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Objectives: To evaluate the effect of extreme weight loss programs on circulating 
metabolites and their relationship with cardiometabolic health in children with 
metabolic syndrome.

Methods: This study was a quasi-experimental design with a pretest and post-test. Thirty 
children with metabolic syndrome and aged 10–17 years were recruited to an extreme 
weight loss program (i.e., exercise combined with diet control). The primary outcomes 
included plasma metabolites, body composition, and cardiometabolic risk factors. A total 
of 324 metabolites were quantitatively detected by an ultra-performance liquid 
chromatography coupled to tandem mass spectrometry system, and the variable 
importance in the projection (VIP) value of each metabolite was calculated by the orthogonal 
projection to latent structures discriminant analysis. The fold change (FC) and p value of 
each metabolite were used to screen differential metabolites with the following values: 
VIP > 1, p value < 0.05, and |log2FC| > 0.25. Pathway enrichment and correlation analyses 
between metabolites and cardiometabolic risk factors were also performed.

Result: A large effect size was observed, presenting a weight loss of −8.9 kg (Cohen’s d = 1.00, 
p < 0.001), body mass index reduction of −3.3 kg/m2 (Cohen’s d = 1.47, p < 0.001), and body 
fat percent reduction of −4.1 (%) (Cohen’s d = 1.22, p < 0.001) after the intervention. Similar 
improvements were found in total cholesterol (Cohen’s d = 2.65, p < 0.001), triglycerides 
(Cohen’s d = 2.59, p < 0.001), low-density lipoprotein cholesterol (Cohen’s d = 2.81, p < 0.001), 
glucose metabolism, and blood pressure. A total of 59 metabolites were changed after the 
intervention (e.g., aminoacyl-tRNA biosynthesis, glycine, serine, and threonine metabolism; 
nitrogen metabolism, tricarboxylic acid cycle, and phenylalanine, tyrosine, and tryptophan 
biosynthesis). The changes in metabolites (e.g., amino acids, fatty acids, organic acids, and 
carnitine) were related to lipid metabolism improvement (p < 0.05). Organic acids and carnitines 
were associated with changes in the body composition (p < 0.05).

Conclusion: Exercise combined with dietary control improved the body composition and 
cardiometabolic health in children with metabolic syndrome, and these changes may 
be related to plasma metabolites.
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INTRODUCTION

Childhood obesity is closely related to the clustering of 
cardiometabolic risk factors, such as dyslipidemia, hypertension, 
and insulin resistance, which contribute to the development of 
metabolic syndrome and an increased risk of developing 
co-morbidities, including type 2 diabetes and cardiovascular 
disease in adulthood (Juonala et  al., 2011; Buscot et  al., 2018). 
Weight loss is an effective strategy for reducing cardiometabolic 
risk in children with metabolic syndrome. Physical activity, which 
has attracted increasing amount of attention, can not only 
effectively reduce weight but also improve cardiometabolic health 
and increase cardiovascular fitness (Dias et al., 2018; Hansen 
et  al., 2018; Labayen et  al., 2020; Fridolfsson et  al., 2021). A 
randomized controlled trial by Davis et  al. also showed that 
moderate-intensity aerobic exercise (heart rate approximately 150 
beats/min) reduced body composition and the risk of diabetes 
effectively and improved glucose metabolism in overweight and 
obese children (Davis et  al., 2012). Moreover, a recent meta-
analysis showed that high-intensity and moderate-intensity 
exercises can reduce body weight and improve cardiometabolic 
health in obese children (Liu et al., 2020). These findings suggest 
that moderate- or high-intensity exercises benefit the reduction 
of weight and promotion of cardiometabolic health in obese 
children. Furthermore, emerging evidence has shown that extreme 
weight loss programs that combine exercise with diet control 
can lead to a great weight loss in a short period of time. 
Hutchesson et  al. discovered that an 8-week Biggest Loser Club 
with −500 kcal/day less than the estimated energy expenditure 
resulted from an exercise combined with diet intervention can 
reduce weight by −4.5 kg (Hutchesson et  al., 2013). Kerns et  al. 
(2017) observed that diet restriction and vigorous physical activity 
intervention in the Biggest Loser Competition can achieve rapid 
weight change. However, the effects of extreme weight loss 
programs on cardiometabolic health have been inconsistent 
between studies (Liu et  al., 2015; Xu et  al., 2018; Yang et  al., 
2018), and most of the research to date has focused on the 
effects of extreme weight loss programs on weight loss and 
cardiometabolic health; furthermore, discussion on the underlying 
mechanisms is still lacking.

Metabolomics is defined as an “omics” technology characterized 
by the high-throughput identification and quantification of small-
molecule (<1,500 Da) metabolites in a cell, tissue, blood, or 
organism (Nicholson et  al., 1999; Johnson et  al., 2016). Plasma 
metabolites were early diagnostic markers for obesity-related type 
2 diabetes and cardiovascular disease (Meyer et  al., 2018; Short 
et  al., 2019; Perng et  al., 2020), plasma branched-chain amino 
acids (BCAAs), aromatic amino acids (AAAs), acylcarnitine, and 
incomplete oxidized lipid metabolites, which are associated with 
metabolic abnormalities in children with obesity (Newgard, 2012; 
Wahl et  al., 2012; McCormack et  al., 2013; Zhou et  al., 2019). 
However, whether extreme weight loss programs can cause changes 
in small-molecule metabolites, and whether changes in small-
molecule metabolites are associated with weight loss and 

cardiometabolic health improvement in children with metabolic 
syndrome remain unclear. Thus, this study aimed to evaluate 
the effects of extreme weight loss programs on circulating 
metabolites and their relationship with cardiometabolic health 
in children with metabolic syndrome.

