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Wellbeing is an important aspect of mental health that is moderately heritable. Specific wellbeing-related variants have been
identified via GWAS meta-analysis of individual questionnaire items. However, a multi-item within-subject index score has potential
to capture greater heritability, enabling improved delineation of genetic and phenotypic relationships across traits and exposures
that are not possible on aggregate-data. This research employed data from the UK Biobank resource, and a wellbeing index score
was derived from indices of happiness and satisfaction with family/friendship/finances/health, using principal component analysis.
GWAS was performed in Caucasian participants (N= 129,237) using the derived wellbeing index, followed by polygenic profiling
(independent sample; N= 23,703). The wellbeing index, its subcomponents, and negative indicators of mental health were
compared via phenotypic and genetic correlations, and relationships with psychiatric disorders examined. Lastly, the impact of
childhood maltreatment on wellbeing was investigated. Five independent genome-wide significant loci for wellbeing were
identified. The wellbeing index had SNP-heritability of ~8.6%, and stronger phenotypic and genetic correlations with its
subcomponents (0.55–0.77) than mental health phenotypes (−0.21 to −0.39). The wellbeing score was lower in participants
reporting various psychiatric disorders compared to the total sample. Childhood maltreatment exposure was also associated with
reduced wellbeing, and a moderate genetic correlation (rg= ~−0.56) suggests an overlap in heritability of maltreatment with
wellbeing. Thus, wellbeing is negatively associated with both psychiatric disorders and childhood maltreatment. Although notable
limitations, biases and assumptions are discussed, this within-cohort study aids the delineation of relationships between a
quantitative wellbeing index and indices of mental health and early maltreatment.
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INTRODUCTION
Wellbeing is an important aspect of mental health, and is defined
by the core concepts of happiness, life satisfaction and optimal
psychological functioning [1]. This concept of wellbeing is
consistent with the World Health Organisation definition of health:
“a state of complete physical, mental and social wellbeing and not
merely the absence of disease or infirmity”.
Wellbeing is defined by two core concepts: (1) subjective

wellbeing (also referred to as ‘hedonia’), consisting of positive
affect and satisfaction with life, and (2) psychological wellbeing
(also referred to as ‘eudaimonia’), consisting of attributes that
enable realisation of human potential including autonomy,
mastery and life purpose [2]. Various questionnaires measure
wellbeing [3, 4], but questionnaire items usually load onto a
common wellbeing factor [5]. Indeed, we showed that a
composite measure encapsulating elements of both subjective
and psychological wellbeing, is more heritable and stable long-
itudinally than wellbeing indices derived from single-item
questions [6].
Wellbeing is moderately heritable, with estimates from twin

studies ranging from 17 to 67% [reviewed in Bartels [7]], leading to

efforts to elucidate the specific genetic signatures (particularly
Single Nucleotide Polymorphisms (SNPs)) underlying this trait
[8, 9]. However, SNP-heritability estimated from genome-wide
association studies (GWAS) are only ~4–6.4% [8, 9], thus new
approaches are required to explain a greater proportion of trait
heritability.
To improve power for gene discovery, analytic approaches have

included meta-analyses of independent GWAS from different
cohorts of the component traits which underlie subjective
wellbeing [8]. As wellbeing is genetically and phenotypically
correlated to negative mental health constructs including
neuroticism and depressive symptoms [8, 10], other analytic
approaches have used multivariate GWAS meta-analysis to include
additional correlated phenotypes, as part of a ‘wellbeing
spectrum’ [10, 11] that spans correlated traits such as loneliness
and self-rated health [12]. However, broadening the spectrum to
include negative health outcomes as a continuum may diminish
the detection of unique genetic signals specifically relating to
wellbeing. For example, previous studies have shown negative
genetic correlations between subjective wellbeing and anxiety,
depression, schizophrenia and bipolar disorder (ranging from
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−0.73 to −0.22) [13], suggesting different proportions of common
and unique genetic factors across the spectrum of negative health
outcomes. By separating the constructs and quantifying the
influence of psychiatric disorders on wellbeing, one can subse-
quently examine the impact of environmental exposures known
to predict higher risk for certain disorders. Furthermore, as no
phenotype is derivable using meta-analytic genetic approaches,
one cannot use this method to examine the phenotypic properties
of wellbeing – this includes examining phenotypic correlations,
quantifying the influence of psychiatric disorders, and environ-
mental exposures. Therefore, a wellbeing score composed of
multiple relevant unique components would facilitate detailed
exploration of both genetic and phenotypic attributes of
wellbeing.
One potentially important environmental influence on well-

being is childhood maltreatment, for which a negative impact on
wellbeing has been demonstrated in adulthood [14, 15]. Further-
more, recent evidence suggests that there is a genetic contribu-
tion to childhood maltreatment through gene–environment
correlations [16, 17], suggesting that childhood maltreatment
may influence wellbeing through both genetic and environmental
processes, a relationship that has not hitherto been explored.
Here, building on our previous work [6], we hypothesise that a

continuous wellbeing index – derived from multiple measures of
wellbeing available in the UK Biobank – is more heritable than
single-item measures, and can be used to explore both
phenotypic and genetic correlations with related clinical features
and environmental exposures. The availability of genotype data
from UK Biobank participants provides the opportunity to use
various genetic techniques, including gene discovery, genetic
correlation analyses and exploration of predictive power of
polygenic scores. Herein, we use five approaches to evaluate the
wellbeing index. First, phenotypic correlations between the
wellbeing index, its subcomponents and related negative mental
health constructs are measured. Second, we perform discovery
GWAS for the wellbeing index and functional analysis of identified
genetic signals. Third, genetic correlations of wellbeing-related
phenotypes are compared, head-to-head within the same sample.
We also examine genetic correlations with several psychiatric
illnesses and quantify the effect of specific psychiatric diagnoses
on the wellbeing index. Fourth, we assess the predictive power of
wellbeing index polygenic scores in an independent UK Biobank-
derived sample. Finally, we evaluate the effect of childhood
maltreatment exposure on the wellbeing index and examine their
genetic correlations.

MATERIALS AND METHODS
Participants
The UK Biobank is a population-based cohort with >500,000 participants
from the United Kingdom, aged 40–69 years when recruited at baseline
between 2006 and 2010, of predominantly British-Angloceltic ancestry
[18]. Potentially eligible participants were identified from population-based
registers and invited to participate. Due to the broad scope of the resource,
the baseline questionnaire was designed to include questionnaire items
with reliability and validity that relate to outcomes of public health
importance. The UK Biobank received approval by the National Health
Service National Research Ethics Service (11/NW/0382) and participants
provided signed informed consent. The current project was approved by
UK Biobank Data Access Committee (58534), with approval by University of
New South Wales Human Research Advisory Panel (HC200191) for data
analysis.

