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Abstract
Objective: Clinical target volume (CTV) autosegmentation for cervical cancer is
desirable for radiation therapy. Data heterogeneity and interobserver variability
(IOV) limit the clinical adaptability of such methods. The adaptive method is
proposed to improve the adaptability of CNN-based autosegmentation of CTV
contours in cervical cancer.
Methods: This study included 400 cervical cancer treatment planning cases
with CTV delineated by radiation oncologists from three hospitals. The datasets
were divided into five subdatasets (80 cases each). The cases in datasets 1,
2, and 3 were delineated by physicians A, B, and C, respectively. The cases
in datasets 4 and 5 were delineated by multiple physicians. Dataset 1 was
divided into training (50 cases), validation (10 cases), and testing (20 cases)
cohorts, and they were used to construct the pretrained model. Datasets 2–
5 were regarded as host datasets to evaluate the accuracy of the pretrained
model. In the adaptive process, the pretrained model was fine-tuned to measure
improvements by gradually adding more training cases selected from the host
datasets. The accuracy of the autosegmentation model on each host dataset
was evaluated using the corresponding test cases. The Dice similarity coeffi-
cient (DSC) and 95% Hausdorff distance (HD_95) were used to evaluate the
accuracy.
Results: Before and after adaptive improvements, the average DSC values
on the host datasets were 0.818 versus 0.882, 0.763 versus 0.810, 0.727 ver-
sus 0.772, and 0.679 versus 0.789, which are improvements of 7.82%, 6.16%,
6.19%, and 16.05%, respectively. The average HD_95 values were 11.143 mm
versus 6.853 mm,22.402 mm versus 14.076 mm,28.145 mm versus 16.437 mm,
and 33.034 mm versus 16.441 mm,which are improvements of 37.94%,37.17%,
41.60%, and 50.23%, respectively.
Conclusion: The proposed method improved the adaptability of the CNN-
based autosegmentation model when applied to host datasets.
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1 INTRODUCTION

Cervical cancer is one of the most common malignant
tumors in the female genital tract worldwide,1 and its
treatments include radiotherapy, chemotherapy, surgery
and comprehensive medicine. Radiotherapy plays an
important role in the treatment of cervical cancer and
can be used at all stages with good curative effects.
Accurate delineation of clinical target volume (CTV)
contours in cervical cancer is time consuming and labor
intensive for radiation oncologists,and observer variabil-
ity exists among radiation oncologists and the unclearly
defined tumor-to-normal tissue boundary. Autosegmen-
tation methods are needed to alleviate oncologists’
workloads and increase the consistency of delineation.

Previously, many studies have proposed methods for
autosegmentation, including atlas-based methods, con-
volutional neural network (CNN)-based methods, level-
set methods, and morphological methods. Atlas-based
methods and CNN-based methods are the most widely
used methods,and studies have shown that CNN-based
methods2–5 can obtain greater accuracy and better effi-
ciency than Atlas-based methods.6–8 CNN-based meth-
ods have made great achievements in medical image
segmentation. Long et al.9 proposed a fully convolu-
tional network (FCN) for semantic segmentation, which
is the benchmark for image segmentation. Based on
FCN, Ronneberger et al.10 proposed U-Net for biomed-
ical image segmentation, and Milletari et al.11 proposed
V-shaped FCN for 3D medical image segmentation.
Xing et al.12 proposed super pixel-based and boundary-
sensitive CNN (SBBS-CNN), which can take full advan-
tage of the rich special contextual information, for liver
segmentation. Liu et al.13 modified U-Net for automatic
segmentation of organs at risk (OARs) in cervical can-
cer and obtained promising results. Men et al.14 pro-
posed a deep dilated CNN (DDCNN) model to segment
CTV and OARs in rectal cancer.