MATERIALS AND METHODS

Study Design and Participants
From June 2019 to August 2019, 30 children with metabolic 
syndrome were screened and recruited from 103 obese children 
aged 10–17 years who participated in the Biggest Loser Training 
Camp (Shenzhen, China). Metabolic syndrome was defined under 
the definition and prevention and treatment of metabolic syndrome 
in Chinese children and adolescents (Liang Li and Fu Junfen, 
2012); children with central obesity were defined to have a waist 
circumference (WC) higher than the 90th percentile for age and 
sex, and they should meet any two of the following criteria: 
fasting plasma glucose (FPG) ≥ 5.6 mmol/L; high-density 
lipoprotein-cholesterol (HDL-c) < 1.03 mmol/L or 
non-HDL-c ≥ 3.76 mmol/L; hypertension defined as systolic blood 
pressure (SBP) or diastolic blood pressure (DBP) in the 95th 
percentile or higher for age and sex; triglyceride (TG) ≥ 1.47 mmol/L. 
All children and their parents were notified of the benefits and 
potential risks in this study before the intervention. A written 
informed consent was obtained from all children and their parents, 
and the study protocol was approved by the Ethical Committee 
of the Guangzhou Sport University (No. 2018LCLL-008).

The present study was a quasi-experimental design with 
pretest and post-test. The participants performed a standardized 
exercise combined with diet control under an extreme weight 
loss intervention for 30 days. To ensure then-effective 
implementation of the intervention, experienced coaches and 
researchers were tasked to manage the participants and monitor 
and record the exercise and diet intake. Anthropometric data, 
body composition, and cardiometabolic risk factors (i.e., blood 
glucose, blood lipid, and blood pressure) were measured at 
pre- and post-intervention. The pretest was performed before 
the beginning of the extreme weight loss intervention, whereas 
the post-test was conducted 12 h after the last exercise training.

Standardized Exercise Combined With 
Diet Control
Diet Control
The participants were instructed to follow a regular diet habit, 
with breakfast from 8:00 to 8:30, lunch from 11:30 to 12:00, and 
dinner from 17:30 to 18:00. The diet control of each participant 
was designed based on the resting energy expenditure (REE). 
The REE was measured for each participant before the intervention 
using indirect calorimetry methods. The concentrations of O2 
and CO2 were measured by a gas metabolizer (Cortex Meta Max 
3B, Germany) for 15 min. Weir’s equation was used to calculate 
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the REE and resting metabolic rate (RMR): 
REE kcal VO L VCO L/min . /min . /min( )= ∗ ( )+ ∗ ( )3 9 1 12 2 ; 
RMR kcal day REE/( )= ∗1440 . To match the dietary intake with 
RMR, nutrition experts designed the diet in accordance with the 
Chinese Food Composition Table compiled by the Chinese Center 
for Disease and Prevention. The types of food included fruits, 
vegetables, grains, legumes, eggs, meat, and dairy products. The 
ratios of energy intake for breakfast, lunch, and dinner were 30, 
40, and 30%, respectively.

Exercise Intervention
The exercise intervention was the main part of the extreme weight 
loss intervention, and it lasted for 240 min per day from 09:30 
to 11:30 am and 15:30 to 17:30 pm. To ensure that all participants 
performed the exercise intervention effectively, we confirmed that 
the design of the exercise intervention program followed the 
principles of individuation, gradualism, interest, and safety. 
Considering the results of current studies mentioning that moderate- 
or high-intensity exercise can effectively improve the 
cardiometabolic health of obese children, the exercise intensity 
of the extreme weight loss intervention was mainly that of a 
moderate-intensity aerobic exercise combined with a short period 
of high-intensity exercise. The exercise types were mainly outdoor 
hiking, fast walking, jogging, sports games, aerobic exercises, 
recreational ball games, etc. The exercise intensity was monitored 
by heart rate, and the participant’s heart rate during exercise 
was kept in the range of 50–80% HRmax. During the exercise 
intervention, researchers observed the participants’ response to 
the exercise intervention and recorded and adjusted the exercise 
intensity based on the conditions of each participant. Each training 
session started with a 30-min warm-up, followed by an 80-min 
training session, and ended with a 10-min cooldown session. 
All exercise sessions were supervised by a qualified conditioning 
coach. Supplementary Table S1 shows the detail of diet control.

Data Collection and Procedure
Anthropometric Measurements and Body 
Composition
Anthropometric measurements, including weight, height, WC, 
hip circumference (HC), waist-to-hip ratio (WHR), and waist-
to-height ratio (WHtR), were performed for all children at 
pretest and post-test. Height was measured to the nearest 0.1 cm 
using a standard height meter, and weight was measured to 
the nearest 0.1 kg on a digital scale. Body mass index (BMI) 
was calculated by weight in kilograms divided by the square 
height in meters. Waist circumference was measured to the 
nearest 0.1 cm using a plastic tape while maintaining the 
measuring tape level. WHR was calculated by WC (cm) divided 
by HC (cm), and WHtR was calculated as WC (cm) divided 
by height (cm). Whole-body composition measurements, 
including fat-free mass (FFM), fat mass (FM), skeletal muscle 
mass (SMM), and body fat percentage (BFP), were measured 
using a body composition analyzer (T-SCAN PLUS, Korea). 
Anthropometric measurements and body composition assessment 
were performed by an expert with 2 years of background 
experience following the standard measurement methods. The 

body composition measurements were obtained in the morning 
(08:00–09:00 am) without eating.

Cardiometabolic Risk Factor Measurement
Blood pressure was measured thrice by an electronic blood 
pressure monitor (OMRON HEM-1020, China) in the morning 
after sitting for 10–15 min. The mean of the closest two tests 
was used to record the SBP and DBP. Mean arterial pressure 
(MAP) was calculated from the SBP and DBP with the following 
formula: MAP = DBP + (SBP-DBP)/3. With heparin sodium as an 
anticoagulant, the fasting plasma samples were acquired via the 
antecubital vein at baseline and again at 12 h after the last 
intervention at 30 days. After standing for 30 min, the plasma 
was separated by centrifugation at 4°C (10 min at 1000 g), frozen 
in liquid nitrogen, and stored at −80°C. The concentrations of 
HDL-c, low-density lipoprotein cholesterol (LDL-c), TG, and total 
cholesterol (TC) were measured by enzymatic assay. The FPG 
was measured using the glucose oxidase method. Fasting insulin 
(FIN) was measured using the enzyme-linked immunosorbent 
assay. Homeostatic model assessment for insulin resistance (HOMA-
IR) was performed using the following formula.

 
HOMA IR

FINs U L FPG mmol L
− =

( )∗ ( )µ / /
.22 5

Metabolomic Analysis
An ultra-performance liquid chromatography coupled to tandem 
mass spectrometry (UPLC-MS/MS) system (ACQUITY UPLC-
Xevo TQ-S, Waters Corp., Milford, MA, United  States) was 
used to quantitatively determine 324 metabolites, including 
carbohydrates, amino acids, fatty acids, organic acids, and bile 
acids (Xie et  al., 2021).

