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ABSTRACT

Introduction: The maculopathy in highly
myopic eyes is complex. Its clinical diagnosis is
a huge workload and subjective. To simply and
quickly classify pathologic myopia (PM), a deep
learning algorithm was developed and assessed
to screen myopic maculopathy lesions based on
color fundus photographs.

Methods: This study included 10,347 ocular
fundus photographs from 7606 participants. Of
these photographs, 8210 were used for training
and validation, and 2137 for external testing. A
deep learning algorithm was trained, validated,
and externally tested to screen myopic macu-
lopathy which was classified into four cate-
gories: normal or mild tessellated fundus, severe
tessellated fundus, early-stage PM, and
advanced-stage PM. The area under the preci-
sion–recall curve, the area under the receiver
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operating characteristic curve (AUC), sensitiv-
ity, specificity, accuracy, and Cohen’s kappa
were calculated and compared with those of
retina specialists.
Results: In the validation data set, the model
detected normal or mild tessellated fundus,
severe tessellated fundus, early-stage PM, and
advanced-stage PM with AUCs of 0.98, 0.95,
0.99, and 1.00, respectively; while in the exter-
nal-testing data set of 2137 photographs, the
model had AUCs of 0.99, 0.96, 0.98, and 1.00,
respectively.
Conclusions: We developed a deep learning
model for detection and classification of myo-
pic maculopathy based on fundus photographs.
Our model achieved high sensitivities, speci-
ficities, and reliable Cohen’s kappa, compared
with those of attending ophthalmologists.

Keyword: Pathologic myopia; Myopic
maculopathy; Fundus image; Deep learning;
Large-scale screening

Key Summary Points

The maculopathy in highly myopic eyes is
complex and its clinical diagnosis is a
huge workload and subjective.

We developed an accurate and reliable
deep learning model based on color
fundus images to screen myopic
maculopathy.

The artificial intelligence system could
detect and classify normal or mild
tessellated fundus, severe tessellated
fundus, early pathologic myopia, and
advance pathologic myopia.

The model achieved high sensitivities,
specificities, and reliable Cohen’s kappa
compared with those of attending
ophthalmologists.

The artificial intelligence system was
designed for easy integration into a
clinical tool which could be applied in a
large-scale myopia screening.

INTRODUCTION

Pathologic myopia (PM) is a major cause of legal
blindness worldwide and the prevalence of
myopia-related complications is expected to
continue increasing in the future, presenting a
great challenge for ophthalmologists [1–4]. In
East and Southeast Asia, the prevalence of
myopia and high myopia in young adults is
around 80–90% and 10–20%, respectively [5]. In
China, the prevalence of myopia in 1995, 2000,
2005, 2010, and 2014 was 35.9%, 41.5%, 48.7%,
57.3%, and 57.1%, respectively, with a gradual
upward trend [6]. According to the META-PM
(meta analyses of pathologic myopia) classifi-
cation system proposed by Ohno-Matsui et al.,
PM is defined as ‘‘eyes having equal to or more
serious than diffuse choroidal atrophy’’ or ‘‘eyes
having lacquer cracks, myopic choroidal neo-
vascularization (CNV) or Fuchs spot’’ [7]. How-
ever, manual interpretation of fundus
photographs is subject to clinician variability
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since clear definition of various morphological
characteristics was lacking in the META-PM
classification system.

Though tessellation is a common character-
istic ofmyopia, it is occasionally an earlier sign of
chorioretinal atrophy or staphyloma develop-
ment as well [8]. The higher the degree of fundus
tessellation was, the thinner the subfoveal chor-
oidal thickness was [9–11]. Yan et al. reported
that higher degree of fundus tessellation was
significantly associated with longer axial length,
more myopic refractive error, and best-corrected
visual acuity (BCVA) [12]. These reports have
indicated that severe fundus tessellation might
be the first indicator ofmyopia-to-PM transition.
And Foo et al. demonstrated that tessellated
fundus had good predictive value for incident
myopic macular degeneration [13]. Therefore,
screening severe fundus tessellation which is
defined as equal to or more serious than grade 2
proposed by Yan et al. is beneficial to detect
people at high risk of PM [12]. When people
present signs of PM, visual acuity might be
gradually impaired. According to recent
research, patients with severe PM which was
defined as equal to or more serious than patchy
chorioretinal atrophy or foveal detachment and/
or active CNV presented significantly worse
BCVA than those with common PM [14].
Whereas, diffuse atrophy and lacquer cracks
(LCs) which cause mild vision impairment and
progressed slowly were considered as early-stage
PM [15, 16]. Considering the complex macu-
lopathy in highly myopic eyes, a simplified PM
classification model would facilitate early detec-
tion of population with high risks of PM and
stratified management of PM. However, screen-
ing the large number of patients withmyopia is a
huge workload for ophthalmologists.