Defining wellbeing
We reviewed all UK Biobank questionnaire items and selected five
wellbeing-related items from the baseline questionnaire, including general
happiness and satisfaction with family, friendship, health and financial
situation (Data-Fields:4526, :4559, :4570, :4581, :4548, respectively).
Responses were on a 6-point Likert scale, related to general life

experiences (not a defined timescale) and were reverse-scored. Principal
component analysis was performed in SPSSv25, and a factor score created,
herein referred to as the “wellbeing index”. To evaluate goodness of model
fit, we employed confirmatory factor analysis in the validation dataset
using R package lavvan. The internal consistency of the wellbeing index
was tested using Cronbach’s Alpha. Additional details and analysis
workflow are in Supplementary Methods (Fig. S1).

Discovery and confirmatory samples
To define the discovery sample, we used UK Biobank genetic data (March-
2018 release), comprising 488,000 individuals genotyped using Affymetrix
UK BiLEVE Axiom or UK Biobank Axiom arrays. Further information on the
cohort, genotyping, imputation, and quality control (QC), is available
elsewhere [18, 19]. Briefly, participants were removed who withdrew
consent, reported non-Caucasian ancestry (Data-Field:22006), had >10%
genotype missingness or QC failure (Data-Field:22051), were on genomic
analysis exclusion list (Data-Field:22010), had gender mismatch (self-report
vs. genotype-derived), sex chromosome aneuploidy or heterozygosity
outliers (Data-Field:22027).
Participants meeting genotype QC criteria, with complete phenotype

data for the five core wellbeing questions, were N= 129,237. Analysis of
other mental health indicators was limited to this sample, but due to
missingness of some phenotypes, sample size varies slightly.
An independent sample from UK Biobank was defined (N= 23,703; see

Supplementary Methods) for confirmatory factor analysis, and to evaluate
predictive power of polygenic scores from discovery GWAS.

Negative mental health indicators
Four negative mental health indicators were selected as outcome
comparators for the wellbeing index score. These included measures of
loneliness, neuroticism, depressive symptoms and whether the participant
had ever seen a psychiatrist or GP for nerves, anxiety, tension or
depression (Data-Fields provided in Table S1). Among these measures,
loneliness and neuroticism ask about current experiences whereas the
depressive symptoms and “seen a psychiatrist or GP” ask about lifetime
experiences. Variable coding is described in Supplementary Methods.

Childhood maltreatment
Five items related to childhood maltreatment were identified, including
emotional or physical neglect, and physical, emotional, or sexual abuse
[Data-Field:20487-20490], and responses were on a 5-point Likert scale (see
Supplemental Material). These exposures are collectively referred to as
“maltreatment”, henceforth. First, the impact of each type of childhood
maltreatment on the wellbeing index was examined as categorical
variables, relating to the frequency of maltreatment experience. Then to
evaluate the cumulative impact of maltreatment exposure, each item was
dichotomised as “exposed” or “not-exposed” [see Table S2 for details], and
a sum-score was created by summing across four maltreatment types
[ranging from 0 to 4; excluding physical neglect due to identified coding
issue (see Supplemental Methods for details)]. There were 45,723
participants with non-missing childhood maltreatment sum-score and
wellbeing index.
Mean differences in wellbeing index were examined using Kruskal-Wallis

(multi-category), and Wilcoxon (two-category) tests. Simple and multiple
linear regression models, adjusting for age, age-squared, sex and Town-
send Deprivation Index [Data-Field:189], examined how childhood
maltreatment (or exposure sum-score) impacts wellbeing. The regression
standardised estimate was considered the magnitude of effect of the
dependant variable.

Psychiatric illnesses
The question “Have you been diagnosed with one or more of the following
mental health problems by a professional, even if you don’t have it
currently?” (Data-Field:20544) was used as the indicator of a lifetime
psychiatric diagnosis. “Prefer not to answer” responses were coded as
missing. As participants could select ≥1 of 16 listed diagnoses,
representation in each mental health category was not mutually exclusive.

Phenotypic correlations (rp)
The correlation (v0.6.0) R package was employed to examine phenotypic
correlations (rp), employing different types of correlations based on data
type: Spearman’s rank for continuous/ordinal variables, Tetrachoric for
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binary, and Point-biserial for continuous/ordinal versus binary. Analyses
were limited to participants with no missing phenotype data to enable
head-to-head comparisons using the same sample size across all measures
(N= 103,373; due to missing data in negative mental health phenotypes).
The significance threshold for rp was set at p < 0.001, using a Bonferroni
correction for 45 tests (α= 0.05/45).

Genetic association and SNP-heritability
To perform GWAS, we employed BOLT-LMM v2.3.4 [20]. Analysis employed
imputed genotypes in BGENv.1.2 format (v3) and incorporated a Bayesian
linear mixed effects model (LMM), accounting for population structure and
sample relatedness using a genetic relatedness matrix, plus relevant
covariates (sex, age, age-squared, genotype array, 20 PCs). BOLT-LMM
automatically filters SNPs and individuals with >10% missing, and further
filtering of SNPs with MAF < 0.01, INFO < 0.8 and Hardy-Weinberg
Equilibrium p < 1 × 10−6, left ~8,068,119 SNPs for analysis. Results from
the standard infinitesimal mixed-model association were employed for
downstream analysis.
Functional Mapping and Annotation of GWAS (FUMA) [21] was

employed to link candidate SNPs to genes and perform functional analysis
(see Supplementary Methods).
SNP-heritability calculations employed Linkage Disequilibrium Score

Regression (LDSC) [22], utilising GWAS summary statistics for each target
phenotype derived from the same discovery sample. We used the LDSC
method to estimate heritability and genetic correlations because it is a
widely adopted method employed by most previous studies, hence
ensuring more comparable associations. However, we acknowledge that
this method has several assumptions that could limit the accuracy of
estimates [22, 23], which are discussed later.

Genetic correlations (rg)
LDSC [22] was used to estimate genetic correlations (rg) between the
wellbeing index, its five subcomponents, four negative indicators of
mental health, and childhood maltreatment using GWAS summary
statistics generated herein.
Published summary statistics of additional wellbeing-related traits were

used to estimate rg with the derived wellbeing index phenotype, including:
positive affect, life satisfaction, wellbeing spectrum, [10] subjective
wellbeing [8], conscientiousness [24], extraversion [25], neuroticism [26],
depressive symptoms [8], loneliness [27] and body mass index (BMI) [28].
In addition, rg with major psychiatric conditions were examined using

published disease-specific summary statistics, including: major depressive
disorder (MDD) [29], bipolar disorder (BIP) [30], schizophrenia (SCZ) [31],
attention deficit/hyperactivity disorder (ADHD) [32], autism spectrum

disorder (ASD) [33], obsessive-compulsive disorder (OCD) [34] and post-
traumatic stress disorder (PTSD) [35]. We included HapMap3 SNPs with MAF
> 0.01 and excluded the MHC region for rg estimations. The significance
threshold for rg after Bonferroni correction for 72 tests (α= 0.05/72) was
p < 6.94 × 10−4.