However, it is difficult to obtain high accuracy when
applying autosegmentation models to host datasets
(that have little relevance to the training data) directly
because of data heterogeneity and interobserver vari-
ability (IOV). Wong et al.15 expressed concerns about
the applicability of autosegmentation models to external
data because the validation datasets are very closely
related to the training datasets in many studies. Li
et al.16 compared artificial intelligence (AI) contouring
with the contouring of eight qualified radiation oncol-
ogists for delineating gross tumor volume (GTV) of
nasopharyngeal carcinoma by MRI, which proved the
IOV among radiation oncologists and compared the dif-
ference between AI and human experts. Liu et al.17 pro-
posed MS-Net for improving prostate segmentation with
heterogeneous MRI data and consistently enhancing
the performance across all datasets. Although previous
works pointed out the problem of data heterogeneity

and IOV, there have been few studies on how to improve
the adaptability of autosegmentation models that were
trained with less relative training data.

To that end, this study aims to research an adap-
tive improved method for applying an autosegmentation
model on host datasets. We modified the 3D Res-U-
Net model for CTV autosegmentation of cervical can-
cer and applied the pretrained model at multiple sites.
Dataset 1 was used to establish the pretrained model,
and datasets 2–5 were collected for measuring and
observing the improvements.

In this paper,we introduce the patient datasets in Sec-
tion 2.1, the network architecture and data preprocess-
ing in Section 2.2, and the concrete experimental pro-
cess in Section 2.3. Then, we present the experimental
results in Section 3 and discuss the experimental results
and related research in Section 4.

2 METHODS

2.1 Patient datasets

A total of 400 cervical cancer cases from three hospitals,
including 240 cases from the First Affiliated Hospital
of Anhui Medical University in China (hospital A), 80
cases from the First Affiliated Hospital of University of
Science and Technology of China (hospital B), and 80
cases from the First Affiliated Hospital of Zhengzhou
University (hospital C), were collected in this study. All
cases were divided into 5 datasets (80 cases in each
dataset; datasets 1–3 are from hospital A, dataset 4 is
from hospital B, and dataset 5 is from hospital C). The
cases in datasets 1, 2, 4, and 5 were collected during
clinical radiation therapy between January 2019 and
May 2020. Dataset 1 and dataset 2 were delineated
by physicians A and B, respectively, while datasets
4 and 5 were delineated by multiple physicians. The
manual delineation of the cervical cancer CTV was
conducted in accordance with the guidelines of by the
Radiation Therapy Oncology Group (RTOG),18 which
starts from the bifurcation of the common iliac artery
and includes the primary tumor, uterus, appendix, part
of the vagina (the upper half or two-thirds of the vagina
according to the primary tumor),and pelvic lymph nodes
(common iliac, external iliac, internal iliac, obturator, and
presacral).

Previous studies showed19–23 that the same physi-
cian can have different manual contours at different
times due to fatigue and other factors, which means
that a physician may be more consistent in delineat-
ing CTV contours at shorter intervals. In view of this,
we collected 80 cases from hospital A for dataset 3,
and they were delineated by a physician over 2 suc-
cessive months. The details of the CT information in
the different datasets are listed in Table 1. The fre-
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TABLE 1 Details of the CT information in the different datasets

Dataset Manufacturer
Slice thickness
(mm)

Pixel dimension
(mm)

CTV volumes
(cm3)

Number of CTV
layers*

Dataset 1 Siemens 5 0.789–0.977 928 ± 258 40

Dataset 2 GE 5 0.703–1.074 1069 ± 322 46

Dataset 3 Siemens 5 0.789–0.977 759 ± 149 37

Dataset 4 GE 2.5 0.977 894 ± 201 43

Dataset 5 Siemens 5 1.27 746 ± 168 41

*Number of CTV layers was counted when the slice thickness was resampled to 5 mm.