Fortunately, with the rapid development of
artificial intelligence (AI) technologies, the
application of AI could provide a potential
solution for the increasing burden of myopia,
attributed to its ability to analyze a tremendous
amount of data. In the field of ophthalmology,
the deep learning system has led to exciting
prospects in the detection of papilledema,
glaucomatous optic neuropathy, and diabetic
retinopathy based on color fundus photographs
[17–20]. As a result of the complexity of the

classification and definition system of PM, the
application of deep learning technology in PM
lesion screening is still a challenge. As evi-
denced by Tan et al., Lu et al., Wu et al., the AI
models based on fundus images have achieved
good performance in diagnosing and classifying
high myopia [21–24]. However, the value of AI
implementation for screening severe tessellated
fundus in patients with high myopia has not
been fully explored. On the basis of our classi-
fication system, it is viable to design the AI
algorithm to automatically detect people at
high risk of PM and to identify PM.

This study aimed to develop and train the
deep learning system to automatically detect
normal or mild tessellated fundus, severe tes-
sellated fundus, early-stage PM, and advanced-
stage PM using a large data set of color retinal
fundus images obtained from the ophthalmic
clinics of the hospitals.

METHODS

Data Acquisition

In this study, theuse of retinal fundus imageswas
approved by the Ethics Committee of Shanghai
General Hospital, Shanghai Jiao Tong University
School of Medicine, and adhered to the tenets of
the Declaration of Helsinki (Approval ID: No.
2015KY156). Written informed consent forms
were obtained from all participants.

The 45� color fundus photographs centered
on macula were collected from 6738 partici-
pants at Shanghai Eye Disease Prevention and
Treatment Center (SEDPTC) in China from
2016 to 2018, using the TOPCON DRI Triton.
Images in which the fovea was not fully visible
or over 50% of the total area was obscured were
excluded. Finally, 8210 images with visible
macula from 5778 patients were included for
model development. On the basis of the
patient’s code number, these images were divi-
ded into a training data set (90% of the images)
and a validation data set (10% of the images) for
validating the models.

To evaluate model performance, the algo-
rithm was applied to another data set collected
from SEDPTC and Shanghai General Hospital
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(SGH), which consisted of 2137 macula-cen-
tered fundus photographs from 1828 partici-
pants or patients.

Classification and Labeling of Myopic
Maculopathy

All fundus photographs were independently
classified and labeled by three retina specialists
(YF, WW, and LY). When disagreements occur-
red, the final diagnosis was confirmed through a
group discussion among the retina specialists
and another senior expert (XX). Diagnoses

made by three attending ophthalmologists
(RW, LY, and DS) were recorded to compare
with AI performance. The META-PM classifica-
tion system was slightly modified on the basis of
the risk of progression and impact on vision
[8, 14, 25, 26]. In accordance with Yan et al.,
severe tessellated fundus was defined as equal to
or more serious than grade 2 in this study [12].
Therefore, the images were classified into four
groups: (1) normal or mild tessellated fundus,
(2) severe tessellated fundus, (3) early-stage PM,
and (4) advanced-stage PM (Fig. 1). Details are
illustrated in Table 1.

Fig. 1 Typical fundus photographs of four categories. a Normal or mild tessellated fundus. b Severe tessellated fundus.
c Early-stage PM. d Advanced-stage PM
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Image Processing

Original fundus photographs were preprocessed
for prominence to improve classification accu-
racy [27, 28] (Fig. 2). Image preprocessing
includes the following modules: ROI intercep-
tion, data denoising, augmentation, and nor-
malization (Supplementary Fig. S1).

