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Abstract

More than 375 genes have been identified that are involved in regulating skin pigmentation, and 

those act during development, survival, differentiation and/or responses of melanocytes to the 

environment. Many of those genes have been cloned and disruptions of their functions are 

associated with various pigmentary diseases, however many remain to be identified. We have 

performed a series of microarray analyses of hyperpigmented compared to less pigmented skin to 

identify genes responsible for those differences. The rationale and goal for this study was to 

perform a meta-analysis on those microarray databases to identify genes that may be significantly 

involved in regulating skin phenotype either directly or indirectly that might not have been 

identified due to subtle differences by any of those individual studies alone. The meta-analysis 

demonstrates that 1,271 probes representing 921 genes are differentially expressed at significant 

levels in the 5 microarray datasets compared, which provides new insights into the variety of 

genes involved in determining skin phenotype. Immunohistochemistry was used to validate 2 of 

those markers at the protein level (TRIM63 and QPCT) and we discuss the possible functions of 

those genes in regulating skin physiology.

INTRODUCTION

The regulation of pigmentation in human skin has many important implications, including 

its role in photoprotection from UV damage, its cosmetic and social roles and its roles in 

various pigmentary diseases. A large number of genes are involved in regulating mammalian 

pigmentation, and those act during development, survival, differentiation and/or responses 
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of melanocytes to the environment. Historically, pigment genes were initially identified 

from spontaneous mutations that resulted in visible phenotypic changes, usually in mice, but 

also in many other species including humans. Before the era of gene cloning, about 65 

pigment genes had been identified (Silvers, 1979), but since that time there has been a rapid 

increase in the number of known pigment genes, exceeding 100 by the year 2000 (Bennett 

and Lamoreux, 2003) and at this time, >375 pigment genes are known, of which ~170 have 

been cloned [curated database at: http://www.espcr.org/micemut/]. Many of those genes and 

the functions of their encoded proteins have been characterized, and in many cases 

mutations in those genes have been associated with human pigmentary diseases and/or 

variations in normal pigmentation. Gene expression profiling has become increasingly 

common and useful to identify genes involved in regulating normal skin and hair physiology 

as well as those involved in skin diseases such as psoriasis, keloids and age spots by various 

types of cells in the skin (Smith et al., 2008; Calles et al., 2010; Choi et al., 2010; Mitsui et 

al., 2012; Peters et al., 2013; Pollock et al., 2014; Inkeles et al., 2014).

Several specific genes (e.g. TYR, OCA2, MC1R and SLC24A5) have been reported to be 

the major genes involved in the regulation of human skin, hair and eye color (Nordlund et 

al., 2006; Hearing and Merlino, 2009; Yamaguchi and Hearing, 2009; Sturm and Duffy, 

2012; Baxter and Pavan, 2013) but there is no doubt that many other genes are involved, and 

that many genes involved in regulating the phenotype of human skin remain to be 

discovered. In general, mutations in many of the known pigment genes cause the loss of 

color in the affected tissues, i.e. they are associated with hypopigmentation, but relatively 

little is known about genes associated with increased pigmentation. Genes involved with 

hypopigmentary diseases, such as albinism, white spotting and Hermansky-Pudlak 

syndrome, have been identified, and the characterization of the functions of their encoded 

products and why mutations in those genes cause the loss of pigmentation, has provided 

important information about molecular mechanisms involved in the regulation of 

melanocyte function. Interestingly, there are a number of hyperpigmentary conditions of the 

skin, such as UV-induced melanosis, post-inflammatory hyperpigmentation and senile 

lentigines (age spots), but factors and genes involved in those are relatively poorly 

understood. To address that, we have begun a series of microarray analyses of normally 

pigmented skin compared with hyperpigmented lesions on the same individuals to identify 

genes that are responsible for those disruptions (Choi et al., 2010; Coelho et al., 2015a; 

Coelho et al., 2015b). In a related study, we have also used microarray analysis to compare 

lightly pigmented (Caucasian) to moderately pigmented (Asian) and darkly pigmented 

(African) skin (Yin et al., 2014), which identified a number of genes involved in regulating 

constitutive skin color.