(a) (b)

F IGURE 1 (a) Frequency distribution histograms of the CT values for the multisite datasets. The threshold range is (–200, 200). We only
counted the CT values where the CTV was located according to the delineation results of the physician. To prevent negative effects caused by
using particular cases, we selected 20 cases as one group for statistical analysis. (b) CTV delineations of two different physicians for the same
patient. Red lines: manual contours delineated by physician A; Blue lines: manual contours delineated by physician C

quency distribution histograms of the CT values from
multiple datasets are shown in Figure 1a,and CTV delin-
eations of two different physicians are shown in Fig-
ure 1b. Table 1 and Figure 1a show that heterogeneity
and variability exist among the different datasets, Fig-
ure 1b shows that the IOV exists among the different
physicians.

2.2 Data preprocessing and model
training

In this study, special data preprocessing was imple-
mented for CTV autosegmentation of cervical cancer.
First, the original data are truncated by the threshold (–
200, 200), values below –200 are set as –200 and val-
ues above 200 are set as 200. Next, the CT values are
normalized to (0, 1) to increase the generalization abil-
ity of the model. Then, the resolutions of the images are
resampled to 1 mm × 1 mm × 5 mm due to inconsistent
resolutions in the datasets. To focus on the segmenta-
tion of CTV and reduce the irrelevant information in the

background, we precut the CT images to a size of 288
× 288.

The proposed network in this study is shown in Fig-
ure 2 and consists of an encoder that extracts features
from data and a decoder that conducts the segmenta-
tion task. The network is based on 3D U-Net and com-
bines many advanced techniques, including skip con-
nections, residual modules and deep supervision. In the
final three segmentation blocks, a 1 × 1 × 1 convolution
layer is used to map the feature tensor to the probabil-
ity tensor before all results are merged by the upsam-
pling operation to enhance the precision of segmenta-
tion results. The model accuracy was validated in our
previous work.24,25 During training, data augmentation
was used to alleviate overfitting.Specifically,CT patches
with a size of 192 × 192 × 64 were randomly cropped
from precut CT images and then fed to the network for
training.

The architecture of the model remained the same
throughout the whole experiment. This model training
was finished in Python with TensorFlow using Nvidia
Geforce RTX 2080Ti GPUs (11 G). The batch size was
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F IGURE 2 Overall architecture of our proposed 3D convolutional neural network

set to 1 due to the limitation of GPU memory. The
Adam optimizer (𝛽1 = 0.9, 𝛽2 = 0.999, lr = 0.0005) and
the instance normalization were used, and the weighted
Dice similarity coefficient (DSC) was selected as the
loss function. The leaky rectified linear unit was used
as the convolution activation layer and the SoftMax
activation was used to output a probability of every
voxel. It should be emphasized that early stopping was
employed for model training. The learning rate was ini-
tialized as 5.0 × 10−4 and was divided by 10 when the
validation loss did not significantly decrease in 50 suc-
cessive epochs. If the validation loss failed to decrease
in 80 successive epochs,the model training was stopped
automatically.The purpose of using early stopping in this
experiment was to make the model stop at the optimal
level.

2.3 Experiment

As mentioned above, although the five datasets were
focused on CTV contours in cervical cancer, there
were differences between them due to data hetero-
geneity and IOV. In addition, different physicians at the
same hospital or the same physician at different times
could produce different manual contour results. In this
study, we plan to evaluate the accuracy of a pretrained
autosegmentation model on host datasets and study the
adaptive improvement in the autosegmentation model.
The pipeline of the experiment is shown in Figure 3 and
includes step 1 (establishing the pretrained model and
evaluating the model accuracy), step 2 (fine-tuning the
model on host datasets based on the pretrained model),

and step 3 (training on the same datasets as in step 2
but from scratch).

First, we implemented a 3D CNN for delineating CTV
of cervical cancer on dataset 1, which was divided into
training, validation, and testing cohorts of 50, 10, and
20 cases. After model training and validation, the cases
in the testing cohort were used to evaluate the perfor-
mance of the model. The trained model was considered
the pretrained model for step 2 to check the accuracy of
the pretrained model on host datasets and research the
adaptive improvement in clinical applications.

