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Abstract: Purpose: Tc-99m dimercaptosuccinic acid (99mTc-DMSA) renal scan is an important tool
for the assessment of childhood urinary tract infection (UTI), vesicoureteral reflux (VUR), and
renal scarring. We evaluated whether a deep learning (DL) analysis of 99mTc-DMSA renal scans
could predict the recurrence of UTI better than conventional clinical factors. Methods: the subjects
were 180 paediatric patients diagnosed with UTI, who underwent immediate post-therapeutic
99mTc-DMSA renal scans. The primary outcome was the recurrence of UTI during the follow-up
period. For the DL analysis, a convolutional neural network (CNN) model was used. Age, sex, the
presence of VUR, the presence of cortical defects on the 99mTc-DMSA renal scan, split renal function
(SRF), and DL prediction results were used as independent factors for predicting recurrent UTI. The
diagnostic accuracy for predicting recurrent UTI was statistically compared between independent
factors. Results: The sensitivity, specificity and accuracy for predicting recurrent UTI were 44.4%,
88.9%, and 82.2% by the presence of VUR; 44.4%, 76.5%, and 71.7% by the presence of cortical defect;
74.1%, 80.4%, and 79.4% by SRF (optimal cut-off = 45.93%); and 70.4%, 94.8%, and 91.1% by the DL
prediction results. There were no significant differences in sensitivity between all independent factors
(p > 0.05, for all). The specificity and accuracy of the DL prediction results were significantly higher
than those of the other factors. Conclusion: DL analysis of 99mTc-DMSA renal scans may be useful
for predicting recurrent UTI in paediatric patients. It is an efficient supportive tool to predict poor
prognosis without visually demonstrable cortical defects in 99mTc-DMSA renal scans.

Keywords: deep learning; convolutional neural network; 99mTc-DMSA renal scan; urinary tract
infection; prognosis; prediction

1. Introduction

Childhood urinary tract infection (UTI) is one of the main bacterial illnesses of con-
cern in paediatrics [1]. Vesicoureteral reflux (VUR) is frequently diagnosed after UTI [2].
Conversely, it is also a main cause of UTI [3]. Both UTI and VUR cause renal scarring or
chronic kidney disease (CKD) in severe cases [4,5]. In particular, the nephropathy asso-
ciated with VUR can manifest decreased renal function with a reduced renal length in
renal ultrasonography and a reduced split renal function (SRF) in renal scans [6]. Thus,
it is important to predict recurrence of UTI, especially in paediatric patients, in terms of
selecting appropriate therapeutic options, determining a follow-up plan, and preventing
aggravation of renal dysfunction.

The Tc-99m dimercaptosuccinic acid (99mTc-DMSA) renal scan is a widely utilised
nuclear medicine imaging modality; 99mTc-DMSA is a radiopharmaceutical that is absorbed
by the renal cortex. When photon defects on the renal cortex are shown in a 99mTc-DMSA
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renal scan, renal scarring is diagnosed by nuclear medicine physicians. Relative renal
function also can be evaluated by comparing the uptake of each kidney. In previous studies,
the presence of an abnormality in the 99mTc-DMSA renal scan has been reported as an
excellent predictor of recurrent UTI and aggravation of CKD [7,8]. Therefore, 99mTc-DMSA
renal scans are performed routinely not only for paediatric patients with initial febrile UTI,
but also in the follow-up after a UTI event. However, there are some inconsistencies in
which UTI recurs in patients with a normal 99mTc-DMSA renal scan. The inconsistency
is readily understandable, as the presence of renal scarring in 99mTc-DMSA renal scans is
determined via visual assessment by nuclear medicine physicians.