The standard compounds of 324 metabolites and stable 
isotope-labeled internal standards were obtained from Sigma-
Aldrich (St. Louis, MO, United States), Steraloids Inc. (Newport, 
RI, United States) and TRC Chemicals (Toronto, ON, Canada). 
Supplementary Table S2 shows the details of all metabolites. 
Methanol (Optima LC-MS), acetonitrile (Optima LC-MS), and 
isopropanol (Optima LC-MS) were commercially purchased 
from Thermo-Fisher Scientific (Fairlawn, NJ, United  States). 
Formic acid was analytically pure and obtained from Sigma-
Aldrich (St. Louis, Mo, United  States). The ultrapure water 
was produced by a Mill-Q reference system equipped with a 
LC-MS Pak filter (Millipore, Billerica, MA, United  States). All 
standard components were weighed and dissolved in water, 
methanol, sodium hydroxide solution, or hydrochloric acid 
solution to obtain a single, standard component reserve solution 
with a concentration of 5.0 mg/mL. An appropriate amount 
of each standard component reserve solution was used to 
prepare a mixed standard component reserve solution.

To diminish sample degradation, we thawed the plasma sample 
on an ice bath and added 25 μl of it to a 96-well plate. Then, 
100 μl ice-cold methanol with a partial internal standard was 
automatically added to each sample at Biomek 4,000 workstation 
(Biomek 4,000, Beckman Coulter, Inc., Brea, California, 
United States) and mixed for 5 min after intense vortexing. Next, 
the samples were centrifuged for 30 min at 4000 g/min (Allegra 
X-15R, Beckman Coulter, Inc., Indianapolis, IN, United  States). 
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A total of 30 μl supernatant was transferred to a clean 96-well 
plate, and 20 μl freshly prepared derivative reagents were added 
to each well in the workstation. The 96-well plate was sealed 
and followed by derivatization, which was carried out at 30°C 
for 60 min. After derivatization, the sample was diluted with 
ice-cold 50% methanol solution in 350 μl. The plates were placed 
at −20°C for 20 min and then centrifuged at 4°C (4,000 g, 30 min). 
The supernatant (135 μl) was transferred to a new 96-well plate 
with 15 μl internal standard to each well. Finally, the serial 
dilutions of derivatized stock standards were added to the left 
of the 96-well plate and sealed for analysis.

ACQUITY UPLC BEH C18 1.7 μm VanGuard pre-column 
(2.1 × 5 mm2) and ACQUITY UPLC BEH C18 1.7 μm analytical 
column (2.1 × 100 mm2) were used for separation with the 
column temperature set at 40°C and the sample manager 
temperature at 10°C. The mobile phases were water with 0.1% 
formic acid (A) and acetonitrile/IPA (90:10, B). The initial 
gradient was 5% B and kept for 1 min, increased to 80% B 
at 12 min, increased to 95% B at 15 min, increased to 100% 
B at 16 min, kept at 100% B until 18 min, switched back to 
the initial condition at 18.1 min, and held until 20 min. The 
flow rate was 0.40 ml/min, and the injection volume was 5.0 μl. 
The capillary voltages were 1.5 (ESI+) and 2.0 Kv (ESI−), and 
the source temperature was set at 150°C. The desolvation 
temperature was set at 550°C with a desolvation gas flow rate 
of 1,000 L nitrogen per hour.

QuanMET software (v2.0, Metabo-Profile, Shanghai, China), 
which can perform peak integration, calibration, and quantitation 
for each metabolite, was used to process the raw data generated 
by UPLC-MS/MS.

Quantification and Statistical Analysis
The Shapiro–Wilk and Kolmogorov–Smirnov tests were used 
to determine the normality of data distribution. The continuous 
variables were reported as means ± standard deviation (SD) 
with normal distribution, whereas the median and interquartile 
range (IQR) were applied to denote the non-normally distributed 
data. The baseline characteristics between boys and girls were 
compared with an independent sample t test for normally 
distributed continuous variables. Paired sample t test and 
Mann–Whitney test were used for comparison before and after 
intervention depending on data normality. For each outcome, 
the effect size (Cohen’s d) was calculated as 
Cohen s post testd pre test pooled SD= −( )_ _ /  and defined as 
trivial (<0.2), small (≥ 0.2, < 0.5), moderate (≥ 0.5, < 0.8), 
and large (≥ 0.8). Statistical analysis was performed with SPSS 
version 20.0 (SPSS, Inc., Chicago, IL, United  States), and the 
statistical significance level was set at 0.05.

Multivariate statistical analyses, including principal component 
analysis (PCA), orthogonal projection to latent structures 
discriminant analysis (OPLS-DA), and univariate statistical analyses 
including t test and Mann–Whitney Wilcoxon test (U test), 
were performed to obtain the differential metabolites. First, PCA 
was conducted to examine the cluster of samples and identify 
outliers before and after the intervention. Second, OPLS-DA 
was performed to visualize the changes between the baseline 
and post-intervention. A seven-round cross-validation was carried 

out to validate the model against over-fitting of the OPLS-DA 
models, and Q2Y, R2X, and R2Y were used to quantify the 
interpretation of models. Q2Y suggests the model’s predictive 
accuracy, whereas R2X and R2Y represent the fraction of the 
variance of the X and Y matrixes, respectively. Cumulative values 
of R2X, R2Y, and Q2Y close to 1.0 indicate an excellent model 
with a reliable predictive capability. The variable importance in 
the projection (VIP) value of each metabolite was used as the 
criterion for metabolite screening. The fold change (FC) was 
displayed, and the p value of each metabolite was used to screen 
differential metabolites. To reduce the error rate, the p value 
of each differential metabolite was adjusted by a false discovery 
rate (FDR) method in pretest and post-test comparisons. The 
selection of differential metabolites was based on the following 
criteria: VIP > 1, p  value  <0.05, and |log2FC| > 0.25.