Subsequently, we studied the adaptive improvement
of the pretrained model on datasets 2–5. The cases in
host dataset i (i = 2, 3, 4, 5) were divided into train-
ing, validation and testing cohorts with 50, 10, and 20
cases, respectively.Different from step 1, the 50 cases in
dataset i were not used for training every time and were
randomly divided into 5 subgroups with 10 cases in each
subgroup. In the process of model fine-tuning, the 20
cases in the testing cohort were fixed,but the number of
cases in the training cohort gradually increased from 10
to 50 (10,20,30,40,and 50).According to the number of
cases in the training cohort, the fine-tuning models were
clustered into five categories.To reduce potential bias,all
possible combinations of the five subgroups were con-
sidered in this study when the number of training cases
was 10, 20, 30, and 40. We performed sixfold cross val-
idation when the number of training cases was 50. The
performance of the fine-tuning model was evaluated by
the average performance of all models inside each cate-
gory (the same number of the fine-tuning cases belong
to the same category, including 10, 20, 30, 40, and 50
cases, respectively).
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F IGURE 3 Pipeline of the experiment

Finally, step 3 was used to compare and analyze the
difference between training with pretrained model and
training from scratch. Other than the use of the pre-
trained model, the data grouping and model structure
were exactly the same as those in step 2. The models
in step 3 were all trained from scratch, and the corre-
sponding testing cohort was used to test the accuracy
of these models. Step 3 could be considered the base-
line compared to step 2.

2.4 Evaluation metrics

The DSC and 95% Hausdorff distance (HD_95) values
were used to evaluate the accuracy of the autosegmen-
tation model. The DSC is defined as follows26:

DSC =
2 |A ∩ B|
|A| + |B|

, (1)

where A denotes the autosegmentation contours and
B denotes the ground truth contours delineated by the
physicians in our study. A larger DSC corresponds to a
higher accuracy of autosegmentation model. The DSC
ranges from 0 to 1,with the latter value indicating perfect
performance.

The HD is defined as follows:

HD(A, B) = max(h(A, B), h(B, A)), (2)

h(A, B) = max
b∈B

(min
a∈A

‖a − b‖), (3)

where h(A, B) is the greatest of all the distances from
a point in A to the closest point in B. A smaller value
usually represents better segmentation accuracy. The
HD_95 value represents the largest surface-to-surface
separation among the closest 95% of surface points.

3 RESULTS

The average DSC value of the test cases of the pre-
trained model (dataset 1) was 0.852±0.023, and the
DSC values of the test cases on the host datasets are
summarized in Table 2 and displayed in Figure 4. When
the pretrained model was directly applied to the test
cases of datasets 2–5, the average DSC values were
0.763, 0.818, 0.727, and 0.679, respectively. After fine-
tuning with 50 cases in the training cohort, the aver-
age DSC values were 0.810, 0.882, 0.772, and 0.788 for
datasets 2–5, which were increases of 6.16%, 7.82%,
6.19%, and 16.05%, respectively. With the increase in
the number of training cases, the difference between
training with pretrained model and training from scratch
gradually decreased. After training with 50 cases, there
were almost no differences (p > 0.05) for datasets
2–5 when trained with or without pretrained model
(0.810 vs. 0.806, 0.882 vs. 0.881, 0.772 vs. 0.768, and
0.788 vs. 0.787).

The average HD_95 value of the test cases of the
pretrained model (dataset 1) was 10.028 ± 3.595 mm,
and the HD_95 values (mm) of the test cases on the
host datasets are summarized in Table 3 and displayed
in Figure 5.For datasets 2–5, the average HD_95 values
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(a) (b)

(c) (d)

F IGURE 4 DSC values of the test cases on the host datasets. (a) Dataset 2; (b) dataset 3; (c) dataset 4; (d) dataset 5

decreased from 22.402,11.143,28.145,and 33.034 mm
to 14.076, 6.853, 16.437, and 16.441 mm, respectively,
which are decreases of 37.17%, 38.50%, 41.60%, and
50.23%. Similar to the DSC analysis, there was almost
no difference (p > 0.05) whether the pretrained model
was used after training with 50 cases in the training
cohort.The average HD_95 values were 14.076 mm ver-
sus 17.921 mm,6.853 mm versus 7.314 mm,16.437 mm
versus 16.464 mm, and 16.441 mm versus 17.512 mm,
respectively.