Polygenic scores
Polygenic scores (PGS) were constructed in the independent confirmatory
cohort using PRS-CS software [36], employing summary statistics of the
wellbeing index GWAS. We tested the predictive power of PGS in the
confirmatory sample for the wellbeing index, its subcomponents, and
negative mental health indicators using regression models, including
relevant covariates (age, age-squared, sex, genotyping array, 10 PCs) in all
models. An incremental R2, defined as the difference between the R2 from
the full-model and the model without PGS as a predictor, was reported as
predictive power. For binary variables (loneliness, depressive symptoms
and “seen GP or psychiatrist”) a logistic regression was used instead of
linear regression, and Nagelkerke R2 calculated using the R package fmsb
(v0.7.0). A 95% confidence interval around the R2 was calculated using the
R package psychometric (v2.2).

RESULTS
Participant demographics
The discovery cohort comprised 129,237 participants (57.9%
female) who were of British-white ancestry and had no missing
phenotypes for the five core wellbeing questions. The age range
was 40-70 years (mean ± SD= 57.3 ± 8.0), and 31.9% reported
having college education. The data-field IDs and description of
study variables in the discovery sample is presented in Table S1.
The confirmatory sample comprised 23,703 participants (51.3%

female), who were genetically unrelated to the discovery sample
but with identical inclusion criteria, and were ~7 years older
(mean ± SD= 64.5 ± 7.7, range 46–82 years) than discovery cohort
participants.

The wellbeing index and phenotypic correlations
Principal component analysis in the discovery sample indicated
the first component explained 47.48% of the variance of the five
questions (eigenvalue= 2.374) (Fig. S2), and was extracted using
regression method as the wellbeing index score. The wellbeing
index was approximately normally distributed with an extended

Fig. 1 Phenotypic and genetic correlations between the wellbeing index score, its subcomponents and negative mental health indicators
in UK Biobank. All correlations reported here are statistically significant after Bonferroni correction for multiple testing, although many have
low (r= 0.3–0.5) to moderate (r= 0.5–0.7) effect size. Manhattan plots for each GWAS are provided in Figure S6.
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Fig. 2 Genome-wide association analysis of the wellbeing index score in UK Biobank discovery sample. A Manhattan plot representing
association at 8,068,119 SNPs across the genome, with chromosome and base pair position is on x-axis and negative logarithm of the p-value
from infinitesimal model is on y-axis. The red line indicates the genome-wide significance threshold of p < 5×10−8. B Quantile-quantile plot
showing inflation of observed associations over that expected under null (λGC= 1.2005, mean χ2= 1.2171, LD score regression
intercept=1.005, Total Observed scale h2= 0.0857 ± 0.005).

Fig. 3 Genetic correlation (rg) between the wellbeing index score and published GWAS of relevant phenotypes and psychiatric disorders.
Positively and negatively correlated phenotypes and major psychiatric illnesses were examined using Linkage Disequilibrium Score
Regression (LDSC). Published wellbeing-related summary statistics from independent studies included: positive affect, life satisfaction,
wellbeing spectrum [10], subjective wellbeing [8], conscientiousness [24], extraversion [25], neuroticism [26], depressive symptoms [8],
loneliness [27] and body mass index (BMI) [28]. Published disease-specific summary statistics from independent studies included: major
depressive disorder (MDD) [29], bipolar disorder (BIP) [30], schizophrenia (SCZ) [31], attention deficit/hyperactivity disorder (ADHD) [32],
autism spectrum disorder (ASD) [33], obsessive-compulsive disorder (OCD) [34] and post-traumatic stress disorder (PTSD) [35]. Error bars
represent 95% confidence intervals (95% CI). Green bars indicate positive rg, orange bars indicate negative rg and grey bars indicate traits with
non-significant genetic correlation after Bonferroni correction (p > 6.94 × 10−4).
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left tail (skewness=−0.373, kurtosis=4.119) (Fig. S3A). Females
had a slightly higher mean score than males (0.029 vs −0.034
respectively; Wilcoxon p < 2.2 × 10−16; Fig. S3B). The wellbeing
index had a good internal consistency with Cronbach’s Alpha of
0.71. Confirmatory factor analysis in the independent sample
showed a good model fit, loading onto a single factor (CFI= 0.98,
TLI= 0.97, RMSEA= 0.047, SRMR= 0.034).
The wellbeing index had the strongest rp with the subcompo-

nent happiness (rp= 0.77), and the weakest with health satisfac-
tion (rp= 0.55). From the negative mental health indicators, the
wellbeing index had the strongest rp with neuroticism (rp=−0.39)
and weakest with depressive symptoms (rp=−0.22) (Fig. 1).

GWAS findings for wellbeing index
Forty-two SNPs exceeded genome-wide significance for associa-
tion from wellbeing index GWAS (p < 5 × 10–8) (Fig. 2), which
represented five independent loci (Table S3 and Fig. S4).
Candidate genes at each locus were mapped in FUMA using

positional (n= 44 genes), eQTL (n= 27) and chromatin interac-
tion mapping (n= 62) modules (total n= 101) (Table S4). The
GWAS catalogue in FUMA identified signal overlaps amongst
SNPs in linkage disequilibrium with wellbeing index and related
traits; on chromosome 2, FSHR was associated with hedonic
wellbeing [9] and both loci on chromosome 6 – the first
associated with many related conditions including positive-affect,
wellbeing spectrum [9], and depression [8, 29], and the second
centred around TRIM26 associated with autism and schizophrenia
[37, 38] (Table S5).

Tissue-specific enrichment of wellbeing index GWAS genes in
MAGMA (implemented in FUMA) [39] showed significant enrich-
ment in brain tissues, particularly cerebellum and frontal cortex
(Fig. S5). Manhattan plots for GWAS of wellbeing subcomponents
and related traits are provided (Fig. S6a–j).

Heritability and genetic correlations
For wellbeing and its subcomponents, the wellbeing index had
the highest SNP-heritability (h2= 8.6%, SE= 0.005), although it
was not significantly different from health satisfaction (h2= 7.8%,
SE= 0.005). Other subcomponents had similar SNP-heritability (h2

= 6.2–5.5%, SE= 0.005) (Fig. S7).
Generally, the rg between traits were stronger than their rp (Fig.

