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Versailles, 78000 Versailles, France
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SUMMARY
The human brain spends 30–50% of its waking hours engaged in mind-wandering (MW), a common phenom-
enon in which individuals either spontaneously or deliberately shift their attention away from external tasks to
task-unrelated internal thoughts. Despite the significant amount of time dedicated to MW, its underlying rea-
sons remain unexplained. Our pre-registered study investigates the potential adaptive aspects of MW,
particularly its role in predictive processes measured by statistical learning. We simultaneously assessed vi-
suomotor task performance aswell as the capability to extract probabilistic information from the environment
while assessing task focus (on-task vs. MW). We found that MWwas associated with enhanced extraction of
hidden, but predictable patterns. This finding suggests that MW may have functional relevance in human
cognition by shaping behavior and predictive processes. Overall, our results highlight the importance of
considering the adaptive aspects of MW, and its potential to enhance certain fundamental cognitive abilities.
INTRODUCTION

Mind wandering (MW) refers to a mental state when attention

drifts away from the current task, becomes minimally con-

strained by the external environment, and descends into inter-

nally generated thoughts involving past experiences, imagined

events, and anticipated future goals.1–3 While in many everyday

situations, we can dynamically adjust the focus of attention, and

thus, disengagement from the external environment does not

necessarily impact performance under low demands, the nega-

tive consequences of MW during various cognitive tasks have

been extensively documented.4,5 For instance, MW impairs

reading comprehension,6 sustained attention and executive

control,7,8 model-based decision-making,9 explicit deterministic

sequence learning,10 working memory, and fluid intelli-

gence.11,12 On a behavioral level, reduced performance linked
iScience 28, 111703, Febru
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to MW is usually evidenced by worse accuracy, that is, failures

to respond to targets, impulsive responses (e.g., quick re-

sponses to non-target items), or increased reaction time vari-

ability, all being indicative of suboptimal task-related cognitive

control.13–15 Moving beyond the behavioral domain, sensory de-

coupling during periods of MW was also consistently demon-

strated by attenuated cortical responses that reflect the pro-

cessing of specific stimuli in a task.16

Despite the apparent detriments of task-unrelated thoughts, the

phenomenon of MW is ubiquitous, prompting researchers to

investigate its potential advantages, such as its positive effects

on planning or creative problem-solving.4,15 For instance, influen-

tial theories suggest that MW may facilitate future planning and

goal setting, by shifting the attention to personally relevant goals

and concerns.17 Accordingly, empirical studies propose that

MW may serve as a self-reminding process for unresolved
ary 21, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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intentions.18 A more recent study also provided evidence for the

mnemonic benefits of MW in the domain of prospective memory.

Spontaneous MW during an immersive virtual walk boosted the

retrieval and execution of planned actions.19 Although it is

conceptually appealing to hypothesize about MW’s adaptive sig-

nificance, compelling and robust empirical evidence in this regard

is still scarce and elusive to some extent.20–23

MW has been proposed to reflect transient offline states during

wakefulness,24 and interestingly, a growing body of research sug-

gests that offline states are beneficial for learning and memory

consolidation.25–27 While previous studies on memory consolida-

tion have focused on the retention of previously acquired informa-

tion, recent studies suggest thatmemory consolidation processes

are also critical for predictive processes.28,29 Descriptive studies

on the content of spontaneous thoughts indicate thatMW is domi-

nantly future-oriented, reflecting personally relevant goals, plans,

and future behaviors.30–32 These findings are consistent with the

idea that one of the adaptive functions of self-generated thoughts

may be to promote personally relevant mental simulations to

anticipate and evaluate future scenarios.2,4,15 However, the po-

tential value of MW in predicting future outcomes has yet to be

investigated. Considering that suboptimal cognitive control is

linked to both heightened MW33,34 and enhanced statistical

learning35,36—an essential element of predictive process-

ing29,37—it is plausible to hypothesize that MW could be associ-

ated with enhanced statistical learning. To address this gap, we

present empirical evidence demonstrating that MW is associated

with a beneficial impact on cognitive functioning, particularly in the

realm of predictive processes.

In this study, we hypothesized that while sensory decoupling

during MW would reduce task performance, it might simulta-

neously enhance the processing of environmental stimulus-

outcome dependencies. Specifically, we predicted MW would

be associated with improved statistical learning (see pre-regis-

tration: https://osf.io/cq6pg). This was tested using the Alter-

nating Serial Reaction Time (ASRT) task, which measures visuo-

motor performance and implicit statistical learning.38,39 Healthy

adults (n = 135) completed 25 ASRT blocks. Thought probes as-

sessed MW vs. on-task states (Figure 1). Results suggest that

MW reduces response accuracy to external stimuli but improves

the extraction of statistical patterns, leading to better predictions

of future outcomes.

RESULTS

Thought probes
Out of the 135 participants, 117 reportedMWat least once. Partic-

ipantsreportedMW30.13%of the timespenton the task (Figure2).