Metabolic pathway analysis was performed for differential 
metabolites to determine which metabolic pathway changed after 
the intervention, and the metabolic pathway analysis used the 
HSA sets by Kyoto Encyclopedia of Genes and Genomes (KEGG). 
Pathway impact was derived from the centrality normalization 
of the differential metabolite nodes and their sum. The pathway 
impact score was used to assess the importance of differential 
metabolites in the metabolic pathway before and after intervention. 
The greater the pathway impact, the more important the differential 
metabolites were in the metabolic pathway. To verify whether 
the differential metabolites were associated with improvements 
in the body composition and cardiometabolic health, we  further 
performed the Spearman correlation analysis. Statistical algorithms 
were adapted from the widely used statistical analysis software 
packages in R studio.1

RESULTS

General Characteristics and Changes in 
Cardiometabolic Risk Factors After 
Intervention
A total of 103 obese children were recruited from the Biggest 
Loser Train Camp program, and 30 children, including 18 
boys and 12 girls, were selected for metabolic syndrome 
(Table  1). A large effect size was observed in the body 
composition following intervention, including a weight loss of 
−8.9 ± 3.42 kg (Cohen’s d = 1.00, p < 0.001), BMI reduction of 
−3.3 ± 1.16 kg/m2 (Cohen’s d = 1.47, p < 0.001), FM reduction 
of −6.1 ± 2.7 kg (Cohen’s d = 1.33, p < 0.001), and BFP reduction 
of −4.1% ± 2.1% (Cohen’s d = 1.22, p < 0.001) after the intervention 
(Table  2). Our results also revealed a decrease in body 
circumference, including a − 8.6 ± 4.1 cm (Cohen’s d = 1.39, 
p < 0.001) reduction in WC and a − 7.3 ± 3.4 cm (Cohen’s d = 1.32, 
p < 0.001) reduction in HC (Table  2). Our results also showed 
an improvement in cardiometabolic health and body composition 
after the intervention. In terms of lipid metabolism, our results 
showed that TC, TG, and LDL-c decreased by −1.14 ± 0.75 
(Cohen’s d = 2.65, p < 0.001), −1.20 ± 0.64 (Cohen’s d = 2.59, 

1 http://cran.r-project.org/
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p < 0.001), and − 0.97 ± 0.60 mmol/L (Cohen’s d = 2.81, p < 0.001), 
respectively. Similar to the improvement of lipid metabolism, 
glucose metabolism, and blood pressure improved after the 
intervention, whereas FPG, FINs, HOMA-IR, SBP, DBP, and 
MAP decreased (Table  2).

Selection and Identification of 
Discriminatory Metabolites Related to 
Metabolic Improvement
All plasma samples were processed and analyzed through 
UPLC-MS/MS following the standardized protocol, and 204 
metabolites were successfully determined in each sample. The 
relative abundance of each metabolite class 
(Supplementary Figure S1) and the separation of metabolites 
were evident from the PCA and OPLS-DA results (Figures 1A,B).

The scoring plot generated from a cross-validated OPLS-DA 
model using one predictive component and three orthogonal 
components further showed a distinct separation (R2Y = 0.921, 
Q2Y = 0.78; Figure  1E), indicating that the OPLS-DA model was 

stable and effective for fitness and prediction. Compared with 
the pre-intervention, the volcano plots showed that 64 metabolites 
were screened based on OPLS-DA with a VIP > 1 (Figure  1C). 
The t test or Mann–Whitney test with the p value < 0.05 and 
|log2FC| > 0.25 was also carried out to validate the differential 
metabolites. The volcano plots showed that 30 metabolites increased, 
and 54 metabolites decreased after the intervention (Figure  1D). 
With the VIP > 1, p value < 0.05, and |log2FC| > 0.25 as screening 
criteria, 59 differential metabolites were screened (Figure  1F, 
Table  3). The p value of the metabolite in Table  3 was adjusted 
by FDR methods, and the results showed that the pFDR of each 
metabolite was less than 0.05, indicating that the screened differential 
metabolites were more reliable (Table  3).

Pathway and Correlation Analyses for 
Cardiometabolic Health Improvement
Pathway Analysis
To further explore the changes in the differential metabolites 
after the intervention, we  performed the pathway analysis 

TABLE 1 | Baseline participant characteristics.

Characteristics Boys (n = 18) Girls (n = 12) Total (n = 30) Value of p

Age (years) 12.6 ± 1.9 13.3 ± 1.5 12.9 ± 1.8 0.318
Height (cm) 167.4 ± 10.7 158.4 ± 8.2 163.8 ± 10.6 0.020
Weight (kg) 87.7 ± 18.0 80.5 ± 12.3 84.8 ± 16.1 0.239
Body mass index (BMI; kg/m2) 31.0 ± 4.0 32.02 ± 4.1 31.4 ± 4.0 0.502
RMR (kcal/day) 2445.23 ± 468.35 2129.51 ± 427.51 2318.97 ± 471.86 0.072

Data are expressed as means ± SD; independent sample t test was used for comparison.

TABLE 2 | Changes in clinical characteristics and cardiometabolic risk factors in children with metabolic syndrome.

Outcomes Pre-intervention Post-intervention Changes Cohen’s d Value of p

Weight (kg) 84.8 ± 16.1 75.9 ± 14.4 −8.9 ± 3.4 1.00 1.10E-14
BMI (kg/m2) 31.4 ± 4.0 28.1 ± 3.8 −3.3 ± 1.2 1.47 1.36E-15
FM (kg) 28.8 ± 8.2 22.7 ± 7.4 −6.1 ± 2.7 1.33 3.41E-13
Fat-free mass (kg) 56.0 ± 10.0 53.2 ± 9.4 −2.9 ± 1.5 0.51 2.66E-11
Skeletal muscle mass (kg) 51.2 ± 9.2 48.8 ± 8.6 −2.4 ± 1.4 0.46 2.14E-10
Body fat percentage (%) 33.6 ± 5.4 29.5 ± 6.1 −4.1 ± 2.1 1.22 7.82E-12
WC (cm) 104.9 ± 10.7 96.3 ± 10.4 −8.6 ± 4.14 1.41 3.19E-12
HC (cm) 109.0 ± 9.7 101.7 ± 9.0 −7.3 ± 3.4 1.34 1.33E-12
WHR 0.96 ± 0.08 0.95 ± 0.09 −0.01 ± 0.02 0.20 0.001
WHtR 0.64 ± 0.08 0.59 ± 0.07 −0.05 ± 0.3 1.13 1.08E-11
TC (mmol/L) 4.52 ± 0.78 3.38 ± 0.64 −1.14 ± 0.75 2.65 3.25E-09
TG (mmol/L) 1.91 ± 0.65 0.71 ± 0.25 −1.20 ± 0.64 2.59 3.27E-11
High-density lipoprotein-cholesterol 
(HDL-c; mmol/L)