1), and rg and rp were strongly correlated (r= 0.97). Amongst the
subcomponents (Fig. S6a–e), wellbeing index had the strongest
relationship with happiness (rg= 0.91, SE= 0.013). Across the
negative mental health indicators (Fig. S6f-j), wellbeing index had
the strongest relationship with loneliness (rg=−0.71, SE= 0.041).
Using published summary statistics, the rg between wellbeing

index and other positively and negatively related phenotypes showed
significant correlation for all tested traits after multiple-testing
correction. Except for OCD and PTSD, all psychiatric conditions had
a significant negative relationship with wellbeing index – the
strongest effect was for MDD (rg=−0.55, SE= 0.03) (Fig. 3).

Polygenic score analysis
In the replication sample, the wellbeing index PGS explained a
small but significant portion of variance in all traits examined, with

Fig. 4 Variance explained by polygenic scores derived from the wellbeing index discovery GWAS in the replication cohort for wellbeing
index score, its subcomponents and related negative mental health indicators. The y-axis shows the incremental R2% and for binary
variables (Loneliness, Depressive symptoms, and Seen GP or Psychiatrist) Nagelkerke R2. Error bars are lower and upper bound of 95%
confidence intervals. While variance explained was <1%, P-values were all highly significant (p= 3.55 × 10−14

– 5.68 × 10−56).
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highest predictive power for the wellbeing index score itself (R2=
0.01, p= 5.68 × 10−56), and the lowest for financial satisfaction
(R2= 0.003, p= 2.77 × 10−17). Amongst negative mental health
indices, the best predictive power of wellbeing PGS was for
loneliness (Nagelkerke R2= 0.004, p= 2.93 × 10−14; Fig. 4).

Childhood maltreatment and wellbeing index
For all types of childhood maltreatment, the wellbeing index
showed a stepwise reduction with increased frequency of
maltreatment exposure (Fig. S8) – noting the potential data coding
issue identified impacting physical neglect (Data-Field:20491)
which indicated misinterpretation of the “never” response category,
resulting in this variable’s exclusion (see Supplemental Methods).
Among participants reporting any childhood maltreatment,

43% reported multiple exposure types. The effect was dose
dependant: by accumulation of maltreatment types, the mean
wellbeing score decreased by about 0.2 for each additional
maltreatment (Fig. 5). All types of childhood maltreatment
exposure were significant in linear regression models predicting
wellbeing. In simple models (with one trauma type as the
predictor), the highest effect estimate was for the maltreatment
sum score (β=−0.206, SE= 0.005), although not significantly
different from emotional neglect (β=−0.200, SE= 0.010) (Fig. S9,
panel A). In multiple linear model (with all traumas as predictors),
emotional neglect and abuse had larger effects than physical or
sexual abuse (Fig. S9, panel B). In people with exposure to a single
maltreatment type, the wellbeing index was most significantly
influenced by emotional neglect (mean=−0.373; Fig. S10).

Childhood maltreatment GWAS and genetic correlations
Three loci exceeded genome-wide significance for association
with childhood maltreatment: chromosome 7 (rs1015511,

p= 1.7 × 10−12), chromosome 15 (rs4702, p= 4.3 × 10−12) and
chromosome 16 (rs2043596, p= 2.4 × 10−8) (Fig. S6J). There was a
significant negative rg between childhood maltreatment sum
score and wellbeing index (rg=−0.56, p= 8.21 × 10−54) and its
components (rg=−0.60 to −0.37), and a positive rg with negative
indicators of mental health (Fig. S11). The strongest negative rg
was for family satisfaction (rg=−0.60, p= 2.61 × 10−46) and the
strongest positive rg for depressive symptoms (rg= 0.57, p=
1.61 × 10−37).

Psychiatric diagnoses and wellbeing
The mean wellbeing index z-score was negative for 16 self-
reported psychiatric conditions (−1.66 to −0.22) (Fig. S12). Some
psychiatric diagnoses were rare in the population, precluding
formal statistical analysis. The most frequent psychiatric condi-
tions – “depression” (N= 9,944; 7.7%) and “Anxiety, nerves or
generalised anxiety disorder” (N= 6,508; 5%) were associated with
lower mean wellbeing index z-score of −0.355 and −0.289,
respectively. Of mental illness groups with >200 participants
(>0.2% population frequency), the largest mean differences were
with over-eating/binge-eating, social-anxiety/social-phobia, OCD,
and bipolar-mania.

DISCUSSION
A wellbeing index score was constructed and evaluated pheno-
typically and genetically in the UK Biobank. The wellbeing index
had moderate to high correlation with its subcomponents (rg=
0.65–0.91, rp= 0.55–0.77) and moderate to low negative correla-
tion with adverse mental health indicators (rg=−0.71 to −0.50,
rp=−0.39 to −0.22). The wellbeing GWAS had five genome-wide
significant associated loci, with a relatively high SNP-heritability.

Fig. 5 The impact of multiple childhood maltreatment exposure on the wellbeing index. The x-axis shows the childhood maltreatment
sum score which represents number of childhood traumas in each group (0= no trauma, 4= experienced all four types of traumas). The y-axis
is the wellbeing index z-score. The mean of wellbeing index z-score for each group is shown above each violin plot. The mean difference in
wellbeing index between all categories was examined using Kruskal–Wallis test (p < 2.2 × 10−16). The pairwise mean difference between two
adjacent groups employed the Wilcoxon test and the p-values are presented. The interquartile range is represented by vertical black lines
inside the violin plots, and the dotted horizontal line is the median wellbeing index score in the sample (n= 45,723). The number of
participants in each group is shown at the bottom of each category.
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Despite very small estimated effects on phenotypic variance, the
wellbeing index PGS significantly predicted the wellbeing score
and correlated items in an independent sample. Moreover, both
childhood maltreatment and psychiatric illness were associated
with lower wellbeing.