Deep learning (DL) is an analytic method used to discover the complex structure of
large-scale data by using network architecture to transfer information through layers [9].
Recent advances in DL algorithms have greatly influenced the field of medicine, and
there is no exception in the analysis of nuclear medicine images [10]. Supervised DL
typically predicts a target value of a specific classification or a continuous value with
labelled input data. Among supervised DL analysis methods, a convolutional neural
network (CNN) model is frequently applied to classify image data, including medical
images. The advantages of the CNN model are the relatively low amount of pre-processing,
such as automatic feature extraction, and fair classification accuracy compared to other
algorithms [11]. Although a previous study attempted DL analysis for 99mTc-DMSA renal
scans, there have been no reports on predicting the clinical outcome in paediatric patients
with 99mTc-DMSA renal scans [12].

In this study, DL analysis was performed on 99mTc-DMSA renal scans to predict
the recurrence of UTI. It was evaluated whether DL predictions based on 99mTc-DMSA
renal scans could forecast the recurrence of UTI in paediatric patients better than other
conventional clinical factors and image findings.

2. Methods
2.1. Subjects

Two hundred and twenty consecutive paediatric patients under 18 years old under-
going an initial 99mTc-DMSA renal scan between January 2006 and December 2018 were
retrospectively enrolled. The 99mTc-DMSA renal scans were performed after diagnosis
of UTI for all patients. Among the sample, two patients were excluded due to a lack of
clinical information: one patient with a follow-up duration less than one year and another
patient with a lack of SRF data. Another 38 patients were excluded due to the absence of an
original DICOM file of the 99mTc-DMSA renal scan. Therefore, 180 patients were ultimately
included in this study (Figure 1). Third-generation cephalosporin antibiotic treatment was
performed in all patients. In paediatric patients with febrile UTI, a 99mTc-DMSA renal scan
is routinely performed for initial workup and follow-up after therapy for evaluating the
presence of renal scarring or cortical defects in our institute. All patients underwent a
99mTc-DMSA renal scan within four weeks of antibiotics treatment and clinical follow-up
for more than one year. Our institute review board approved this retrospective cohort
study (IRB #2020-06-116), and the informed consent requirement was waived.

2.2. 99mTc-DMSA Scan Acquisition and Pre-Processing

The 99mTc-DMSA renal scans were performed according to the guidelines of the Society
of Nuclear Medicine. Briefly, 37–185 MBq of 99mTc-DMSA was injected into the patients.
Image acquisition was performed three hours after the intravenous injection of 99mTc-DMSA
by using three dedicated dual-headed gamma cameras (E.CAM, Siemens Healthineers,
Erlangen, Germany: pixel size of 1.6 × 1.6 mm; INFINIA, GE Healthcare, Milwaukee,
WI, USA: pixel size of 1.4 × 1.4 mm; Discovery NM830, GE Healthcare: pixel size of
2.2 × 2.2 mm). Images were acquired in the posterior, both posterior oblique projections,
and both anterior oblique projections in supine position using a dedicated gamma camera.
The posterior planar images were used to evaluate SRF. Regions of interest were drawn
manually along the margin of each kidney. The count ratio of each kidney was defined as
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SRF. All images were reviewed by two board-certified nuclear medicine physicians with
over five years of experience. The focal prominent photon defect in the renal cortex was
considered as a cortical defect. For image reading by nuclear medicine physicians, all
projection images were used.
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Figure 1. Patient inclusion and exclusion criteria. Two hundred and twenty patients were retrospec-
tively enrolled. Among them, patients with a lack of clinical information or without an original
DICOM file were subsequently excluded. Ultimately, 180 patients were included.

The 99mTc-DMSA renal scan images were obtained as original DICOM files of poste-
rior images (256 × 256 pixels) from the Picture Archiving and Communication Systems
department of our institute. Subsequently, any identifying personal information was re-
moved from the header of images. As pre-processing for DL analysis of 99mTc-DMSA renal
scan images, the kidney with smaller uptake (lower SRF) was cropped to 64 × 64 pixels
manually. To enhance uniformity of the dataset and increase efficacy of DL, images of the
left kidney were inverted into right. Image pre-processing was conducted using numPy
library version 1.21.0 in Python.