1.01 ± 0.21 1.08 ± 0.21
0.07 ± 0.19 0.58

8.60E-02

Low-density lipoprotein cholesterol 
(mmol/L)

2.75 ± 0.62 1.78 ± 0.56
−0.97 ± 0.60 2.81

8.48E-10

non-HDL-c (mmol/L) 3.51 ± 0.69 2.30 ± 0.56 −1.21 ± 0.64 3.17 2.94E-11
fasting plasma glucose (mmol/L) 5.86 ± 1.01 5.15 ± 0.75 −0.71 ± 1.18 1.26 0.003
FINs 10.80 (5.02) 8.97 (7.75) −2.26 (6.99) - 0.006
HOMA-IR 2.69 (1.70) 2.00 (1.99) −0.58 (1.71) - 0.002
SBP (mmHg) 113 ± 10 105 ± 10 −7 ± 9 1.39 9.70E-05
DBP (mmHg) 71 ± 8 64 ± 11 −7 ± 6 1.13 4.19E-07
MAP (mmHg) 85 ± 8 78 ± 10 −7 ± 5 1.27 1.54E-08

Continuous variables were reported as means ± (SD) with normal distribution, and the paired sample t test was used to test the differences. FINs and HOMA-IR were reported as 
median (IQR), and Mann–Whitney test was used to test the differences.
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FIGURE 1 | Identification of the potential metabolites between baseline and post-intervention. (A) PCA plot; (B) OPLS-DA plot; (C) volcano plot of OPLS-DA 
model; (D) volcano plot of univariate statistics; (E) OPLS-DA permutation plot; (F) Venn plot of differential metabolites.

by the KEGG database. A total of 48 pathways were enriched 
when the 59 differential metabolites were introduced into 
KEGG (Figure  2), and based on ln(p value) and pathway 
impact scores, the 10 most important pathways, including 
aminoacyl-tRNA biosynthesis, glycine, serine, and threonine 
metabolism; nitrogen metabolism, citrate cycle [tricarboxylic 
acid (TCA) cycle], phenylalanine, tyrosine, and tryptophan 
biosynthesis; valine, leucine, and isoleucine biosynthesis; 
glyoxylate and dicarboxylate metabolism; alanine, aspartate, 
and glutamate metabolism; pantothenate and CoA biosynthesis, 
and cyanoamino acid metabolism, were enriched 
(Supplementary Table S3).

Correlation Analysis Between Changes in Plasma 
Differential Metabolites and Cardiometabolic 
Health
To further explore the changes in differential metabolites association 
with body composition and cardiometabolic health improvement, 
we conducted a correlation analysis between 59 potential metabolites 
and cardiometabolic risk factors; the correlation analysis heat map 
is shown in Figure 3. In our results, a range of different metabolites 
correlated with the improvements in body composition. The 
changes in 3-hydroxybutyric acid, isocitric acid, citric acid, trans-
aconitic acid, 2-hydroxybutyric acid, pipecolic acid, acetylcarnitine, 
palmitoyl carnitine, and oleylcarnitine were negatively correlated 
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with the changes in body composition, whereas the changes in 
valeric acid, glyceric acid, and 2-methylbutyroylcarnitine showed 
a positive correlation. Correlation analysis of differential metabolites 

with glucose metabolic outcomes showed that the levels of 
D-maltose/alpha-lactose were negatively correlated with HOMA-IR 
and FIN changes. The changes in GCA_1 was positively correlated 

TABLE 3 | Changes in potential metabolites in children with metabolic syndrome following the intervention.