Strengths and weaknesses
While previous meta-analyses of GWAS summary statistics for
correlated phenotypes has significantly advanced our under-
standing of wellbeing genetics [8, 10, 11], these methods have
limitations. First, employing genetic-based methods on aggre-
gated data ignores clinical and genetic heterogeneity, and
precludes detailed analysis of corresponding phenotypic environ-
mental modifiers. Second, the SNP-heritability of the resulting
phenotype is usually reduced due to heterogeneity in the
phenotypes (e.g., SNP-heritability of “wellbeing spectrum” derived
from multi-trait meta-analysis is only ~0.02 [10]). Herein, we used
the same measures for all participants, making it possible to
precisely examine rp and rg relationships. We demonstrated that
SNP-heritability of the wellbeing index score was slightly higher
than previously reported wellbeing SNP-heritability (h2= 8.6% vs.
~4.0–6.4%) [8–10]. Thus, as covariance is greater due to elevated
SNP-heritability, the wellbeing index improves reliability for
genetic correlation analysis. However, while the present wellbeing
index slightly increased SNP-heritability estimates compared to
those previously reported, most of the causal variants for well-
being were not discovered, and SNP-heritability remains much
smaller than the heritability estimates derived from twin studies
(phenotypic heritability of ~36% [7] vs. SNP-heritability of 8.6%).
This ‘missing heritability’ highlights the inability of conventional
genetic methods to uncover the complete variance of causal
variants for complex traits such as wellbeing, which are likely the
result of an intricate interaction of genes and environmental
factors in the presence of heterogeneity, pleiotropy, and epistasis.
The challenge to close the gap between twin and SNP-heritability
estimates likely requires alternative analytic approaches and
carefully phenotyped cohorts, with more delicate methods such
as machine learning and incorporation of non-linear models of
gene-gene and gene-environment effects [40, 41], which seem
promising avenues that may provide better understanding of
networks involving complex interrelated phenotypes [42].
Although mental illness can influence wellbeing, we defined

wellbeing in the entire population – including those with a mental
illness – to ensure that findings were closely representative of a
general population, within inherent cohort selection biases [43].
While the mean wellbeing index in participants reporting a
psychiatric condition was lower than the general population,
some individuals in each mental illness group had a positive z-
score, indicating that even within a background of mental illness
an individual’s wellbeing can be positive – supporting the notion
that wellbeing is not simply the absence of mental illness [44–46].
However, these results should be interpreted with caution, as
psychiatric conditions herein were self-reported, not mutually
exclusive (due to psychiatric comorbidities), and could have been
current or historical, with variable impacts on current wellbeing.
Finally, we cannot conclude causation or infer direction of effect
between psychiatric illness and wellbeing, as effects are likely
bidirectional. However, the negative rg between wellbeing index
and major psychiatric illnesses implies that relationships might be
partly due to overlapping genes or gene-environmental correla-
tions influencing both outcomes.
While the wellbeing index was derived from the baseline

questionnaire, childhood maltreatment data was collected in the
follow-up mental health assessment, 6–10 years later. We did not
consider this a methodological concern given that the trauma
questionnaire asked retrospectively about childhood events.
Notably, we observed discrepancies relating to response endorse-
ment for physical neglect – this potential issue has not, to our

knowledge, been reported previously – hence we recommend
caution with the use of Data-Field:20491, which was excluded
herein. The stepwise decline in mean wellbeing index with
increasing frequency of each individual type of maltreatment, as
well as maltreatment accumulation, is consistent with existing
evidence indicating that frequency and accumulation of different
trauma types are key factors that can influence the way childhood
maltreatment affects adults [15, 47, 48]. Furthermore, the largest
effect on wellbeing index was for emotional rather than physical
and sexual maltreatments – consistent with a recent report [49].
Collectively, emotional maltreatment appears to have profound
consequences on wellbeing and mental health, potentially due to
adverse developmental consequences in understanding and
controlling emotions and cognitive development.
A strong correlation of rg and rp was found across all

phenotypes (r= 0.97), with rg consistently higher than rp (e.g.,
loneliness and neuroticism rg= 0.79, rp= 0.50) – consistent with
comparisons of genotype/phenotype correlations of other traits
[50]. We note that the nature of rp and rg are somewhat distinct,
with the former comparing individual-level data (and different
variable types), and the latter comparing summary statistics across
a population. Therefore, these findings should be interpreted with
caution. A stronger rg for wellbeing-related phenotypes has
previously been reported [12], and a recent study observed that
even phenotypically uncorrelated mental health profiles can be
genetically correlated, suggesting either a genetic overlap that is
distinct from clinical overlap, or unique environmental factors
impact the phenotype in the presence of pleiotropy [51]. The
stronger rg between two traits may indicate that although shared
genetic variants influence both phenotypes, environmental factors
may impact them differently [as discussed [50]]. Amongst negative
mental health indicators, loneliness had the strongest negative rg
with the wellbeing index, as well as its subcomponents. This
further highlights the importance of loneliness in wellbeing [12],
which despite a moderate to weak rp, shows strong rg [52].
Interestingly, loneliness had the strongest rg with the financial
satisfaction subcomponent, despite its stronger rp with happiness,
family- and friendship-satisfaction. The rg between wellbeing
index and depressive symptoms or neuroticism (−0.67 or 0.55,
respectively) were weaker than previously reported relationships
with subjective wellbeing (−0.81 or −0.75, respectively) [8].
Factors influencing these estimates include different phenotype
measurement, cohort size, and SNPs employed (e.g., the present
study excluded the Major Histocompatibility Complex (MHC)
region for rg estimates). Furthermore, the genetic correlation
between the wellbeing index and Okbay’s subjective wellbeing is
0.77, indicating the two scores are not identical; possibly due to
inclusion of more elements of life satisfaction than affect in our
score, which would diminish apparent relationships with neuroti-
cism and depressive symptoms. One of the strengths of our study
is using the same cohort and measures for different phenotypes,
which makes genetic and phenotypic correlations more compar-
able – though we acknowledge that consistent reporting biases
(e.g. relating to social desirability, or emotional state at the time of
reporting) may influence associations derived from a single
cohort.
The wellbeing index GWAS revealed five independent genome-

wide significant loci; three consistent with previous reports [9, 10].
The chromosome 2 locus was previously associated with hedonic
wellbeing [10]. Tagging SNP rs373377070 (max-p= 2.7 × 10−9) lies
in an intron of FSHR (Follicle Stimulating Hormone Receptor), and
influences its expression (GTeX v8; p= 1.1 × 10−11 [53]). Knockout
mice (fshr−/−) display enhanced anxiety- and depression-like
behaviours, and modulate gene expression in mood-mediating
brain regions [54]. Two additional significant wellbeing-associated
loci lie in the MHC/HLA region on chromosome 6, which is
robustly associated with psychiatric conditions [30, 55]. One of
these loci, tagged by rs3131073, was previously associated with
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positive affect and wellbeing spectrum [9, 10]. This suggests
potentially pleiotropic effects of the MHC region on wellbeing and
psychiatric illnesses. Two new loci identified on chromosomes 11
and 14 had minimal support from adjacent SNPs and may be
spurious associations. Associations with related traits, including
childhood maltreatment [16], are consistent with previously
reported loci. Tissue-specific expression of mapped wellbeing-
related genes using MAGMA showed significant enrichment of
expression in brain tissues, consistent with previous reports [9].
Furthermore, the wellbeing index PGS significantly predicted the
wellbeing index score and related phenotypes in the independent
sample, albeit accounting for a small percentage of variance.
Together, these data support the reliability of results reported
herein, and the validity of the wellbeing index phenotype.