The median time participants first reported MW was Block 5

(M = 6.48; SD = 5.18). Of the time participants engaged in MW,

46.01% involvedMB, and 23.80%of their focuswas spontaneous

rather than deliberate. Among the 117 participants, 21 reported

MW only, without any mind blanking (MB), while 11 reported only

MB with no MW content. Additionally, 34 participants reported

only spontaneous MW, while 8 reported only deliberate MW

without spontaneous instances (see results on MW/MB in

Figures S1, S2, Tables S1, and S2, and results on spontaneous/

deliberate focus in Figures S3, S4, Tables S3, and S4).
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A simple linear regression was conducted to examine the effect

of taskBlock (1–25) onmeanMWscores. The regression equation

was significant, F(1, 3373) = 134.90, p < 0.001, with an adjusted

R2 of 0.038. Block was a significant predictor of MW scores,

b = �0.026, t(3373) = �11.62, p < 0.001, indicating that MW

scores decreased (indicating more MW) as the task progressed

(Figure 2). A simple linear regression was conducted to evaluate

the relationship between Block (1–25) and the ratio of participants

engaged in MW (0–100%). The regression equation was signifi-

cant, F(1, 23) = 74.95, p < 0.001, with an adjusted R2 0.76. The

regression coefficient for Block was significant, b = 0.010,

t(23) = 8.66, p <. 001, indicating that the ratio of the participants

who engaged in MW increased as the task progressed.

Reaction times
With regards to RT, the model reported a main effect of Triplet

Type, indicating faster RTs for high-probability trials than for

low-probability trials (b = �4.021, 95% CI = [-4.607, �3.434],

F(1, 6362.38) = 180.64, p < 0.001) evidencing statistical learning dur-

ing the task. The main effect of Block indicated decreasing RTs

throughout the task (b = �10.09, 95% CI = [-12.661, �7.524],

F(1, 138.89) = 60.37, p < 0.001) evidencing altered visuomotor per-

formanceover time (Figure 3A). Statistical learning improvedgrad-

ually during the task, as reflected by the interaction between

Triplet Type and Block due to higher difference between high-

and low-probability trials as the task progressed (b = �0.816,

95%CI = [-1.413,�0.218], F(1, 6362.62) = 7.16, p = 0.007). Although

the absence of an interaction between Triplet Type and MW indi-

cated that the acquisition of statistical regularities reached a

similar level during MW and on-task periods (b = �0.494, 95%

CI = [-1.080, 0.093, F(1, 6362.38) = 2.73, p = 0.099) (Figure 3B), the

three-way interaction between Triplet Type, MW, and Block indi-

cated higher RTdifference between high- and low-probability trip-

lets during MW compared to on-task periods at the beginning of

the task (b = 0.720, 95% CI = [0.122, 1.317], F(1, 6362.625) = 5.58,

p = 0.018). This indicates that during MW the extraction of item

probabilities was enhanced in initial blocks (Figure 3C). Full results

can be found in Table S5.

Accuracy
Higher accuracy emerged for high-probability trials compared to

low-probability trials (b = 0.014, 95% CI = [0.012, 0.016],

F(1, 178.68) = 204.41, p < 0.001), evidencing statistical learning. Par-

ticipants showed higher overall accuracy (indicating better visuo-

motor performance) during on-task than during MW periods

(b = �0.015, 95% CI = [-0.019, �0.012], F(1, 117.32) = 101.64,

p < 0.001) (Figure 4A). Accuracy decreased throughout the task

(b = �0.011, 95% CI = [-0.014, �0.008], F(1, 158.01) = 55.57,

p < 0.001), with a more considerable drop in accuracy during

MW periods with task progress (b = �0.005, 95% CI = [-0.007,

�0.003], F(1,3985.82) = 19.21, p < 0.001). Statistical learning

improvedas the taskprogressed (i.e., improving statistical learning

with time) (b = 0.003, 95% CI = [0.001, 0.005], F(1, 6326.31) = 11.81,

p < 0.001). Most importantly, higher statistical learning emerged

during MW periods (b = 0.003, 95% CI = [0.001, 0.005],

F(1, 2076.59) = 9.38, p = 0.002) (Figures 4B and 4C). That is, whereas

visuomotor performance was worse during MW than on-task pe-

riods, the opposite was observed for statistical learning, showing

https://osf.io/cq6pg


Figure 1. Experimental design and task structure of the ASRT task

(A) In the ASRT task, participants had to press keys corresponding to the location of the target stimulus (dog’s head), where every second trial was part of an

8-element probabilistic sequence. Random elements were inserted among pattern elements to form the sequence.

(B) The experiment consisted of 25 blocks with thought probes administered after each block of 80 trials. Participants were asked to reflect on their thoughts and

respond to three questions aimed at distinguishing between (1) on-task and MW (off-task) periods, (2) MW andmind blanking (MB) periods, and (3) deliberate vs.

non-deliberate/spontaneous episodes.