2.3. Convolutional Neural Network

CNN was selected as an appropriate analytic tool in this study. It is a supervised
DL method to employ mathematical operation between matrixes called convolution [11].
In particular, it has good performance in learning and classification of images. A CNN
model was constructed for DL analysis of the 99mTc-DMSA renal scans. Manually cropped
99mTc-DMSA renal scan images were fed into the 2D-CNN model. Three sequential con-
volution layers, a rectified linear unit, and pooling layers were applied, and the features
were fed into a fully connected layer. Dropout layers were applied after the fully connected
layers. The outputs of the network were probabilistic scores for the presence of recurrent
UTI with values that ranged from zero to one. The final output of CNN was a series of
discrete values for prediction of recurrent UTI.

To assess model generalizability and select appropriate hyperparameters, we used a
stratified k-fold cross-validation approach three times. In each cross-validation fold, the
CNN was trained on 2/3 of the samples and validated on an unseen subset of 1/3 of the
samples. This was repeated until each fold had served as the test set. Based on the average
accuracy of cross-validation, the hyperparameters of the model were optimized. The sizes
of the convolution filters were (3 × 3), (3 × 3), and (3 × 3) in the sequences. The size of the
pooling layers was (2 × 2), and after each convolutional layer, batch normalization was
applied. The size of the final linear layer was 23. The learning was performed for 30 epochs.
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The construction and learning of the CNN model were conducted using pytorch library
version 1.10 in Python.

2.4. Clinical Variables and Statistical Analyses

The primary outcome was the recurrence of UTI during clinical follow-up. Age, sex,
presence of VUR, presence of cortical defect on 99mTc-DMSA renal scan, SRF, and DL
prediction results were used as independent variables for predicting recurrent UTI. Clinical
data including demographics, performance of treatment, and the presence of recurrent UTI
were collected retrospectively from the Electronic Medical Records.

Diagnostic efficacy for predicting recurrent UTI was calculated for each clinical factor,
image finding, and the results of the CNN classification. The optimal cut-off of SRF
was defined as the value that produced the largest area under the receiver operating
characteristic (ROC) curve to predict recurrent UTI. Patients with lower SRF than an
optimal cut-off value were classified as patients with low SRF. Sensitivity, specificity, and
diagnostic accuracy were used to demonstrate diagnostic efficacy. Those of other variables
were statistically compared with those of CNN prediction results using the McNemar test.
A p-value lower than 0.05 was considered statistically significant. All the analyses were
performed using Python version 3.7.0.

3. Results
3.1. Demographic Data

During clinical follow-up, recurrent UTI occurred in 27 of 180 patients (one-year recur-
rence rate: 15.0%). The median time of the follow-up was 2118 days, and the interquartile
range was 2777 days. There were no significant differences in age and sex between patients
with and without recurrent UTI. In contrast, significant differences were found in the
presence of VUR, presence of cortical defect, and low SRF on 99mTc-DMSA renal scans
between those two groups. Detailed demographic data are provided in Table 1.

Table 1. Clinical characteristics of patients.

Characteristics.
Overall Presence of

Recurrent UTI No Recurrent UTI p
(n = 180) (n = 27) (n = 153)

Age (range, years) 1.6 (0.1–17.6) 1.5 (0.1–9.8) 1.7 (0.1–17.6) 0.368
Sex, male 109 (60.6%) 17 (63.0%) 92 (60.1%) 0.781

Presence of VUR 29 (16.1%) 12 (44.4%) 17 (11.1%) < 0.001
Presence of cortical defect 48 (26.7%) 12 (44.4%) 36 (23.5%) 0.023

SRF (range, %) 46.0 (7.3–50.0) 39.4 (7.3–49.4) 46.9 (15.5–50.0) < 0.001
Note: Data are numbers of patients (proportion). UTI, urinary tract infection; VUR, vesicoureteral reflux; SRF,
split renal function.