In the ROI interception module, we extrac-
ted the effective area by removing excessive
black margins which may affect the identifica-
tion of key feature information. Firstly, we
converted the RGB images to grayscale images,
in which the pixel value of background is equal
to zero and the pixel value of effective area is
greater than zero. Then, we used OpenCV tools
to traverse the pixel information and get the
location of effective area in grayscale images.
Last, RGB images were cropped on the basis of
the location of effective area.

In the data denoising module, an unsharp
masking (USM) filter was applied to the cropped
images to reduce noise interference during
imaging according to the following formula
[29]: IO ¼ a � IIn þ b � GðrÞ � IIn þ c, where IIn rep-
resents the input image, IO represents the stan-
dardized output image, GðrÞ is a Gaussian filter
with standard deviation s, and * represents the

convolutional operator. Parameters a, b, c, and
s were set to 4, 3.5, 128, and 30, respectively, on
the basis of experience. The images were
resampled to a resolution of 672 9 672 accord-
ing to the code at Github (source code is at
https://github.com/tensorflow/tpu/blob/
master/models/official/efficientnet/
efficientnet_builder.py).

In the data augmentation module, to
increase the diversity of the data set and reduce
the chance of overfitting [30], the horizontal
and vertical flipping, rotation up to 60�,
brightness shift within the range of 0.8–1.2, and
contrast shift within the range of 0.9–1.1 were
randomly applied to the images in the training
data set, which increase its size to five times the
original size.

In the data normalization module, the pixel
values of images after augmentation were nor-
malized within the range of 0–1. Then, z-score is
used for standardization of the input image
before deep learning.

Deep Learning Algorithm Development

Our training platform is implemented by
PyTorch framework with Python3.6 and
CUDA10.0. Training equipment comprised a
2.60 GHz Intel(R) CPU and a Tesla V100-SXM2
GPU. EfficientNet-B8 architecture, an excellent
convolutional neural network suitable for large-
size input image, was adopted [31]. The Effi-
cientNet-B8 model was transfer learned from
pretrained weights on ImageNet [32]. Then, we
replaced the final classification layers in the
network and trained further with our data set.

The cross entropy was used as an objective
function in our model during the training pro-
cess. Training was performed with an initial
learning rate of 10-2, weight decay coefficient
for I2 regularization of 1e-5, and dropout for
output layer of 0.5. Then, the stochastic gradi-
ent descent (SGD) optimizer was used for 80
epochs on the training data set, and each epoch
is verified on the validation set to determine the
final weight. To reduce overfitting of the model,
early stopping strategy and sharpness aware
minimization (SAM) optimizer were applied.
The training process was stopped if the

Table 1 Detailed classification of myopic maculopathy

Myopic maculopathy Definition

Normal fundus or mild

tessellated fundus

No macular lesions or blurred

choroidal vessels outside the

macular region. (Fig. 1a)

Severe tessellated

fundus

Equal to or more serious than

grade 2 proposed by Yan et al.

[12]. (Fig. 1b)

Early-stage PM Diffuse chorioretinal atrophy or

lacquer cracks alone. (Fig. 1c)

Advanced-stage PM Patchy chorioretinal atrophy,

macular atrophy, myopic

CNV, or Fuchs’ spot [7].

(Fig. 1d)

PM pathologic myopia, CNV choroidal neovascularization
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validation loss did not improve over 20 con-
secutive epochs. The model state with lowest
validation loss was saved as the final state of the
model.

Statistical Analysis

To determine the model performance, the
receiver operating characteristic (ROC) curves
were used and analyzed with Python software.
According to the results of the classification
model, the area under precision–recall (P–R)
curve—the average precision value (AP), the
area under ROC curve (AUC), sensitivity,
specificity, and the overall accuracy were eval-
uated for the four groups.