The DSCs distribution for datasets 2–5 were sum-
marized in Table 4 and the CTV contour results in dif-
ferent datasets were shown in Figure 6. The improve-
ment of the accuracy was obvious in the adaptive pro-
cess. The above results show that there was almost
no difference between training with pretrained model
and training from scratch when the number of cases
in the training cohort was sufficient. However, there was
a difference in training times, which are recorded and
summarized in Table 5. As shown in Table 5, the max-
imum time-savings percentage is 68.8% in the train-

ing case situations, and the minimum is 19.5%, indi-
cating that the efficiency of training with pretrained
model is substantially higher than that of training from
scratch.

4 DISCUSSION

In recent years, deep learning-based methods have
been widely used in medical image segmentation. To
make this technology serve more people,many commer-
cial deep learning-based autosegmentation software
programs have emerged, such as Limbus Contour,27

AiContour of Linking Med,28 and DeepViewer.29 When
applied in clinical practice, the accuracy of autosegmen-
tation has decreased to varying degrees due to data
heterogeneity and IOV. In this study, we constructed a
3D CNN for automatically delineating CTV of cervical
cancer and researched the adaptive improvement when
applying the autosegmentation model to host datasets.
In addition, we also compared the difference between
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(a) (b)

(c) (d)

F IGURE 5 HD_95 values (mm) of the test cases on the host datasets. (a) Dataset 2; (b) dataset 3; (c) dataset 4; (d) dataset 5

training with pretrained model and training from scratch
in accuracy and efficiency.

We found that the pretrained model had higher accu-
racy in the test cases that used pretrained dataset
(dataset 1, DSC: 0.852) than in the test cases that used
the host datasets (datasets 2–5; DSC: 0.763, 0.818,
0.727, and 0.679) when applying the pretrained model
on datasets 1–5 directly.The DSC gap between the best
accuracy (dataset 1) and the worst accuracy (dataset
5) was 0.173, which is a major problem for the general-
ization of autosegmentation model. The more relevant
the training cases used for pretrained model were, the
higher the accuracy was. As mentioned above, all cases
in dataset 1 were from the same hospital and delin-
eated by the same physician,so the test cases in dataset
1 were closely related to the training cases; hence,
the influence of data heterogeneity and IOV could be
ignored. Compared to the cases in dataset 1, the test
cases in datasets 2–3 were also from hospital A but
were manually delineated by two different physicians,so

there were slight differences in the training cases com-
pared to those in dataset 1. The test cases in datasets
4–5 were from other hospitals and delineated by multi-
ple physicians, so there existed more difference among
those test cases and training cases. In the comparison
among datasets 2–5, we found that the differences in
data from the same hospital (dataset 1 vs. datasets 2–
3) were less than the differences in data from different
hospitals (dataset 1 vs. datasets 4–5).

In the adaptive improvement process, the accuracy
of autosegmentation model on the host datasets was
improved to varying degrees. The average DSC values
improved by 6.16%, 7.82%, 6.19%, and 16.05%, and the
HD_95 values improved by 37.17%, 38.50%, 41.60%,
and 50.23%, respectively. Ultimately, the accuracy of
autosegmentation model depended more on the con-
sistency within the dataset. The improved autosegmen-
tation model achieved the highest accuracy on dataset
3, even higher than the original accuracy on dataset
1 (DSC: 0.882 vs. 0.852). Considering the difference
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F IGURE 6 CTV contour results in different datasets. Red lines: manual contours; Green lines: autosegmentation from the original pretrained
model; Blue lines: autosegmentation from the adaptive model; Yellow lines: autosegmentation from the model training from scratch