Class Metabolite Value of p pFDR FC log2FC

Amino Acids Alanine 9.31E-09 1.01E-07 0.6596 −0.6004
Amino Acids Aspartic acid 1.64E-07 1.24E-06 0.4813 −1.0549
Amino Acids Creatine 1.86E-09 3.45E-08 0.4381 −1.1908
Amino Acids Glutamic acid 1.64E-07 1.24E-06 0.6658 −0.5868
Amino Acids Glycine 3.73E-09 5.85E-08 1.4961 0.5812
Amino Acids Homocitrulline 1.82E-05 7.35E-05 0.6599 −0.5997
Amino Acids Isoleucine 1.04E-05 4.92E-05 1.3842 0.4691
Amino Acids Leucine 4.60E-04 1.42E-03 0.7844 −0.3504
Amino Acids Methylcysteine 9.31E-09 1.01E-07 2.3801 1.251
Amino Acids N-Acetylserine 3.79E-06 2.03E-05 0.8329 −0.2637
Amino Acids Phenylalanine 1.86E-08 1.90E-07 0.6225 −0.6839
Amino Acids Pipecolic acid 8.56E-09 1.01E-07 1.7982 0.8465
Amino Acids Pyroglutamic acid 1.02E-07 9.09E-07 0.6617 −0.5958
Amino Acids Serine 9.44E-11 3.85E-09 1.3458 0.4285
Amino Acids Tryptophan 1.86E-09 3.45E-08 0.6943 −0.5265
Amino Acids Tyrosine 3.73E-09 5.85E-08 0.6829 −0.5502
Amino Acids Valine 5.09E-07 3.25E-06 0.8015 −0.3192
Benzenoids Phenylpyruvic acid 5.59E-09 8.14E-08 0.5555 −0.8481
Bile Acids DCA 6.08E-04 1.80E-03 0.2707 −1.885
Carbohydrates Gluconolactone 9.98E-07 5.82E-06 0.8304 −0.2681
Carbohydrates Glyceric acid 1.64E-07 1.24E-06 0.8096 −0.3047
Carbohydrates Maltotriose 4.60E-04 1.42E-03 0.4748 −1.0746
Carbohydrates Xylose 2.99E-03 7.34E-03 0.8239 −0.2795
Carboxylic acids 2-Methylbutyroylcarnitine 8.01E-08 7.43E-07 0.6657 −0.5869
Carnitines Acetylcarnitine 1.01E-05 4.90E-05 1.5007 0.5856
Carnitines Carnitine 1.64E-07 1.24E-06 0.6998 −0.515
Carnitines Dodecanoylcarnitine 1.60E-05 6.65E-05 0.7302 −0.4537
Carnitines Glutarylcarnitine 8.01E-08 7.43E-07 0.722 −0.4698
Carnitines Isovalerylcarnitine 4.71E-07 3.10E-06 0.5972 −0.7437
Carnitines Oleylcarnitine 1.01E-12 1.03E-10 1.4978 0.5828
Carnitines Palmitoylcarnitine 7.72E-10 2.62E-08 1.258 0.3311
Carnitines Propionylcarnitine 1.86E-09 3.45E-08 0.4825 −1.0515
Carnitines Stearylcarnitine 8.35E-11 3.85E-09 1.5441 0.6268
Carnitines 2-Hydroxy-3-methyl butyric acid 5.14E-06 2.56E-05 1.5201 0.6042
Fatty Acids Adrenic acid 1.84E-05 7.35E-05 1.3389 0.421
Fatty Acids Azelaic acid 9.98E-07 5.82E-06 0.6165 −0.6979
Fatty Acids Heptadecanoic acid 3.86E-07 2.71E-06 0.6052 −0.7244
Fatty Acids Heptanoic acid 2.02E-03 5.15E-03 0.6635 −0.5918
Fatty Acids Oleic acid 4.16E-05 1.57E-04 1.2232 0.2906
Fatty Acids AMP 1.24E-05 5.76E-05 0.7345 −0.4452
Nucleotides 2-Hydroxybutyric acid 3.79E-06 2.03E-05 1.9684 0.977
Organic Acids trans-Aconitic acid 4.81E-17 9.82E-15 1.8366 0.877
Organic Acids 3-Hydroxybutyric acid 9.31E-09 1.01E-07 7.8566 2.9739
Organic Acids alpha-Ketoisovaleric acid 1.57E-05 6.65E-05 0.8407 −0.2503
Organic Acids cis-Aconitic acid 1.86E-09 3.45E-08 1.8296 0.8715
Organic Acids Citric acid 1.86E-09 3.45E-08 1.8301 0.872
Organic Acids Guanidoacetic acid 9.42E-09 1.01E-07 1.3953 0.4806
Organic Acids Isocitric acid 3.95E-11 2.69E-09 1.5129 0.5973
Organic Acids Malic acid 4.40E-07 2.99E-06 1.2751 0.3506
Organic Acids Pyruvic acid 1.60E-05 6.65E-05 0.696 −0.5229
Phenols 4-Hydroxyphenylpyruvic acid 2.55E-07 1.86E-06 0.6265 −0.6747
Primary BAs GCDCA 1.13E-03 3.07E-03 0.5158 −0.955
SCFAs 2-Methylpentanoic acid 5.55E-04 1.69E-03 0.6013 −0.7339
SCFAs 3-Hydroxyisovaleric acid 2.83E-04 9.63E-04 0.8201 −0.2861
SCFAs Caproic acid 1.72E-03 4.49E-03 0.8195 −0.2871
SCFAs Propionic acid 4.42E-06 2.31E-05 0.7692 −0.3786
SCFAs Valeric acid 5.14E-06 2.56E-05 0.7388 −0.4367
Unknown D-Maltose/Alpha-Lactose 3.45E-04 1.14E-03 0.7389 −0.4365
Unknown GCA_1 2.32E-04 8.15E-04 0.4336 −1.2056
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with the changes in HOMA-IR and FPG, whereas changes in 
AMP, pyruvic, and alanine were positively correlated with the 
change in FPG. For the outcomes of lipid metabolism, a positive 
correlation existed between the changes in TG and a large number 
of differential metabolites, including GCA_1, tryptophan, alanine, 
2-methybutyroycarntine, propionyl carnitine, propionic acid, 
creatine, isovalerylcarnitine, DCA, pyruvic acid, malic acid, et  al. 
The changes in HDL-c and TC were negatively correlated with 
leucine. The changes in pyruvic acid, DCA, were positively correlated 
with the improvement of blood pressure, as observed in our 
study (Figure  3).

DISCUSSION

Obesity is a risk factor for metabolic syndrome, and metabolic 
syndrome in childhood increases the risk of metabolic diseases 
in adulthood. Metabolites, as biomarkers for the early diagnosis 
of diseases, play an important role in revealing the early changes 
in diseases. Changes in plasma metabolites are closely related 
to metabolic abnormalities in obese children (Newgard et  al., 
2009; Wahl et  al., 2012; Butte et  al., 2015). Although extensive 
research has been carried out to analyze the effects of extreme 
weight loss programs, no study evaluated the effect of extreme 
weight loss programs on circulating metabolites and their 
relationship with cardiometabolic health in children with 
metabolic syndrome. To our knowledge, this research is the 

first study to investigate the effects of an extreme weight loss 
intervention based on exercise combined with diet control on 
plasma metabolite profile in children with metabolic syndrome. 
In our study, the dietary control was designed in reference to 
RMR. Thus, exercise may play an important role in improving 
body composition. Our results showed that the body composition 
and cardiometabolic risk factors improved, and 59 metabolites, 
including amino acids, fatty acids, carnitine, carbohydrates, 
and organic acids, were changed after intervention.

Effects of Extreme Weight Loss 
Intervention on Body Composition and 
Cardiometabolic Health
In our study, the body composition outcomes, including body 
weight, BMI, BFP, and FM, decreased after the intervention, with 
Cohen’s d greater than 0.8, indicating that the extreme weight 
loss intervention can cause substantial improvement in body 
composition. Although moderate-intensity exercise without diet 
control can reduce the weight of obese children, the effect size 
is small. Mendelson et al. (2015) observed that a 12-week exercise 
program consisting of 60–80% VO2peak exercise intensity, 60–120 min 
train session, and three times/week frequency had a limited effect 
on weight loss and lipid metabolism. In our study, a large 
improvement in the body composition might have played an 
important role in weight maintenance. A great weight loss at the 
beginning of treatment has been identified as a predictor of long-
term weight loss success and maintenance (Nackers et  al., 2010). 
In addition to the improved body composition, our intervention 
showed an enhancement in glucose metabolism, lipid metabolism, 
and blood pressure. This finding is consistent with that of Kerns 
et  al. (2017), who reported that diet restriction and vigorous 
physical activity intervention in the Biggest Loser Competition 
can achieve the rapid loss of massive weight and that the maintenance 
of weight loss depends on physical activity changes rather than 
dietary intake changes during the 6-year follow-up. Liu et  al. 
(2015) discovered that after 4 weeks of aerobic exercise combined 
with dietary intervention, glucose metabolism parameters, such 
as FINs, HOMA-IR, and HOMA-β, decreased in obese children, 
indicating that insulin sensitivity in obese children was effectively 
improved. Given these results, the extreme weight loss intervention 
based on exercise combined with dietary control may be  a more 
effective intervention for improving body composition and metabolic 
health in children with metabolic syndrome.