3.2. Diagnostic Accuracy

The optimal cut-off of SRF to predict recurrent UTI was set as 45.9% based on ROC
curve analysis. The area under ROC curve was 0.816 (Supplementary Figure S1). The
sensitivity, specificity and accuracy for predicting recurrent UTI were 44.4%, 88.9%, and
82.2% by the presence of VUR; 44.4%, 76.5%, and 71.7% by the presence of cortical defect;
74.1%, 80.4%, and 79.4% by low SRF; and 70.4%, 94.8%, and 91.1% by the CNN prediction
results. There were no significant differences in sensitivity of the CNN prediction results
compared to the other variables. However, the specificity or accuracy of the CNN prediction
results were significantly higher than those of the other variables (Table 2). Representative
cases are displayed in Figure 2.
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Table 2. Diagnostic efficiency for recurrent UTI in each independent variable.

. Sensitivity p Specificity p Accuracy p PPV NPV PLR NLR

Presence of
VUR

44.4%
(12/27) 0.211 88.9%

(136/153) 0.110 82.2%
(148/180) 0.030 41.4%

(12/29)
90.1%

(136/151) 4 0.63

Presence of
cortical defect

44.4%
(12/27) 0.211 76.5%

(117/153) <0.001 71.7%
(129/180) <0.001 25%

(12/48)
88.6%

(117/132) 1.89 0.73

Low SRF 74.1%
(20/27) 0.999 80.4%

(123/153) 0.001 79.4%
(143/180) 0.006 40%

(20/50)
94.6%

(123/130) 3.78 0.32

CNN
prediction

result

70.4%
(19/27)

94.8%
(145/153)

91.1%
(164/180)

70.4%
(19/27)

70.4%
(19/27) 13.54 0.31

Note: p-values represent statistical significances of McNemar test between each independent variable and CNN
prediction result. VUR, vesicoureteral reflux; SRF, split renal function; CNN, convolutional neural network,
PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative
likelihood ratio.
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Figure 2. Representative cases of 99mTc-DMSA renal scan. (a) A case without demonstrable abnormal-
ity in 99mTc-DMSA renal scan and without recurrent UTI. It was classified as a case without recurrent
UTI by CNN prediction. (b) A case with multiple cortical defects in 99mTc-DMSA renal scan and with
recurrent UTI. It was classified as a case with recurrent UTI by CNN prediction. (c) A case without
demonstrable abnormality in 99mTc-DMSA renal scan and with recurrent UTI. It was classified as
a case with recurrent UTI by CNN prediction. 99mTc-DMSA, Tc-99m dimercaptosuccinic acid; UTI,
urinary tract infection; CNN, convolutional neural network.

4. Discussion

In this study, DL-based analysis of 99mTc-DMSA renal scans was performed to predict
recurrence of UTI in paediatric patients. It demonstrated better ability to predict recurrent
UTI compared to conventional clinical methods. Few studies have analysed 99mTc-DMSA
renal scan images using artificial intelligence algorithms. Lin et al. revealed that artificial
intelligence algorithms support reducing the scan time of 99mTc-DMSA single-photon
emission computed tomography (SPECT) [13]. However, this study only focused on
diagnostic accuracy for the presence of cortical defects, not on clinical outcomes. Wright
et al. performed classification of 99mTc-DMSA renal scan images using artificial neural
networks [12]. As in the previously cited study, abnormality was set as the binary endpoint
of their study. Compared to previous studies, an advantage of the present study is that the
endpoint was the presence of recurrent UTI, not abnormality of the image. This is the first
study to apply a CNN for 99mTc-DMSA renal images to predict the clinical outcome.