Those analyses have identified several key genes that are correlated with hyperpigmented 

skin but due to the relatively small sample sizes of those clinical studies, many other genes 

seem to be subtly regulated but not consistently enough to reach statistical significance. The 

rationale and goal for this study was to perform a meta-analysis on all those microarray 

databases to increase the statistical power and to identify important genes that are 

significantly involved in regulating skin pigmentation and phenotype that might not have 

been identified by any of those individual studies alone.
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We now report that 1,271 probes representing 921 genes were differentially expressed in the 

5 microarray datasets from 5 different models of skin hyperpigmentation compared by meta-

analysis. Among the 1,271 differential probes, 118 never showed a significant p value in any 

of the individual studies. Further, as proof of principle, we used immunohistochemistry to 

validate 2 of those markers at the protein level (TRIM63 and QPCT). Although this study 

focused on the relevance to skin pigmentation, since the biopsies included all epidermal cell 

populations, these data also provide insights into other aspects of skin physiology.

RESULTS

Selection of subsets of microarray datasets based on pigment gene expression features

Details of these microarray studies and a summary of the 5 different models of skin 

hyperpigmentation (UV, LLP, PIH, AS and ES) are provided in SI Methods. The 5 datasets 

included in the meta-analysis are summarized in Table S1. Table S2 shows information 

about each raw data file, and in total, 90 chips were included in the meta-analysis. Since 

several of these 5 studies examined gene expression at multiple time points, the rationale for 

choosing a specific time point and control in each of those studies is detailed in.SI Methods

Meta-analysis results

Identification of meta-genes—In order to reduce the false discovery rate of microarray 

data analysis, a gene filtering step was implemented before the differential analysis. Within 

the 41,000 probes on the Agilent-014850 Whole Human Genome Microarray, 27,761 probes 

were selected based on variation and intensity. Meta-analysis was applied on those 27,761 

probes and the statistics of I2 were calculated to measure heterogeneity for each gene 

(Figure S3). Statistical analysis revealed that 1,271 of the 27,761 probes fulfilled the criteria 

for meta-gene selection (Table S3). They represent 921 genes and were distributed relatively 

equally as up- or down-regulated genes; a heatmap of those gene probes is shown in Figure 

1. Those genes were ranked by their absolute value of fold change, and the top 10 meta-

genes are shown in Figure 2. Two SILV gene probes and one TYRP1 gene probe were 

found in the top 10 list, both of which are important pigment-specific genes, which suggests 

that these other genes might also play important roles in regulating skin pigmentation. The 

top 25 up-regulated gene probes and the top 25 down-regulated gene probes are listed in 

Table 1.

Figure S4 shows forest plots of the SOX2 and MYB genes, where none of the 5 individual 

datasets showed a significant change in the expression of those two genes while meta-

analysis assigned a significant p value to them. SOX2 has been shown to be an upstream 

regulator of the pigmentation master gene, the transcription factor MITF (Cimadamore et 

al., 2012). It has also been shown that a MYB-like transcription factor regulates petal 

pigmentation in a flowering peach ‘Genpei’ bearing variegated and fully pigmented flowers 

(Uematsu et al., 2014). Among the 4,076 significant probes identified by raw p value in the 

meta-analysis, 959 never had a p<0.05 in any one of the 5 datasets. Among the 1,271 meta-

gene probes, 118 never had a significant p value in an individual dataset but were significant 

by meta-analysis (Table S4). These results provide strong evidence that meta-analysis has a 

greater power to detect differentially expressed genes (DEGs).
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Comparison of meta-genes with known color genes—The curated website of color 

genes (http://www.espcr.org/micemut/) provides information about known genes that 

regulate pigmentation in mice and in their human and zebrafish homologues. We compared 

our meta-gene list with the 171 known color genes that have been cloned at this time; 160 of 

those genes are represented on the microarray chips used. Twenty-two common gene names 

were found and are shown in Table S5.