Limitations and assumptions
One design limitation of our index score is that only subjective
wellbeing indicators were included. The single item that related to
psychological wellbeing was excluded due to the time-lag between
baseline and follow-up assessments. Additionally, job satisfaction
was excluded due to significant data missingness – representing
individuals who were unemployed or retired at the time of
assessment – which may have skewed the index score and limited
generalisability, despite job satisfaction being an important
component of wellbeing. Another caveat was the weak correlation
(~0.25) of financial- and health-satisfaction to other items in the
factor score. However, given their importance on subjective
wellbeing [12, 56] and to maximise variable number to generate a
quantitative index, we retained financial- and health-satisfaction as
components in factor analysis. This led to moderate variance
explained (47.5%) by the wellbeing index. Despite these limitations,
the factor score had acceptable model fit in the confirmatory factor
analysis and is a good proxy for subjective wellbeing.
Our study inherits the limitations of UK Biobank data. All the

measures used in this study were self-report, with limited evidence of
their validity, and reliability over time. The large sample sizes
available through the UK Biobank enable highly significant associa-
tions to be derived from weak effect sizes, and caution should be
taken in their interpretation. One should consider participant age
(40–70 years), recall and reporting bias, and under-representation of
psychiatric illnesses when interpreting results [43]. We cannot
exclude misreports, longitudinal changes, and self-report bias [57]
that could potentially influence our results. The confirmatory sample
was ~6 years older than the discovery sample, and childhood
maltreatment data came from follow-up assessments of participants
who are better educated, with higher socioeconomic status and
healthier than the baseline cohort and the general population [58].
Notably, our analyses were restricted to European-ancestry partici-
pants, which limits generalisability to other populations.
Finally, genetic correlations were estimated from common SNP

variants identified via GWAS, and thus may underestimate pleiotropic
contributions of other variant classes (e.g. rare SNVs or CNVs), and
non-additive effects. Furthermore, as the SNP-heritability of the traits
examined were small, only a small fraction of the causal SNPs for
each phenotype contributed to the genetic correlations reported
herein. While the LDSR method assumes that this small fraction is a
random selection of all causal variants [22], recent studies have
shown that these assumptions might not hold in similar complex
traits to wellbeing such as human temperament [59]. LDSR also
assumes that each phenotype is measured in ways that are specific,
reliable and valid, and are well-matched across studies [23], which
may not always be true and therefore may bias interpretation.
Therefore, genetic correlations should be interpreted with caution,
acknowledging the limitations and assumptions of the LDSR method.

Conclusions and recommendations
Using a quantitative index of subjective wellbeing – which
encompasses elements of general happiness and satisfaction with

family, friendship, health, and financial situation – we explored the
genetic and phenotypic relationships between positive and negative
aspects of mental health and their correlation with mental illness and
childhood maltreatment. The wellbeing index GWAS suggested that
improving the measure by using multiple indicators of wellbeing
could be a valid method to increase the explained genetic variance
(SNP heritability) of wellbeing; although we note that unrealistic
underlying models that are fundamental to PGS and LDSR that
assume independent additive effects on traits in isolation from
environmental exposures may contribute more substantially to
‘missing heritability’ and limit clinical utility. However, future studies
will benefit from a combination of denser phenotyping, improved
statistical genetic methods that are based on realistic assumptions (i.e.
that reflect networks of genotype-phenotype effects across complex
interrelated traits), and probably integration of technologies such as
artificial intelligence and machine learning to advance the field. The
negative association between childhood maltreatment and wellbeing,
especially relating to emotional domains, highlights the importance of
early life environment on wellbeing later in life. Most studies focus on
the association of childhood maltreatment and psychopathologies;
however, our study suggests that we might also need to measure the
positive spectrum of mental health in relation to the childhood
environment. Furthermore, our work may help to delineate the
possible negative effects of maltreatment (i.e. on reduced wellbeing)
before they become clinically significant. This is useful to know
because indices of wellbeing can enable targeted provision of early
support for people with an increased risk of developing psychiatric
illnesses, which will segue into mental illness prevention. Finally,
reduced wellbeing in the context of psychiatric illness, alongside a
negative genetic correlation between wellbeing and psychiatric
outcomes, demonstrates an interdependent relationship that can be
influenced both by genetic and environmental factors, although
directionality and causality remain to be determined in future studies.
Determining the direction of effects and causality is possible using
longitudinal studies with appropriate experimental design or genetic
methods such as Mendelian randomisation. A better understanding
of causality can then directly inform population-based interventions at
societal or policy levels, to reduce the incidence of mental disorders
and improve health and quality of life.

DATA AVAILABILITY
The UKB Data described in the manuscript is available to all researchers and can be
accessed upon approval of the UK Biobank (https://www.ukbiobank.ac.uk/enable-
your-research/apply-for-access). We will return the derived data fields following UKB
policy; in due course, they will be available through the UK Biobank Access
Management System.

CODE AVAILABILITY
Analytic codes used in this study are stored in the UNSW data archive at www.
dataarchive.unsw.edu.au, under Research Data Management Plan reference number
H0237934, and are available on request.

REFERENCES
1. Ryan RM, Deci EL. On happiness and human potentials: a review of research on

hedonic and eudaimonic well-being. Annu Rev Psychol. 2001;52:141–66.
2. Keyes CL, Shmotkin D, Ryff CD. Optimizing well-being: the empirical encounter of

two traditions. J Pers Soc Psychol. 2002;82:1007–22.
3. Diener E, Emmons RA, Larsen RJ, Griffin S. The Satisfaction With Life Scale. J Pers

Assess. 1985;49:71–5.
4. World Health Organization. Development of the World Health Organization

WHOQOL-BREF quality of life assessment. Psychol Med. 1998;28:551–8.
5. Gatt JM, Burton KLO, Schofield PR, Bryant RA, Williams LM. The heritability of

mental health and wellbeing defined using COMPAS-W, a new composite mea-
sure of wellbeing. Psychiatry Res. 2014;219:204–13.

6. Jamshidi J, Williams LM, Schofield PR, Park HRP, Montalto A, Chilver MR, et al.
Diverse phenotypic measurements of wellbeing: Heritability, temporal stability

J. Jamshidi et al.

8

Translational Psychiatry          (2022) 12:113 

https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
http://www.dataarchive.unsw.edu.au
http://www.dataarchive.unsw.edu.au


and the variance explained by polygenic scores. Genes Brain Behav. 2020;19:
e12694.

7. Bartels M. Genetics of wellbeing and its components satisfaction with life, hap-
piness, and quality of life: a review and meta-analysis of heritability studies.
Behav Genet. 2015;45:137–56.

8. Okbay A, Baselmans BM, De Neve JE, Turley P, Nivard MG, Fontana MA, et al.
Genetic variants associated with subjective well-being, depressive symptoms,
and neuroticism identified through genome-wide analyses. Nat Genet.
2016;48:624–33.

