1 macrophages by
competing for the substrate arginine [75, 84]. Subsequent
invasion of the dystrophic muscle by another subpopulation
of alternatively activated macrophages, defined as M2c and
expressing CD163, further contributes toM1 deactivation and
is associated with tissue healing and progression to the regen-
erative phase [72, 84].Thepersistence of inflammation at later
stages promotes excessive connective tissue deposition that
leads to muscle fibrosis, characteristic of dystrophy [84].

In the presence of the nNOS transgene a decrease in M2c
macrophages in the muscle of dystrophic mice was observed,
paralleled by a significant reduction of fibrosis. The nNOS
transgene has no effect on the concentration of cytolytic M1
macrophages [83].

The role of NO inmodulating the inflammatory response
in the dystrophic muscle has been demonstrated by treating
another mouse model of dystrophy, the alpha-SG KOmouse,
with the NO donor Molsidomine [85, 86]. Molsidomine
administration leads to a reduction of the inflammatory
infiltrate, in particular in terms of number of neutrophils
and classically activated macrophages. In addition, most of
remaining macrophages coexpress both markers of classical
and alternative activation (CD206+ CD163+ CD86+) and
might represent a transitional population, which maintains
the ability to sustain the proliferation and differentiation of
myogenic precursors without contributing to the deposition
of collagen and persistence of fibrosis [8, 37].

Inflammatory myopathies are another class of chronic
muscle diseases.They are heterogeneous and classically com-
prise polymyositis [52], dermatomyositis (DM), and sporadic
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Figure 1: Macrophages in acute and chronic muscle damage.The innate immune system throughM1macrophages activates an inflammatory
response: secretion of cytokines triggers the clearance of the tissue from the debris and the activation of stem cells. Phagocytosis of apoptotic
and necrotic cells induces an M1 to M2 macrophage transition (I). M2 polarized macrophages originate from resident macrophages (II) or
can be recruited from circulating monocyte (III).This is a regenerative stage during which stem cells differentiate and the damage is resolved.
In chronic diseases several rounds of damage and repair occur: both M1 and M2 polarized macrophages coexist in the tissue, recruited from
monocytes. This persistent inflammation leads to fibrosis, fat deposition, and exhaustion of the stem cell pool.

inclusion body myositis (IBM) [87]. Despite these disorders
differing in prognosis and response to treatment, common
clinical signs are muscle mononuclear cells infiltration and
myofiber degeneration [88]. Important immunological fea-
tures include also autoantibodies and autoreactive T lym-
phocytes with the overexpression ofmajor histocompatibility
complex class I molecules on the surface of fibers [89]. In
DM the humeral immunity due to CD4+ cells and B cells
plays a predominant role, while PM and IBM disorders are
mediated by cytotoxic CD8+ T cells which attack skeletal
muscle fibers [88, 90]. Interestingly, macrophage infiltration
is common in all inflammatory myopathies. At present, few
data are available concerning the phenotype and the role of
macrophages in the pathology of inflammatory myopathies.
Analyses of muscle biopsies demonstrated that in areas of
severe inflammation and necrosis, macrophages express both
proinflammatory and anti-inflammatory markers. Indeed, in
PM, macrophages are highly positive for iNOS and TGF𝛽,
thus suggesting the existence of two possible macrophage
subpopulations, which could modulate the inflammatory

response [91]. Moreover, Reimann et al. demonstrated that
the macrophage migration inhibitory factor (MIF) is highly
expressed in muscle samples of human PM. MIF is a T
cell and macrophage derived proinflammatory cytokine with
antiapoptotic, proproliferative, and chemotactic effects. In
muscle biopsies of PM, MIF has been detected not only in
inflammatory cells but also on muscle fiber membrane, thus
suggesting a potential role of MIF in the onset of the disease
[92]. In addition to the classical PM, DM, and sporadic IBM,
immune-mediated necrotizing myopathy (IMNM) is another
important class of immune-mediated myopathies [93]. More
recently, it has been defined as a Th1-M1-mediated disease
due to high levels of proinflammatory cytokines IFN𝛾, TNF𝛼,
and IL-12 that have been detected in biopsy specimens; by
contrast no differencewas observed formarkers of alternative
activation of macrophages between patients and healthy
control biopsies [94]. Further investigations are required to
better characterize the molecular mechanism of the immune
response in inflammatory myopathies and ultimately to
design potential therapeutic approaches.
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3. Conclusions

Research in the past few years has highlighted a pivotal role of
macrophages in tissue repair and remodelling. Macrophages
are renowned for their plasticity and heterogeneity, which
have been described not only in vitro but also in various phys-
iological and pathological contests. Evidence indicated that
macrophages are extremely versatile cells that can undergo
phenotype changes according to specific environmental cues.
In skeletal muscle, after acute injury, proinflammatory M1
macrophages firstly arrive to clear debris and are sequentially
replaced by healing M2 macrophages that sustain tissue
repair and regeneration. In chronic muscle injury, both M1
and M2 macrophages coexist but fail to promote tissue
repair and homeostasis recovery (Figure 1). The efforts of the
next years are likely to identify the molecular determinants
of macrophage polarization in order to possibly develop
effective targeted therapies for genetic defects of the tissue
and muscle diseases associated with chronic inflammation.
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