RESULTS

Characteristics of the Data Sets

The deep learning system was trained and vali-
dated on 8210 fundus photographs collected
from 5778 participants (59.00% with pho-
tographs for both eyes; mean age 51.36 years
old; 60.00% female), including 4920 (59.93%)
normal or mild tessellated fundus images, 2110
(25.70%) severe tessellated fundus images, 870
(10.60%) early-stage PM images, and 310
(3.78%) advanced-stage PM images. And 10%
out of 8210 fundus photographs were randomly
selected for internal validation. A separated set
of 2137 photographs, including 1053 (49.28%)
normal or mild tessellated fundus images, 405

Fig. 2 Diagrams showing the overview of developing deep learning system (a) and the network architecture based on
EfficientNet-B8 (b). The number 61 means that 61 MBConvBlocks were included in the network. PM pathological myopia
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(18.95%) severe tessellated fundus images, 406
(19.00%) early-stage PM images, and 273
(12.77%) advanced-stage PM images, was used
for externally testing the performance of the
deep learning system (Table 2).

The characteristics of eyes are presented in
Table 3. Patients with PM as compared with
individuals without PM had a significantly
longer axial length (P\0.001), had a signifi-
cantly worse BCVA (P\0.001), and had a sig-
nificantly higher refractive error (- 10.17 D vs.
- 0.70 D, - 9.17 D vs. - 0.93 D, - 10.23 D vs.
- 0.60 D in training, validation, and testing
data set, respectively, P\0.001). Similar to
previous study, patients with severe tessellation
fundus had a significantly longer axial length
(P\0.001), worse BCVA (P\0.001), and
higher refractive error (- 3.54 D vs. - 0.70 D,
- 3.30 D vs. - 0.93 D, - 3.15 D vs. - 0.60 D in
training, validation, and testing data set,
respectively, P\0.001). Moreover, clinical fea-
tures showed no significant difference between
the training set and internal validation set,
which indicated that the training set and
internal validation set were homogeneous.

Classification Performance
in the Validation Data Set

In the validation data set (Table 4), the deep
learning system discriminated normal or mild
tessellated fundus from all the other types with
an AUC of 0.98, a sensitivity of 93.10%, and a
specificity of 97.60%. The deep learning system
discriminated severe tessellated fundus from all
the other types with an AUC of 0.95, a sensi-
tivity of 92.90%, and a specificity of 93%. The
system showed a sensitivity of 90.80% and
specificity of 98.90%, with an AUC of 0.99, for
screening early-stage PM from all the other
types. Meanwhile, it differentiated advanced-
stage PM from all the other types with a sensi-
tivity of 96.80%, specificity of 99.90%, and an
AUC of 1.00. The overall accuracy of the model
was 92.90%.

Classification Performance in the External
Testing Data Set

The system was further applied to an external
testing data set to assess the generalizability.
Similar to the results from the validation data
set, the system discriminated normal or mild
tessellated fundus, severe tessellated fundus,

Table 2 Characteristics of the training and validation
data sets

Characteristics Training
set

Internal
validation
set

External
testing set

Data set SEDPTC

data set

SEDPTC

data set

SEDPTC

data set

and SGH

data set

Number of

patients

5003 775 1828

Number of

fundus

images

7389 821 2137

Equipment

used for

fundus

images

TOPCON

DRI

OCT

Triton

TOPCON

DRI

OCT

Triton

TOPCON

DRI

OCT

Triton

Age, mean

(SD), years

51.09

(19.59)

53.08

(17.86)

44.93

(22.20)

Gender

(female, %)

60.9% 61.7% 58%

Normal fundus

or mild

tessellation

4428

(59.93%)

492

(59.93%)

1053

(49.28%)

Severe

tessellated

fundus

1899

(25.70%)

211

(25.70%)

405

(18.95%)

Early-stage PM 783

(10.60%)

87

(10.60%)

406

(19.00%)

Advanced-stage

PM

279

(3.78%)

31 (3.78%) 273

(12.77%)

SEDPTC Shanghai Eye Disease Prevention and Treatment
Center, SGH Shanghai General Hospital, PM pathologic
myopia
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early-stage PM, and advanced-stage PM with an
average precision of 0.99, 0.87, 0.94, and 0.97, a
sensitivity of 92.00%, 92.60%, 88.20%, and
94.90%, and a specificity of 98.60%, 93.10%,
98.20%, and 99.50%, respectively; the areas
under ROC was 0.99, 0.96, 0.98, and 1.00
(Fig. 3a). P–R curves were used to measure the
P–R trade-off of the model due to the imbalance
of the data sets (Fig. 3b). The overall accuracy of
the deep learning system was 91.80%.