between dataset 1 and dataset 3, the cases in dataset
3 were delineated by the same physician over 2 suc-
cessive months; hence, the delineation consistency in
dataset 3 was higher than that in dataset 1. The cases
in dataset 2 were also delineated by the same physi-
cian,and the lower accuracy showed that the delineation
“habits” of this physician were easily affected at differ-
ent times. In addition, the accuracies on datasets 4–5
were lower than those of datasets 2–3, indicating that
IOV within the datasets affected the improvement in the
autosegmentation model to a great degree. No mat-
ter how long the autosegmentation model was trained,
it was difficult to balance the differences within the
dataset. In future clinical applications, we can establish
different autosegmentation models for different physi-
cians, and these models can learn the respective delin-
eation “habits”of different physicians with high accuracy.

To verify the function of the pretrained model, two
parallel experiments were implemented in this study
and included training with pretrained model and training
from scratch. Except for whether the pretrained model
was used, the other parameters were exactly the same.
When the number of training cases was small, train-
ing with pretrained model had higher precision and effi-
ciency.With the increase in the number of training cases,
the difference between training with pretrained model
and training from scratch gradually decreased.When 50

cases were used for training, there was almost no dif-
ference in accuracy. In terms of both accuracy and effi-
ciency,training with pretrained model was as accurate as
training from scratch but with higher computational effi-
ciency.For example, in dataset 3, training with pretrained
model on 30 cases obtained a comparable accuracy as
training from scratch on 50 cases (DSC:0.876 vs.0.881);
however, it required less time (1.13 h vs.4.20 h).Loading
the pretrained model could make the autosegmentation
model adaptive to host datasets with higher accuracy
and efficiency.

Several limitations of this study should be noted.
First, more representative datasets should be collected.
Second, the research object should not be limited to
CTV, and different research objects may obtain different
results. We plan to solve the above limitations in future
work.

In conclusion, we investigated the use of a 3D
CNN model for delineating CTV of cervical cancer
and researched the adaptive improvement when apply-
ing the autosegmentation model on host datasets. Our
results showed that training with the pretrained model
could make the autosegmentation model adaptive to
host datasets with higher accuracy and efficiency,which
could reduce the negative impacts of data heterogene-
ity and IOV. It is promising for deep learning methods to
be able to serve more people with higher accuracy.
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TABLE 4 Dices similarity coefficients (DSCs) distribution

DSC
ranges Dataset 2 Dataset 3 Dataset 4 Dataset 5

PM TWP TFS PM TWP TFS PM TWP TFS PM TWP TFS

<0.6 0 0 0 0 0 0 2 0 0 2 0 0

0.6–0.7 1 0 0 0 0 0 5 0 0 11 1 1

0.7–0.8 16 8 8 4 0 0 13 15 15 6 11 12

>0.8 3 12 12 16 20 20 0 5 5 1 8 7

PM, pretrained model; TWP, training with the pretrained model; TFS, training from scratch.

TABLE 5 Average training times (hours) of the different models

Dataset 2 Dataset 3 Dataset 4 Dataset 5
Number of
cases in the
training cohort TWP TFS

Time
saving
percent TWP TFS

Time
saving
percent TWP TFS

Time
saving
percent TWP TFS

Time-savings
percentage

10 0.45 0.95 52.6% 0.50 1.60 68.8% 0.75 1.00 25.0% 0.70 1.30 46.2%

20 0.65 1.50 56.7% 0.82 1.85 55.7% 1.00 2.15 53.5% 1.25 1.87 33.2%

30 1.00 2.70 63.0% 1.13 2.60 56.5% 1.40 2.40 41.7% 1.70 2.50 32.0%

40 1.50 2.45 38.8% 1.40 3.30 57.6% 1.90 2.90 34.5% 2.10 3.00 30.0%

50 1.80 2.50 28.0% 2.60 4.20 38.1% 2.20 3.00 26.7% 3.30 4.10 19.5%

TWP, training with the pretrained model; TFS, training from scratch.
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