9. Baselmans BML, Bartels M. A genetic perspective on the relationship between
eudaimonic -and hedonic well-being. Sci Rep. 2018;8:14610.

10. Baselmans BML, Jansen R, Ip HF, van Dongen J, Abdellaoui A, van de Weijer MP,
et al. Multivariate genome-wide analyses of the well-being spectrum. Nat Genet.
2019;51:445–51.

11. Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, et al. Multi-trait
analysis of genome-wide association summary statistics using MTAG. Nat Genet.
2018;50:229–37.

12. Baselmans BML, van de Weijer MP, Abdellaoui A, Vink JM, Hottenga JJ, Willemsen
G, et al. A genetic investigation of the well-being spectrum. Behav Genet.
2019;49:286–97.

13. Brainstorm Consortium, Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J
et al. Analysis of shared heritability in common disorders of the brain. Science.
2018;360:eaap8757.

14. Herrenkohl TI, Klika JB, Herrenkohl RC, Russo MJ, Dee T. A prospective investi-
gation of the relationship between child maltreatment and indicators of adult
psychological well-being. Violence Vict. 2012;27:764–76.

15. Edwards VJ, Holden GW, Felitti VJ, Anda RF. Relationship between multiple forms
of childhood maltreatment and adult mental health in community respondents:
results from the adverse childhood experiences study. Am J Psychiatry.
2003;160:1453–60.

16. Dalvie S, Maihofer AX, Coleman JRI, Bradley B, Breen G, Brick LA, et al. Genomic
influences on self-reported childhood maltreatment. Transl Psychiatry. 2020;10:38.

17. Warrier V, Kwong ASF, Luo M, Dalvie S, Croft J, Sallis HM et al. Gene–environment
correlations and causal effects of childhood maltreatment on physical and mental
health: a genetically informed approach. The Lancet Psychiatry. 2021;8:373–86.

18. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an
open access resource for identifying the causes of a wide range of complex
diseases of middle and old age. PLoS Med. 2015;12:e1001779.

19. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank
resource with deep phenotyping and genomic data. Nature 2018;562:203–9.

20. Loh PR, Kichaev G, Gazal S, Schoech AP, Price AL. Mixed-model association for
biobank-scale datasets. Nat Genet. 2018;50:906–8.

21. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and
annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826.

22. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia Working
Group of the Psychiatric Genomics Consortium et al. LD Score regression dis-
tinguishes confounding from polygenicity in genome-wide association studies.
Nat Genet. 2015;47:291–5.

23. Ni G, Moser G, Wray NR, Lee SH, Ripke S, Neale BM, et al. Estimation of genetic
correlation via linkage disequilibrium score regression and genomic restricted
maximum likelihood. Am J Hum Genet. 2018;102:1185–94.

24. de Moor MH, Costa PT, Terracciano A, Krueger RF, de Geus EJ, Toshiko T, et al.
Meta-analysis of genome-wide association studies for personality. Mol Psychiatry.
2012;17:337–49.

25. van den Berg SM, de Moor MH, Verweij KJ, Krueger RF, Luciano M, Arias Vasquez
A, et al. Meta-analysis of genome-wide association studies for extraversion: find-
ings from the genetics of personality consortium. Behav Genet. 2016;46:170–82.

26. Nagel M, Jansen PR, Stringer S, Watanabe K, de Leeuw CA, Bryois J, et al. Meta-
analysis of genome-wide association studies for neuroticism in 449,484 indivi-
duals identifies novel genetic loci and pathways. Nat Genet. 2018;50:920–7.

27. Day FR, Ong KK, Perry JRB. Elucidating the genetic basis of social interaction and
isolation. Nat Commun. 2018;9:2457.

28. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-
analysis of genome-wide association studies for height and body mass index in
approximately 700000 individuals of European ancestry. Hum Mol Genet.
2018;27:3641–9.

29. Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-
wide meta-analysis of depression identifies 102 independent variants and
highlights the importance of the prefrontal brain regions. Nat Neurosci.
2019;22:343–52.

30. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z et al.
Genome-wide association study of more than 40,000 bipolar disorder cases
provides new insights into the underlying biology. Nat Genet. 2021;53:817–29.

31. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological
insights from 108 schizophrenia-associated genetic loci. Nature 2014;511:421–7.

32. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery
of the first genome-wide significant risk loci for attention deficit/hyperactivity
disorder. Nat Genet. 2019;51:63–75.

33. Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of
common genetic risk variants for autism spectrum disorder. Nat Genet.
2019;51:431–44.

34. International Obsessive Compulsive Disorder Foundation Genetics Collaborative
(IOCDF-GC) and OCD CollaborativeGenetics Association Studies (OCGAS).
Revealing the complex genetic architecture of obsessive-compulsive disorder
using metaanalysis.Mol Psychiatry. 2018;23:1181–8.

35. Duncan LE, Ratanatharathorn A, Aiello AE, Almli LM, Amstadter AB, Ashley-Koch
AE, et al. Largest GWAS of PTSD (N=20 070) yields genetic overlap with schi-
zophrenia and sex differences in heritability. Mol Psychiatry. 2018;23:666–73.

36. Ge T, Chen CY, Ni Y, Feng YA, Smoller JW. Polygenic prediction via Bayesian
regression and continuous shrinkage priors. Nat Commun. 2019;10:1776.

37. Ikeda M, Takahashi A, Kamatani Y, Momozawa Y, Saito T, Kondo K, et al. Genome-
wide association study detected novel susceptibility genes for schizophrenia and
shared trans-populations/diseases genetic effect. Schizophr Bull. 2019;45:824–34.

38. Autism Spectrum Disorders Working Group of The Psychiatric Genomics Con-
sortium. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum
disorder highlights a novel locus at 10q24.32 and a significant overlap with
schizophrenia. Mol Autism. 2017;8:21.

39. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set
analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219.

40. Zwir I, Arnedo J, Del-Val C, Pulkki-Råback L, Konte B, Yang SS, et al. Uncovering
the complex genetics of human character. Mol Psychiatry. 2018;25:2295–312.

41. Zwir I, Mishra P, Del-Val C, Gu CC, de Erausquin GA, Lehtimäki T, et al. Uncovering
the complex genetics of human personality: response from authors on the
PGMRA Model. Mol Psychiatry. 2019;25:2210–3.

42. Zwir I, Del-Val C, Arnedo J, Pulkki-Raback L, Konte B, Yang SS, et al. Three genetic-
environmental networks for human personality. Mol Psychiatry. 2021;26:3858–75.

43. Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. Com-
parison of sociodemographic and health-related characteristics of UK biobank
participants with those of the general population. Am J Epidemiol.
2017;186:1026–34.