Meanwhile, the photographs of the external
testing data set were also independently graded
by three attending ophthalmologists, and the
sensitivity and specificity were compared with
those from the deep learning system. As illus-
trated in Table 5, the system showed an equal or

even better sensitivity than the attending oph-
thalmologists, especially for discriminating
severe tessellated fundus and early-stage PM,
showing a significantly higher sensitivity at a
similar specificity. In addition, the mean overall
accuracy of the attending ophthalmologists was
90.07% (range 89.40–91.20%), which was lower
than the deep learning model.

Visualizing the Prediction Process of Deep
Learning System

The visualization of the prediction process for
the deep learning system was displayed in the
form of class activation map (CAM). As shown

Table 3 Ocular parameters of the training and validation data sets

Groups BCVA, logMAR Axial length (mm) Spherical equivalent (diopters)
Mean (SD) Mean (SD) Mean (SD)

Training set

Normal fundus or mild tessellation 0.05 (0.09) 23.97 (1.44) - 0.70 (3.14)

Severe tessellated fundus 0.11 (0.16) 25.38 (1.81) - 3.54 (4.46)

Early-stage PM 0.32 (0.25) 26.95 (2.64) - 6.45 (6.42)

Advanced-stage PM 0.56 (0.38) 29.23 (2.06) - 10.17 (7.06)

P value \ 0.001a \ 0.001a \ 0.001a

Internal validation set

Normal fundus or mild tessellation 0.05 (0.10) 24.04 (1.47) - 0.93 (3.28)

Severe tessellated fundus 0.15 (0.20) 25.33 (1.87) - 3.30 (4.27)

Early-stage PM 0.24 (0.33) 27.66 (2.12) - 8.15 (6.23)

Advanced-stage PM 0.22 (0.20) 29.49 (2.02) - 9.17 (7.78)

P value 0.054 \ 0.001a \ 0.001a

External testing set

Normal fundus or mild tessellation 0.06 (0.10) 23.85 (1.34) - 0.63 (2.91)

Severe tessellated fundus 0.09 (0.13) 25.22 (1.67) - 3.15 (3.86)

Early-stage PM 0.30 (0.22) 27.15 (2.64) - 7.04 (6.81)

Advanced-stage PM 0.56 (0.35) 29.40 (1.78) - 10.23 (6.79)

P value \ 0.001a \ 0.001a \ 0.001a

BCVA best-corrected visual acuity, logMAR logarithm of minimum angle of resolution, PM pathologic myopia, SD standard
deviation
aOne-way analysis of variance. Comparison tests were performed to between the various categories of myopic maculopathy
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in Fig. 4, the highlighted areas were consistent
with the region of tessellated fundus, diffuse
atrophy, and patch atrophy, indicating that the
system obtained generalized characteristics of
tessellation, early-stage PM, and advanced-stage
PM, respectively.

DISCUSSION

A deep learning algorithm that is able to accu-
rately screen and assess myopic maculopathy
can also potentially provide significant benefits,
allowing enhanced accessibility and affordabil-
ity of myopic maculopathy screening for a large
at-risk population, which improves the access to
care and substantially decreases global costs

Table 4 Classification performance of the model based on the internal validation set

One vs. rest
classification

AUC Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) Cohen’s kappa
(95% CI)

Normal fundus or mild

tessellation

0.98 93.10 (90.80–95.30) 97.60 (95.90–99.20) 94.90 (93.40–96.40) 0.90 (0.88–0.91)

Severe tessellation 0.95 92.90 (89.40–96.40) 93.30 (91.30–95.30) 93.20 (91.50–94.90) 0.83 (0.81–0.85)

Early-stage PM 0.99 90.80 (84.70–96.90) 98.90 (98.20–99.70) 98.10 (97.10–99.00) 0.90 (0.87–0.92)