Effects of Extreme Weight Loss 
Intervention on Amino Acid Metabolism 
and Potential Metabolite Pathway
Obesity can cause changes in amino acid metabolism, which 
is closely related to glucose and lipid metabolism in individuals 
with obesity (Newgard, 2012; McCormack et  al., 2013; Lee 
et al., 2015). Perng et al. (2014) observed that the concentration 
of plasma BCAAs in children with obesity was higher than 
that in children with normal weight, and each unit increase 
in BCAAs resulted in a corresponding 6% increase in HOMA-IR. 
BCAAs and AAAs (phenylalanine and tyrosine) together 
constitute PC6, which is closely related to the occurrence of 

FIGURE 2 | Pathway analysis bubble plot by the HSA set in KEGG. On the 
horizontal axis is the pathway impact, which represents the importance of 
differential metabolites in metabolic pathways. The vertical axis is the negative 
logarithm of p value obtained from pathway enrichment analysis. The size of 
pathway symbols represents the statistical significance level of pathway 
analysis. The color of pathway symbols represents the impact factor; large 
sizes and dark colors represent central pathway enrichment and high 
pathway impact values, respectively.
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insulin resistance (Butte et al., 2015). In this study, we observed 
that BCAAs, including leucine and valine, and AAAs, including 
tyrosine, phenylalanine, and tryptophan, decreased after the 
intervention. Given their critical role in insulin resistance, the 
changes in BCAAs and AAAs may play an important role in 
maintaining metabolic health. Metabolic pathway analysis further 
supported this hypothesis and revealed that aminoacyl-tRNA 
biosynthesis, nitrogen metabolism, phenylalanine, tyrosine, and 
tryptophan biosynthesis; and valine-leucine and isoleucine 
biosynthesis were enriched as the most critical metabolic 
pathways, and BCAAs and AAAs are important metabolites 
of these metabolic pathways. This finding is consistent with 
that of Chen et  al. (2015), who observed that weight loss was 
associated with the decrease in BCAAs (leucine and isoleucine) 
and AAAs (tyrosine and phenylalanine); the decrease in tyrosine 
and phenylalanine was associated with the improvement of 
insulin resistance, and this effect was independent of weight 
change. In our study, we  also observed that changes in amino 
acid metabolites were strongly associated with improved body 
composition and cardiometabolic risk factors. Aspartic acid 
and alanine are amino acid metabolites in the aminoacyl-tRNA 
biosynthesis and alanine, aspartate, and glutamate metabolism, 
which decreased after the intervention; the change in alanine 
was positively correlated with the changes in TG, non-HDL-c, 
TC, BMI, and FPG. This result was consistent with that of 
Brennan et al. (2018a), who reported that the change in alanine 
is positively associated with the change in BMI after a regular 
exercise. A low plasma glycine level is closely correlated with 
the occurrence of obesity, type 2 diabetes, and non-alcoholic 
fatty liver disease (Guasch-Ferré et al., 2016; Gaggini et al., 2018), 
and the level of plasma glycine is positively correlated with 
insulin sensitivity (Takashina et al., 2016); precursors of glycine, 
such as trimethylglycine and dimethylglycine, can reduce the 
risk of diabetes (Svingen et  al., 2016). Our results showed that 

the levels of glycine and serine increased after the intervention, 
and the change in glycine is positively correlated with HOMA-IR 
and FIN improvement, suggesting that elevated plasma glycine 
levels may play an important role in insulin resistance 
improvement. This finding was also reported by Palmnäs et  al. 
(2018), who observed that low serum serine and glycine levels 
in adult males were associated with increased body fat and 
risk of metabolic syndrome, whereas an increased physical 
activity energy expenditure was positively correlated with 
increased serum serine and glycine levels.

Effects of Extreme Weight Loss 
Intervention on Fatty Acid Metabolism
Fatty acid composition can provide valuable information on the 
diagnosis of diseases and can be  used as a biomarker to evaluate 
disease status (Bogie et  al., 2020; Schjødt et  al., 2020; Huang 
et  al., 2021). Based on the carbon chain length, fatty acids can 
be  divided into short-chain fatty acids (SCFAs), medium-chain 
fatty acids, and long-chain fatty acids. SCFAs are vital energy 
and signaling molecules produced by microbial fermentation (Koh 
et  al., 2016). SCFAs are increasingly being accepted to play an 
important role in human health. Riva et  al. (2017) observed that 
childhood obesity is associated with altered gut microbiota, and 
that the levels of SCFAs produced by gut bacteria are higher 
than those of normal-weight children. The results of Goffredo 
et al. are consistent with those of Riva’s; the plasma concentrations 
of SCFAs, such as acetate, propionate, and butyrate, were positively 
correlated with the degree of adiposity in children independent 
of age, gender, and ethnicity (Goffredo et  al., 2016). These results 
suggest that the increased plasma SCFA concentrations were 
associated with obesity; several research showed that the association 
between SCFAs and obesity may be  bidirectional, and obesity 
may have an effect on SCFA metabolism (Sowah et  al., 2019). 
In this study, we  observed that five SCFAs, including 