44. Slade M. Mental illness and well-being: the central importance of positive psy-
chology and recovery approaches. BMC Health Serv Res. 2010;10:26.

45. Kendler KS, Myers JM, Maes HH, Keyes CL. The relationship between the genetic
and environmental influences on common internalizing psychiatric disorders and
mental well-being. Behav Genet. 2011;41:641–50.

46. World Health Organization. Prevention of Mental Disorders: Effective Interven-
tions and Policy Options. 2004.

47. Turner HA, Finkelhor D, Ormrod R. Poly-victimization in a national sample of
children and youth. Am J Prev Med. 2010;38:323–30.

48. Chu DA, Williams LM, Harris AW, Bryant RA, Gatt JM. Early life trauma predicts
self-reported levels of depressive and anxiety symptoms in nonclinical commu-
nity adults: relative contributions of early life stressor types and adult trauma
exposure. J Psychiatr Res. 2013;47:23–32.

49. Dye HL. Is emotional abuse as harmful as physical and/or sexual abuse? J Child
Adolesc Trauma. 2020;13:399–407.

50. Sodini SM, Kemper KE, Wray NR, Trzaskowski M. Comparison of genotypic and
phenotypic correlations: cheverud’s conjecture in humans. Genetics 2018;209:941–8.

51. Roelfs D, Alnaes D, Frei O, van der Meer D, Smeland OB, Andreassen OA, et al.
Phenotypically independent profiles relevant to mental health are genetically
correlated. Transl Psychiatry. 2021;11:202.

52. Abdellaoui A, Sanchez-Roige S, Sealock J, Treur JL, Dennis J, Fontanillas P, et al.
Phenome-wide investigation of health outcomes associated with genetic pre-
disposition to loneliness. Hum Mol Genet. 2019;28:3853–65.

53. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet.
2013;45:580–5.

54. Bi WK, Luan SS, Wang J, Wu SS, Jin XC, Fu YL, et al. FSH signaling is involved in
affective disorders. Biochem Biophys Res Commun. 2020;525:915–20.

55. Tamouza R, Krishnamoorthy R, Leboyer M. Understanding the genetic contribu-
tion of the human leukocyte antigen system to common major psychiatric dis-
orders in a world pandemic context. Brain Behav Immun. 2021;91:731–9.

56. Ng W, Diener E. What matters to the rich and the poor? Subjective well-being,
financial satisfaction, and postmaterialist needs across the world. J Pers Soc
Psychol. 2014;107:326–38.

57. Xue A, Jiang L, Zhu Z, Wray NR, Visscher PM, Zeng J, et al. Genome-wide analyses
of behavioural traits are subject to bias by misreports and longitudinal changes.
Nat Commun. 2021;12:20211.

58. Davis KAS, Coleman JRI, Adams M, Allen N, Breen G, Cullen B, et al. Mental health
in UK Biobank - development, implementation and results from an online
questionnaire completed by 157 366 participants: a reanalysis. BJPsych Open.
2020;6:e18.

J. Jamshidi et al.

9

Translational Psychiatry          (2022) 12:113 



59. Cloninger CR, Cloninger KM, Zwir I, Keltikangas-Järvinen L. The complex genetics
and biology of human temperament: a review of traditional concepts in relation
to new molecular findings. Transl Psychiatry. 2019;9:290.

ACKNOWLEDGEMENTS
Analyses of these data was supported by the UNSW Scientia PhD Scholarship Scheme
(JJ), and will form part of his PhD thesis dissertation. This research was funded in part
by the Australian National Health and Medical Research Council (NHMRC) Project
Grants 1122816 (JMG), 1066177 (JMF) and Investigator Grant 1176716 (PRS). JMF
gratefully acknowledges the Janette Mary O’Neil Research Fellowship in support of
this work. This research has been conducted using the UK Biobank Resource. The
project was approved by UK Biobank Data Access Committee under Project ID
#58534. This research was undertaken with the assistance of resources from the
National Computational Infrastructure (NCI), which is supported by the Australian
Government. The National Computational Merit Allocation Scheme & UNSW High
Performance Computing Resource Allocation Scheme provided support of em5
project (Neuroscience Research Australia; PI A/Prof Janice M Fullerton).
We thank Martin Thompson (Research Technology Services, UNSW) and Andrew
Cartwright (NeuRA) for assistance with the transfer of derived phenotype data to the
Gadi HPC workspace, and access to UKB genotype data held at UNSW, which formed
part of UKB approved project #37103 (PI Professor Wei Wen). We thank Dr Anbu
Thalamuthu and Dr Karen Mather (Centre for Healthy Brain Ageing, UNSW) for
providing early advice on managing and analysing UKB genotype data. For the
purposes of Open Access, the author has applied a CC BY public copyright license to
any Author Accepted Manuscript (AAM) version arising from this submission.

AUTHOR CONTRIBUTIONS
The study was conceptualised by JJ, PRS, JMG and JMF. Analysis methodology was
developed by JJ, JMG and JMF, and administrative efforts and resources were
provided by JMF, PRS and JMG. Formal analysis was conducted by JJ with supervision
by JMF and JMG. The original draft was written by JJ, with review & editing by JJ, PRS,
JMG and JMF, who all approved the final manuscript. Funding relevant to the current
work was acquired by JJ (UNSW Scientia PhD scholarship) with the support of JMG
and JMF, and was supported by grants acquired by JMG, PRS and JMF.

COMPETING INTERESTS
JMG is a stockholder in MAP Biotech Pty Ltd. There are no other conflicts of interest
to report, nor competing financial interests in relation to the work described.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41398-022-01874-5.

Correspondence and requests for materials should be addressed to Janice M.
Fullerton.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

J. Jamshidi et al.

10

Translational Psychiatry          (2022) 12:113 

https://doi.org/10.1038/s41398-022-01874-5
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Phenotypic and genetic analysis of a wellbeing factor score in the UK Biobank and the impact of childhood maltreatment and psychiatric illness
	Introduction
	Materials and methods
	Participants
	Defining wellbeing
	Discovery and confirmatory samples
	Negative mental health indicators
	Childhood maltreatment
	Psychiatric illnesses
	Phenotypic correlations (rp)
	Genetic association and SNP-heritability
	Genetic correlations (rg)
	Polygenic scores

	Results
	Participant demographics
	The wellbeing index and phenotypic correlations
	GWAS findings for wellbeing index
	Heritability and genetic correlations
	Polygenic score analysis
	Childhood maltreatment and wellbeing index
	Childhood maltreatment GWAS and genetic correlations
	Psychiatric diagnoses and wellbeing

	Discussion
	Strengths and weaknesses
	Limitations and assumptions
	Conclusions and recommendations

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