Proteins encoded by the meta-genes exist in human melanosomes—
Melanosomes exist in 4 distinct stages as they become increasingly mature and are filled 

with melanin pigment before they are transferred to neighboring keratinocytes through 

melanocyte dendrites. A proteomics study (Chi et al., 2006) has identified the components 

of the different stages of melanosome maturation, and that information is listed in the 

Protein Information Resource (PIR), an integrated public bioinformatics resource (http://

pir.georgetown.edu/cgi-bin/textsearch_iprox.pl?data=mnt). One of the major goals of this 

study was to identify previously unknown melanosomal proteins that might be involved in 

melanogenesis. We compared our meta-gene list with known melanosomal proteins at 

various stages of maturation and identified 23 common genes, which suggests that 23 of the 

meta-genes identified encode melanosomal proteins (Table S6). We confirmed the specific 

expression of QPCT in melanocytes as detailed below.

Bioinformatic analysis

GO term enrichment analysis—To identify functional relationships in DEGs, the R 

package GOstats based on the Gene Ontology database was used. Hypergeometric testing 

was used to identify significantly enriched GO terms. The 1,271 meta-gene probes were 

analyzed for enrichment of functional GO terms in comparison to the reference gene set 

(also called the "gene universe"), which is derived from all gene probes on the Agilent 

whole human genome chip. A p≤0.001 was used as cut off for the final list. Tables S7a, S7b 

and S7c list the Enriched Biological Processes, Cellular Components and Molecular 

Functions, respectively, which were ranked by their Odds Ratio. The Top 20 biological 

processes are shown in Figure 3, which includes GO:0042438 (Melanin Biosynthetic 

Process), GO:0048066 (Developmental Pigmentation) and GO:0030318 (Melanocyte 

Differentiation). The fact that those 3 pigment-related categories were scored so highly is 

indicative of the relevance of these genes to mammalian pigmentation.

Upstream regulators—The overall goal of this study was to identify genes that play 

important roles in hyperpigmentation of the skin that might not have been identified in the 

individual studies. One of the drawbacks of microarray technology is that the sensitivity and 

precision of this technology might not provide accurate results regarding transcription 

factors with low RNA levels. Therefore, we used another approach to explore upstream 

regulators of pigmentation. The 1,271 meta-gene probes were loaded into IPA (Ingenuity 

Pathway Analysis), which can identify cascades of upstream transcriptional regulators and 

enzymes, and thereby explain the observed gene expression changes in our meta dataset. For 

upstream regulators, we focused only on transcription factors and enzymes, not on 

microRNAs or drugs. For each potential transcriptional regulator, 2 statistical measures, an 

overlap p value and an activation Z score, were computed. If a large number of target genes 
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of a specific transcription factor was found in our DEG list, it is reasonable to hypothesize 

that transcription factor might play an important role in hyperpigmentation. Table S8a shows 

the top 10 activated upstream regulators and Table S8b shows the top 10 inhibited upstream 

regulators. Note that MITF is the most activated factor in the list while TNF is the most 

inhibited; both of those are key regulators of mammalian pigmentation. TRIM63 was 

another transcription factor identified in this study that might play an important role in 

regulating skin pigmentation as discussed further below.

Clustering—Biological insights can be captured by examining clusters of DEGs, that is, 

groups of genes which are up- or down- regulated simultaneously. The Mfuzz package in R 

was employed to explore common gene expression patterns in the 1,271 meta-gene probes. 

Figure S5a shows the profiles of the 40 clusters obtained from the Mfuzz package when 

m=1.25. Note that many of the most important known pigment genes (ARMC9, EDNRB, 

GPR143, MC1R, PAX3, PMEL, SOX5, TYR and TYRP1) are found in cluster 26 (Table 

S9). The genes in cluster 26 were up-regulated dramatically in the UV and LLP datasets 

(Figure S5b), were up-regulated moderately in the PIH dataset, but had only minor 

alterations in the Age Spot (AS) and Ethnic skin (ES) datasets. In Figure S5b (left), the 

vertical axis represents the standardized expression change of Cluster 26. In Figure S5b 

(right), the fold change of each gene in each dataset is shown on the y axis. Cluster analysis 

identifies groups of genes that perform similar or complementary functions to known genes, 

i.e. genes in a cluster respond similarly to a given experimental condition. Cluster 26 is of 

particular interest since a number of known key regulators of pigmentation that function at 

various cellular levels to regulate melanin production are in that group, suggesting that other 

members of that group might also be involved in regulating skin pigmentation.