There is a limitation to assessing the presence of cortical defects by visual assess-
ment due to the low resolution of planar 99mTc-DMSA renal scans. In addition, there is
inter-observer variability in detecting photon defects between nuclear medicine physi-
cians [14]. Therefore, a previous study evaluated cortical defects using 99mTc-DMSA renal
SPECT/Computed Tomography (CT) to enhance the diagnostic power of 99mTc-DMSA
renal scans. SPECT/CT showed better detection power for cortical defects compared to
planar 99mTc-DMSA renal scanning [15]. Although many scholars have reported the diag-
nostic accuracy of 99mTc-DMSA renal scans, there is an intrinsic limitation in the concept of
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‘diagnostic accuracy.’ It is difficult to define the gold standard for the presence of cortical
defects, as pathological evidence is rarely obtained to diagnose cortical defects due to
invasiveness and low cost-effectiveness. Although kidney ultrasonography is a frequently
used reference modality, it also has limitations of low resolution and indirect diagnosis as
an imaging study. From a clinical perspective, diagnosis of cortical defect is meaningful
when it shows a significant ability to predict kidney function decrease or the presence of
recurrent UTI regardless of its consistency with the presence of pathological cortical defects.
Therefore, this study has better clinical impact as the endpoint is not abnormality of image,
but prognosis.

It is important to identify patients with the potential for recurrent UTI in terms of
follow-up and treatment. Different follow-up intervals may be recommended according to
the risk of recurrent UTI stratified by grade of VUR [3]. The presence of bowel/bladder
dysfunction and of renal scarring were indicated as other risk factors of recurrent UTI [16].
From a treatment perspective, long-term and low-dose antibiotic use was revealed to
reduce the risk of recurrent UTI in predisposed paediatric patients [17]. Based on this study,
we suggest that the prediction of recurrent UTI by CNN analysis of 99mTc-DMSA renal
scans can be useful with high-risk children, as the diagnostic accuracy was superior to
that of conventional clinical methods and image finding. It is recommended that frequent
follow-up and long-term low-dose antibiotic prophylaxis be considered for patients with
99mTc-DMSA renal scans that were classified as having a high probability of recurrent
UTI. Further clinical study can be conducted to evaluate usefulness of DL analysis in
99mTc-DMSA renal scans to select high-risk paediatric patients for close follow-up and
antibiotic prophylaxis.

Recently, image classification using artificial intelligence has been applied widely
in various fields, including nuclear medicine imaging [10]. Among numerous analysis
methods, CNN is one of the simplest and most powerful tools for image classification [18].
For clinical applications, a reference dataset and pre-learned neural network are needed
to classify a new case. In this study, we could retrospectively recruit only 180 patients
satisfying the inclusion criteria, even though patients with 99mTc-DMSA renal scans from
2006–2018 were explored. Therefore, it was difficult to propose a complete reference
dataset and pre-learned model for clinical use. Further study is planned to recruit more
patients continuously, not only from our institute but also from other institutes with
multicentre settings.

There were several limitations in this study. Firstly, there were only 27 patients (15.0%)
with an event (recurrent UTI) among the 180 total included patients. Therefore, it was
difficult to prepare an additional test set for internal validation. To overcome this limitation,
stratified k-fold cross-validation was performed. However, further study is needed to
substantiate the high diagnostic accuracy of CNN in 99mTc-DMSA renal scanning with
larger amounts of internal and external validation data. Secondly, only supervised learning
was applied in this study. As supervised learning used labelled data, diagnostic accuracy
may be over-estimated in the identical dataset. Unsupervised learning methods such as
an autoencoder have been used recently to analyse medical images. It is expected that
further study with unsupervised learning would support the results of this study. Finally,
99mTc-DMSA renal scan images were acquired by multiple instruments. Although the
technical parameters of each instrument are different, DL analyses are not based on the
quantitative value of each pixel but on inter-pixel or inter-region relationship patterns.
Therefore, the analysis for integrated data is reasonable.

Taken together, the present study showed that prediction results of CNN in
99mTc-DMSA renal scan had significantly higher specificity and accuracy to diagnose recur-
rent UTI compared to other conventional clinical factors or image findings. DL analysis of
99mTc-DMSA renal scans may be useful for predicting recurrent UTI in paediatric patients.
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