Advanced-stage PM 1.00 96.80 (90.60–103.00) 99.90 (99.60–100.00) 99.80 (99.40–100.00) 0.97 (0.94–0.99)

AUC area under the receiver operating curve, PM pathologic myopia

Fig. 3 Performance of the deep learning model in the
external testing data set using receiver operating charac-
teristic (ROC) curves and precision–recall (P–R) curves.
The external-testing data sets included ocular fundus
photographs from SEDPTC and SGH. a ROC curves for

the testing data set among the four categories. The area
under ROC curves is presented as AUC. b P–R curves for
the testing data set among the four categories. Average
precision value (AP) was defined as the area under P–R
curve
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particularly in remote and underserved com-
munities. In particular, as a result of the out-
break of COVID-19 in 2019, the remote medical
systems will be more important [33, 34]. An AI-
integrated telemedicine platform will be a new
direction of myopia healthcare in the post-
COVID-19 period [35]. In this study, we devel-
oped an effective deep learning model using
EfficientNet-B8 based on 8210 color fundus
photographs and demonstrated its potential in
screening myopic maculopathy. The AI model
showed excellent performance in classifying
normal fundus, severe tessellation, early-stage

PM, and advanced-stage PM. In particular, the
performance in classifying severe tessellation
and early-stage PM was better than manual
classification.

Previous studies showed that AI algorithms
using deep learning neural networks have been
applied for screening diabetic retinopathy, age-
related macular degeneration, glaucoma, and
papilledema [17, 19, 36, 37]. The Google team
demonstrated that the deep learning system
extracting information from fundus pho-
tographs could be applied to estimate the
refractive error [38], which suggested that

Table 5 Classification performance of the model based on the external testing set

One vs. rest
classification

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy (95% CI) Cohen’s kappa
(95% CI)

Normal fundus or mild tessellation

Model 92.00 (90.40–93.70) 98.60 (97.90–99.30) 95.40 (94.50–96.30) 0.91 (0.90–0.92)

Ophthalmologist 1 99.50 (99.10–99.90) 90.40 (88.60–92.20) 94.90 (93.90–95.90) 0.90 (0.88–0.92)

Ophthalmologist 2 96.40 (95.20–97.50) 92.90 (91.30–94.50) 94.60 (93.60–95.60) 0.89 (0.87–0.91)

Ophthalmologist 3 99.40 (98.90–99.90) 89.90 (88.00–91.80) 94.60 (93.60–95.60) 0.89 (0.87–0.91)

Severe tessellation

Model 92.60 (90.00–95.10) 93.10 (91.90–94.30) 93.00 (91.90–94.10) 0.80 (0.77–0.81)

Ophthalmologist 1 74.70 (70.40–79.00) 97.50 (96.80–98.30) 93.00 (91.80–94.10) 0.77 (0.73–0.80)

Ophthalmologist 2 82.20 (78.50–86.00) 93.40 (92.20–94.70) 91.20 (89.90–92.40) 0.74 (0.70–0.77)

Ophthalmologist 3 75.90 (71.70–80.10) 96.20 (95.20–97.10) 92.10 (90.90–93.30) 0.75 (0.71–0.78)

Early-stage PM

Model 88.20 (85.00–91.30) 98.20 (97.60–98.80) 96.30 (95.50–97.10) 0.88 (0.87–0.89)

Ophthalmologist 1 86.30 (82.70–89.90) 98.20 (97.50–98.80) 96.10 (95.20–96.90) 0.86 (0.83–0.89)

Ophthalmologist 2 78.60 (74.30–82.90) 98.20 (97.50–98.80) 94.70 (93.70–95.70) 0.81 (0.77–0.84)

Ophthalmologist 3 75.50 (71.00–80.00) 98.50 (97.90–99.10) 94.50 (93.50–95.50) 0.80 (0.76–0.83)

Advanced-stage PM

Model 94.90 (92.30–97.50) 99.50 (99.10–99.80) 98.90 (98.40–99.30) 0.95 (0.94–0.96)

Ophthalmologist 1 91.50 (88.10–95.00) 99.40 (99.10–99.80) 98.40 (97.90–99.00) 0.93 (0.90–0.95)