Using the top 50 meta-genes to classify skin samples—If the meta-genes 

identified are feature genes that represent the different phenotypes of pigmentation, then 

they should be useful to classify hyperpigmented samples from normal samples or to 

classify hypopigmented samples from normal samples. Specimens from pigmentation 

disorders, such as from vitiligo skin, would be ideal to test the classification ability of the 

meta-genes.

The GEO microarray database was searched using the keywords "Homo sapiens skin 

vitiligo". Ten records were retrieved with one dataset describing gene expression profiles in 

vitiligo lesional skin (Rashighi et al., 2014). In that study, total RNA was isolated from 10 

human samples from formalin-fixed, paraffin-embedded skin specimens, 5 from vitiligo 

patients and 5 from controls. Control skins were age- and site-matched excisions without 

pathology.

All meta-genes were ranked by absolute values of fold change. The Top 50 genes were 

selected for this classification test. Sample distances were calculated by the Euclidean 

method and sample clustering was performed by the Ward.D method; the results are shown 

in Figure S6. All 5 vitiligo samples clustered together and showed a similar heatmap pattern. 

We also used a PCA plot (Figure S6) to display the data features of these 10 human skin 

samples. All vitiligo samples were located at the top left of the 2d surface, which is distinct 

from the normal skin area (lower part of the 2d surface).
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Validation of meta-genes using immunohistochemistry—To confirm the 

expression patterns of some of the DEGs identified, we used immunohistochemistry to 

characterize the localization of their encoded proteins in African American, Asian and 

Caucasian skin. We tested one of the genes (TRIM63) encoding a transcription factor that 

fell in cluster 26, where the pigment genes were enriched. TRIM63 was up-regulated in the 

LLP, UV and PIH microarray datasets with fold changes of 2.66, 4.33 and 1.46, 

respectively, while it was not changed significantly in ES and AS datasets. Meta-analysis 

revealed that the summarized effect of TRIM63 is 1.74 (Figure 4a), which means that 

compared to normal samples, the gene expression level of TRIM63 in hyperpigmented 

samples is 1.74 times higher. Immunohistochemical staining (Figure 4b) showed a stronger 

signal for TRIM63 in African American skin than in Caucasian skin, indicating that more 

TRIM63 protein is expressed in more pigmented skin than in lighter skin, which is 

consistent with the meta-analysis. Also, we tested another meta-gene, named QPCT, which 

had been identified in the melanosome proteomics database. Meta-analysis showed that the 

gene expression level of QPCT in hyperpigmented samples is 1.51 times higher than in the 

less pigmented samples (Figure 5a). Immunohistochemical staining showed that QPCT and 

the melanocyte-specific marker MART1 co-localize in the same cells (Figure 5b, left), 

which suggests that QPCT is a melanocyte-specific gene that might play an important role in 

pigmentation. This cellular localization was confirmed using another melanocyte-specific 

marker, MITF (Figure 5b, right).

DISCUSSION

Due to the small sample size for each of our 5 microarray studies, the power of each study 

alone may not be sufficient to detect significant differences in gene expression, and thereby 

the statistical conclusions may not be consistent throughout similar or relative biological 

studies. Meta-analysis provides an ideal opportunity to combine gene effect sizes in various 

studies. With the exponential growth of microarray data in public databases and the rapid 

development of computing ability, increasing numbers of microarray meta-analyses are 

being performed to seek mechanisms underlying biological processes. To better understand 

the gene expression patterns involved in skin hyperpigmentation, we applied meta-analysis 

on 5 distinct hyperpigmentation datasets that represent 5 different models for skin 

hyperpigmentation, each with a limited number of clinical specimens. Among the 4 most 

commonly used differential gene detection methods of meta-analysis (‘combine p values’, 