FIGURE 3 | Heat map of the correlations between different metabolites and metabolic improvement. Each square represents the Spearman’s correlation coefficient 
with the statistical significance threshold set at *p < 0.05, **p < 0.01. Red and blue colors represent positive and negative correlations, respectively.
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3-hydroxyisovaleric acid, propionic acid, valeric acid, 2-methylvaleric 
acid, and caproic acid, were reduced after the intervention. The 
changes in propionic acid, valeric acid, and caproic acid were 
associated with the improvements in TG, weight and FM, and 
SBP, respectively. The decrease in SCFA after weight loss was 
similar to that of previous systematic review. Sowah et al. conducted 
a systematic review and discovered that the decreases in SCFA 
concentrations may accompany the weight loss induced by bariatric 
surgery or dietary restriction among overweight and obese adults 
(Sowah et  al., 2019). The decreased in SCFA concentrations in 
our study may be  related to the diet control, because SCFAs are 
the major products of the anaerobic fermentation of primarily 
nondigestible carbohydrates by the gut microbiome. In addition, 
a relatively limited number of studies reported the effects of 
exercise on intestinal flora and SCFAs. The role of exercise in 
the reduction of SCFA concentration still needs further study. 
Furthermore, our results revealed that azelaic acid, heptanoic acid, 
and heptadecanoic acid decreased, whereas 2-hydroxy-3-methyl 
butyric acid, adrenic acid, and oleic acid increased following the 
intervention, indicating that exercise plus diet improves the fatty 
acid metabolism. This finding is consistent with that of Guo 
et  al., who observed that serum total fatty acids, unsaturated 
fatty acids, monounsaturated fatty acids, polyunsaturated fatty 
acids, and N-6 polyunsaturated fatty acids reduced after 16 weeks 
of exercise plus diet (Guo et  al., 2014).

Effects of Extreme Weight Loss 
Intervention on Carnitine Metabolism
Acylcarnitine is a product of the incomplete oxidation of fatty 
acids. High levels of BCAAs interfere with the oxidation of fatty 
acids in muscles, leading to the accumulation of various 
acylcarnitines and insulin resistance (Olisja et  al., 2015; White 
et  al., 2016). Wahl et  al. (2012) observed that the C12:1 and 
C16:1 acylcarnitine levels in children with obesity were higher 
than those in children with normal weight. Perng et  al. (2014) 
also discovered a positive correlation between C3 and C5 
acylcarnitine and insulin resistance in children with obesity. Our 
results showed that carnitine, propionyl carnitine, 
2-methylbutyroylcarnitine, isovalerylcarnitine, glutaryl carnitine, 
and dodecanoyl carnitine decreased, whereas acetylcarnitine, 
palmitoyl carnitine, oleylcarnitine, and stearylcarnitine increased 
following the intervention. The changes in propionylcarnitine and 
isovalerylcarnitine were associated with the changes in TG, whereas 
those in acetylcarnitine, palmitoyl carnitine, and oleylcarnitine 
were associated with body composition improvement. This condition 
may be  associated with a reduction in body weight and 
concentrations of energy fatty acids after the intervention, whereas 
the adaptive decrease in carnitine content may be  the result of 
improved lipid metabolism.

Effects of Extreme Weight Loss 
Intervention on Carbohydrate and Organic 
Acid Metabolism
Carbohydrate metabolism showed a similar trend to fatty acid 
and carnitine metabolisms, which decreased following the 
intervention. Given that fatty acids and carbohydrate compounds 

are energy substances, the decrease in fatty acid and carbohydrate 
metabolites after the intervention suggests an increase in the 
energy metabolic pathway. The TCA cycle is a key link for the 
metabolism of carbohydrates, fatty acids, and amino acids. Previous 
studies have revealed damage to the TCA cycle in individuals 
with obesity and diabetes, which is manifested by the decrease 
in key metabolites, such as citric acid, α-ketoglutarate, malic acid, 
and oxaloacetic acid, in the TCA cycle pathway; the damage to 
the TCA cycle is closely related to insulin resistance (Schrauwen 
and Hesselink, 2008; Martins et  al., 2018). Citric acid, isocitrate, 
cis-aconic acid, and malic acid are important metabolites in the 
TCA cycle; increases in these organic acids indicate an increase 
in the TCA cycle pathway. Similar to the results of this study, 
Menshikova et  al. (2007) revealed that moderate-intensity aerobic 
exercise increased citrate synthase activity by 29% in adults with 
obesity. Brennan et al. (2018b) observed that the increase in TCA 
cycle metabolites was associated with the decreased visceral fat 
following 6 months of exercise. Furthermore, our results showed 
that 2-hydroxybutyric, cis-aconitic acid, citric acid, and isocitric 
acid were associated with body composition improvement, whereas 
malic acid was associated with TG reduction. Altogether, these 
results suggest that the TCA cycle and organic acid metabolism 
may play an important role following intervention and are correlated 
with obesity and its metabolic complications.

Strength and limitation: In accordance with the Convention 
on the Rights of the Child, we  informed the children about the 
research, and in the implementation of our intervention program, 
we  respected the children’s appeals and rights and encouraged 
them to complete the intervention program. Compared with 
previous studies, the advantage of our study is that it can achieve 
a great weight loss effect in a short period and improve metabolic 
health. Our study may provide references for the development 
of effective intervention strategies for children with metabolic 
syndrome. In our study, we  observed that the changes in plasma 
metabolites were closely associated with the improvement in body 
composition and cardiometabolic health, which may provide a 
new research perspective for further exploration of metabolic 
mechanisms. This study presents several limitations. First, the 
absence of a control group for diet intervention alone restricted 
the interpretation of the effects of exercise on metabolic responses. 
Second, given the lack of sample size, the metabolomic findings 
could not be  further validated in our study. We  will continue to 
carry out relevant verification work in the future. Third, although 
the body composition and cardiometabolic health improved in 
our study, the long-term outcomes of the intervention may 
be  different, and further studies with a large sample size and 
long intervention duration should be  carried out.

CONCLUSION

In conclusion, the most evident finding of this study is that 
extreme weight loss intervention can effectively improve body 
composition and cardiometabolic health in children with metabolic 
syndrome in a short intervention period. The metabolomic data 
provided a comprehensive view of circulating metabolite changes 
after exercise combined with diet control; these changes included 
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amino acid, fatty acid, carnitine, and organic acid metabolism. 
The changes in plasma metabolites are closely associated with 
body and cardiometabolic health improvement, which provides 
a new perspective for the study of the mechanism of exercise 
combined with diet control to promote cardiometabolic health. 
Additional research is necessary to further validate the result and 
determine the key metabolism pathway related to cardiometabolic 
health improvement in children with metabolic syndrome.
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