Ophthalmologist 2 88.70 (84.80–92.60) 99.70 (99.40–99.90) 98.30 (97.70–98.90) 0.92 (0.89–0.95)

Ophthalmologist 3 92.30 (89.00–95.60) 98.80 (98.30–99.30) 98.00 (97.40–98.60) 0.91 (0.88–0.94)

PM pathologic myopia
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fundus images have information on the refrac-
tive powers. Our study also showed that
patients with PM had a significantly higher
refractive error compared with individuals
without PM, as did patients with severe tessel-
lation fundus compared with normal individu-
als (Table 3). Recently, several automatic
systems for detecting PM have also been repor-
ted. Devda and Eswari developed a deep learn-
ing method with conventional neural network
for detecting pathologic myopia [39]. Their
work showed satisfactory performance in clas-
sification and segmentation of atrophy lesions.
However, the development of their system was
based on public databases. The amount of
training and testing data sets involved in the
development process was relatively small.
Moreover, authoritative criteria for diagnosing
PM were lacking. In our work, a large data set of
8210 color fundus photographs were used to
develop the algorithm. Compared to public
databases, data sets from the real world could
afford more data complexity and original dis-
ease information. Du et al. also developed a
deep learning algorithm to categorize the
myopic maculopathy automatically on the basis
of the META-PM categorizing system [40].
Compared with their system, our training

data set was larger and our deep learning system
was more powerful. In addition, Lu et al.
designed deep learning systems with excellent
performance to detect PM and myopic macular
lesions according to the META-PM classification
system [22, 23]. Compared with their research,
severe tessellation fundus was added in our
classification system in order to detect popula-
tions at high risk of PM promptly.

Tessellated fundus is one of the preliminary
signs of myopia in general that does not impair
central vision. However, Fang et al. reported
that progressive and continuous thinning of
choroid was associated with the progression to
tessellation and diffuse chorioretinal atrophy
[16]. Yan et al. also demonstrated that the
higher the degree of fundus tessellation was, the
thinner the subfoveal choroidal thickness was
[12]. Cheng et al. demonstrated that the grade
of fundus tessellation was associated with
choroidal thickness and axial length in children
and adolescents [41]. Moreover, similarities
were found in the distribution pattern of chor-
oid thinning between tessellated fundus and
other lesions of myopic maculopathy [16]. And
Foo et al. demonstrated that tessellated fundus
had good predictive value for incident MM [13].
These findings indicated that tessellation might

Fig. 4 Examples of a class activation map (CAM) for the
prediction of normal fundus or mild tessellated fun-
dus (a and e), severe tessellated fundus (b and f), early-

stage PM (c and g), and advanced-stage PM (d and h) by
the trained model using the external testing data set
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be the first sign for myopia to become patho-
logic. In addition, it has been reported that
diffuse atrophy in childhood can develop into
advanced myopic chorioretinal atrophy in later
life, whereas these lesions have usually pro-
gressed from severe fundus tessellation [42].
Moreover, Kim et al. showed that the tessellated
fundus was related to myopic regression after
corneal refractive surgery, which indicated that
tessellated fundus is associated with a myopic
shift [43]. Therefore, discriminating severe fun-
dus tessellation from common myopia is
important for individuals with myopia, espe-
cially for those with high myopia, and the fol-
low-up frequency of patients with severe
tessellated fundus can be increased.

Moreover, to improve the screening effi-
ciency for the population at high risk, the clas-
sification of myopic maculopathy lesions was
simplified in our work according to the degree
of vision impairment. Ruiz-Medrano et al. have
demonstrated that people who presented with
equal to or more serious than patchy chori-
oretinal atrophy or foveal detachment and/or
active CNV showed worse visual acuity than
common PM [14]. And 92.70–100% of eyes with
patchy atrophy, myopic CNV, and macular
atrophy showed progression and were associ-
ated with significant vision impairment based
on a 10-year follow-up study [16, 25]. Therefore,
these lesions were classified into advanced-stage
PM in the present study (Table 1). In addition to
receiving treatment in time, vision rehabilita-
tion training and community management of
the individuals with low vision are recom-
mended for those diagnosed with advanced-
stage PM. As a result of mild impairment of
central vision, diffuse atrophy and LC alone
were categorized into early-stage PM in the
present study. Li et al. reported that half of the
participants with diffuse chorioretinal atrophy
had progression during a 4-year follow-up
study, manifested as enlargement and newly
formed diffuse chorioretinal atrophy [44]. Close
follow-up is recommended to individuals when
diagnosed with early-stage PM.