‘combine effect sizes’, ‘combine ranks’ and ‘directly merge after normalization’), we 

decided to use ‘combine effect sizes’ (gene alteration: log fold change) since we were most 

interested in genes that were consistently up- or down-regulated in all hyperpigmented 

conditions. The methods of ‘combine p value’ and ‘combine ranks’ are not able to tell genes 

with discordance automatically. Further, we selected the random effect model to ‘combine 

effect sizes’ from various studies since the 5 datasets we used employed 5 different types of 

skin hyperpigmentation. There was heterogeneity in those studies and genes won’t share 

common effect sizes among those studies. Although the 5 datasets used were all from the 

Agilent whole human genome array platform, we did not use ‘directly merge after 

normalization’ because the 5 studies were carried out sequentially at different times. There 

are substantial batch effects among the studies, even within some individual studies, such as 
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the PIH and LLP studies. The microarray chips were hybridized in different batches. 

Additionally, in the UV, LLP, PIH and AS datasets, the samples were paired, which means 

that the hyperpigmented samples and the corresponding control samples were taken from the 

same subjects, while in the ES dataset, the samples were not paired and were from unrelated 

African and Caucasian subjects. Therefore, we used unpaired t tests to compare the ES 

dataset, and paired t tests to compare the other datasets. The gene effect sizes in each study 

were calculated respectively based on the data features of each study, and then were 

summarized by the random effect model. The advantage of meta-analysis for the 

hyperpigmentation microarray data is evidenced by the list of meta-genes which contains a 

large number of known pigment genes such as TYR, TYRP1 and SILV. The gene alteration 

pattern determined by the meta-analysis is more reliable.

Some genes with significant differences in one study but with non-significant changes in 

another study were identified as DEGs by the meta-analysis. For instance, TRIM63 has been 

shown to be up-regulated after repetitive UV treatment by microarray analysis and by 

immunohistochemical staining (Choi et al., 2010). However, it was not significantly 

changed when African American skin was compared with Caucasian skin in the ES dataset. 

Through meta-analysis, we found that the summary effect of TRIM63 is statistically 

significant, and immunohistochemical staining confirmed those results on ethnic skin 

specimens. Therefore, in the case of inconsistent results obtained in different studies, meta-

analysis provides an ideal opportunity to summarize information and obtain a better 

understanding of how genes work during similar biological conditions. It is also clear that 

levels of functional proteins do not always correlate with their mRNA levels. The 

involvement of other proteins in our TOP25 list has been documented in other studies from 

our group, e.g. SOX7 in the LLP study (Coelho et al., 2015b) and NEUROD2 in the PIH 

study (Ebsen et al., in preparation).

The dynamics of changes in skin pigmentation over time has become clear as a result of 

these different approaches to study the various hyperpigmented phenotypes of human skin. 

Dramatic changes in increased skin pigmentation can be elicited within days (by UV 

exposure), weeks (by PIH), months (by LLP), years (in Age Spots) and a lifetime (Ethnic 

Skin color). The gene expression changes reported in our various microarray studies reflect 

those dynamics, with very rapid changes in gene and protein expression levels that lead 

directly to melanin synthesis (e.g. TYR and other melanosomal constituents) within a few 

days following UV exposure, to changes in factors regulating melanosome distribution and 

keratinocyte-related factors during PIH, to long-term more subtle changes in melanocyte 

function and skin architecture that result in LLP. Even longer term changes result in the 

development of age spots that take years to develop and reflect changes in melanosome 

distribution in the lower epidermis and towards the dermis, and of course the constitutive 

differences in skin pigmentation seen in light- versus darkly-pigmented skin. It is clear that a 

wide variety of genes are involved in those changes of pigmentation at each level, and that 

those include functional changes in various types of cells in the skin that influence melanin 

production and distribution. Although this study focused on skin pigmentation, since the 

biopsies included all epidermal cell populations, these data also provide insights on other 

aspects of skin physiology.
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The individual microarray studies identified a number of specific targets in each system 

analyzed, but the relatively small number of specimens in each clinical study limited the 

statistical analysis. The combined meta-analysis of all 5 studies effectively increases the 

sample size and allows a number of additional genes to reach statistically different 

expression levels that were not identified in any of the individual studies. The DEGs 

identified provide a wealth of information about processes involved in skin 

hyperpigmentation and will no doubt provide many useful novel targets for those conditions. 