In addition, our study involved the following
technology optimizations. To overcome diffi-
culties due to the complicated manifestations
such as atypical lesions, coexisting

comorbidities, and posterior staphyloma, a
channel attention module was added to sup-
press unnecessary channels, and a spatial
attention module was added to capture the
most abundant feature information of the
maps. Moreover, a weighted cross-entropy loss
function was used to minimize model decision
boundary deviation caused by the imbalanced
data sets. The weight coefficient was set to the
reciprocal of the amount of data for each cate-
gory. Lastly, a label smoothing strategy was
applied during the training of the mild and
severe tessellated fundus recognition model to
reduce the impact of incorrect labels on the
model and promote its generalization ability.
And a USM filter was used to denoise and obtain
effective information from images. Addition-
ally, to discriminate severe frommild tessellated
fundus, SAM was used as optimizer on the basis
of SGD.

As illustrated in the class activation map
(Fig. 4), the deep learning model could identify
the position and distinguish features of lesions,
which may potentially facilitate the diagnosis.
In addition, as revealed in Table 5, the sensi-
tivity of the deep learning algorithm for
detecting severe tessellated fundus and early-
stage PM was 92.60% and 88.20%, respectively,
which were better than that by attending oph-
thalmologists, indicating that the AI system is
reliable for screening. With the assistance of the
AI system, basic examinations such as fundus
photographs can be carried out in local com-
munity hospitals, which is convenient for both
patients and ophthalmologists, especially for
those in remote areas without retina experts.

Limitations of this study also need to be
considered. Firstly, though we further con-
firmed that the performance of the model was
better than attending ophthalmologists for
detecting atypical lesions (Supplementary
Fig. S2), a few photographs were still misdiag-
nosed, which might be attributed to the rela-
tively low image quality or the microlesions.
These reveal that the model requires higher
image quality than retina experts. In addition,
multimodal imaging for myopic eyes can facil-
itate in improving the accuracy of diagnosis. For
example, diffuse atrophy appears as an ill-de-
fined yellowish-white lesion in the posterior
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fundus on ophthalmoscopy, which exhibits
mild hyperfluorescence in the late phase on
fluorescein angiography (FA) [45]. Moreover,
the choroidal thickness in the area of diffuse
atrophy was markedly thinned on optical
coherence tomography (OCT) [16, 46]. Addi-
tionally, LCs were assessed as yellowish linear
lesions on ophthalmoscopy, as linear hypoflu-
orescence in the late phase on indocyanine
green angiography (ICGA), and linear hyper-
fluorescence in early-late phases on FA [47, 48].
Therefore, more real-world clinical data, such as
images from FA, ICGA, or OCT, should be
considered together in clinical labeling of the
photographs in the future. And the number of
photographs with early pathologic myopia
could be increased during training which may
improve the accuracy of this classification. Sec-
ondly, the fundus color might be different
because of the difference in the degree of fundus
pigmentation among races, which can decrease
the diagnosis accuracy of atrophic lesions.
Future research is warranted to investigate the
model efficacy for other ethnic groups. Thirdly,
although photographs were collected from two
different clinical centers, the model perfor-
mance based on photographs using other cam-
eras is still unclear. Therefore, photographs
collected from multiple fundus cameras are
necessary to further improve the generalization
and reliability of the AI model.

CONCLUSIONS

A deep learning algorithm was applied to iden-
tify normal fundus or mild tessellation, severe
tessellated fundus, early stage of PM, and
advanced stage of PM based on fundus pho-
tographs. Our AI model achieved performance
comparable to that of experts. Owing to the
promising performance of our AI system, it can
assist ophthalmologists by reducing workload
and saving time during large-scale myopia
screening and long-term follow-up.
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