It should be noted that even relatively small changes in melanin production and distribution 

can have dramatic effects on visible skin pigmentation so changes in gene expression that 

still fall below the level of significance used in our analyses might still prove important in 

the physiological regulation of skin pigmentation.

MATERIALS AND METHODS

Studies included in the meta-analysis

Our laboratories have established 5 models (UV, LLP, PIH, AS and ES) to investigate 

genome-wide gene expression profiles in hyperpigmented human skin samples using the 

Agilent-014850 Whole Human Genome Microarray 4x44K platform. In order to avoid large 

measurement variances from different hybridization platforms and from different species, 

only studies on human skin samples using Agilent microarrays were included in this meta-

analysis. Using key words 'Homo sapiens[organism] AND skin AND (GPL6480 OR 

GPL4133)', we searched databases available in Gene Expression Omnibus (GEO) at the 

National Center for Biotechnology Information (NCBI) and Arrayexpress at the European 

Bioinformatics Institute (EBI). Only one study was identified as a genome-wide profiling of 

a human skin pigmentary disorder, i.e. a dataset (GSE21429) we submitted to GEO in Apr, 

2010. Therefore, we decided to perform this meta-analysis based only on 5 microarray 

datasets from our own laboratories. A brief introduction to our 5 individual studies is shown 

in Suppl Info Methods and detailed microarray data file information is listed in Table S1.

Details of the Microarray studies included in the meta-analysis and selection of subsets used, 

Microarray Data Preprocessing, Statistical Analysis, Bioinformatics Analysis, 

Immunohistochemical Analysis and Statistical Language and Packages are provided in 

Supplemental Information Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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AS age spot
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ES ethnic skin

FDR false discovery rate

LLP long-lasting pigmentation

PIH post-inflammatory hyperpigmentation

UV ultraviolet
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Figure 1. Heatmap of differentially expressed meta-genes showing and the equal distribution of 
down-regulated and up-regulated genes
UV represents the UV data set which compared UV-exposed skin with unexposed skin at 

two weeks. LLP represents the LLP data set which compared UV-exposed skins with 

unexposed skin at day 25. PIH represents the PIH data set which compared Post-

Inflammatory Hyperpigmented skin with non-treated skins at 6 weeks. AS represents the age 

spot data set which compared age spots with perilesional control areas. ES represents the 

Ethnic Skin data set which compared African skin with Caucasian skin.
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Figure 2. Forest plots of the Top 10 meta-genes
The confidence interval (CI) for each study is represented by a horizontal line and the 

treatment effect (TE) is represented by a square. The size of the square corresponds to the 

weight of the study in the meta-analysis. The confidence interval for summary effect is 

represented by a diamond.
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Figure 3. Top 20 enriched biological process Gene Ontology (GO) terms identified by GOstats R 
package
Enriched GO terms rank by odds ration after screened by cut off p value of 0.001. The blue 

line shows the number of genes that is common between the tested biological process and 

the uploaded gene set. The blue bars are the –log10 of the p value as determined by GOstats.
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Figure 4. Expression patterns of TRIM63
a) Forest plot of TRIM63; b) Immunohistochemical staining of TRIM63 in Caucasian skin 

specimens (top row) and in African American skin specimens (bottom row). Bar = 50 µm.
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Figure 5. Expression patterns of QPCT
a) Forest plot of QPCT; b) Immunohistochemical staining of Asian skin showing the 

colocalization of QPCT (red) in melanocytes labeled with MART1 (left, green) and MITF 

(right, green). Bar = 50 µm.
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