(C) Formation of triplets in the task. Pattern elements are represented by red backgrounds (they constantly appear at that position throughout the task), and

random elements are represented by blue backgrounds (they are always chosen from the four possible positions randomly). Every trial was categorized as the

third element of three consecutive trials (a triplet). The probabilistic sequence structure resulted in a higher occurrence of some triplets (high-probability triplets)

than others (low-probability triplets).

(D) The formation of high-probability triplets could have involved the occurrence of either two pattern trials and one random trial at the center, in 50% of trials, or

two random trials and one pattern trial at the center (12.5% of trials). In total, 62.5% of all trials constituted the final element of a high-probability triplet, while the

remaining 37.5% were the final elements of a low-probability triplet.
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an advantage when participants engaged in MW. Full results can

be found in Table S6. The described effects were also confirmed

between subjectswho engaged in varying amounts ofMW;please

refer to Tables S7–S10.

MW onset and learning performance
In order to further explore whether MWaccelerates the statistical

learning process, we examined how the timing of a participant’s

first MW episode (measured in task blocks) correlated with their

learning ability in the initial phase of the task (average learning

across the first five blocks). Our analysis revealed a significant
negative correlation between the block number of the first MW

report and early learning performance, as measured by RTs

(RT: r = �0.207, p = 0.025; accuracy: r = �0.048, p = 0.600).

This indicates that participants who reported MW earlier demon-

strated a greater ability to differentiate between high- and low-

probability trials in the initial stages of the task.

DISCUSSION

Humans can spend nearly 50% of their waking hours in MW,

where attention shifts from external tasks to task-unrelated
iScience 28, 111703, February 21, 2025 3



Figure 2. Change of MW over the course of the ASRT task

(A) MeanMWscore per block, as reported by participants. The x axis represents the block number, and the y axis shows the averageMWscore (on a scale of 1–4,

the lower score indicates more MW). The error bar indicates SEM.

(B) The number of participants engaged inMW in a given block. The x axis indicates the block number, while the y axis reflects the number of participants. Stacked

bars differentiate between participants who reported MW (red) and those who reported on-task focus (blue). As the task progressed, both the overall MW and the

number of participants reporting MW increased.
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internal thoughts.1,40,41 MW is known to reduce performance on

cognitive tests, impact everyday activities15,42–44 and have

emotional cost.1 Despite these drawbacks, the evolutionary

benefits of MW are unclear. This study explores the potential

benefits of MW, particularly its relationship to statistical learning.

MW is thought to support divergent thinking/creativity and

autobiographical planning/prospective simulations (for review

see the study by Mooneyham et al.15) aligning with the

association between MW and activity in the brain’s default

mode network45,46 and the proposed functional relevance

thereof.2,47,48 However, recent studies have questioned MW’s

contribution to creative incubation20–22 and its link to the default

mode network.49–51 Our study found that during MW, the extrac-

tion of predictable patterns in the environment is enhanced, re-

sulting in improved statistical learning. Also, participants who

experienced MW earlier were quicker to learn the underlying

pattern in the task, supporting the hypothesis that MW might

play a beneficial role in the early stages of statistical learning.

Additionally, we observed changes in visuomotor performance,

as evidenced by worse accuracy during MW (see also results

on speed-accuracy tradeoff in Figure S5; Tables S11–S13 and

on RT variability in Figure S6; Table S14, respectively). Given

the importance of statistical learning and predictive processes

in shaping behavior and neural computations,52–54 these

findings offer new insights intoMW’s role in cognitive functioning

and everyday life.

Our findings of heightened statistical learning during MW align

with the competition framework,55,56 which posits an antago-

nistic relationship between cognitive control and statistical

learning. Previous research indicates that statistical learning per-

formance is negatively associated with control functions medi-

ated by the prefrontal cortex.35,57,58 For instance, EEG studies

have shown that statistical learning negatively correlated with

frontoparietal network activity.59 Inhibitory non-invasive brain

stimulation targeting the dorsolateral prefrontal cortex has

improved predictive processing as measured by statistical

learning.60 On the other hand, MW has also been linked to the
4 iScience 28, 111703, February 21, 2025
shift in the allocation of executive resources and impaired

task-associated cognitive control. According to the executive

failure view, MW episodes emerge as a result of the inability to

maintain current goals via sustained task-focus and shielding

against task-unrelated interference.33 Studies have shown a

negative association between MW and executive performance,

such as the finger-tapping version of the classical random num-

ber generation task,61 in which participants are asked to provide

random sequences of finger taps to the rhythm of an ongoing

metronome, while intermittently being probed about their mental

states.50,62,63 In line with our results, the aforementioned studies

(along with many others,3,13,14) also showed increased behav-

ioral variability during MW, providing support for the validity of

our assessment of task-focus in the ASRT task (see Figure S6

and Table S14). Given that MW is coupled with impaired cogni-

tive control, and statistical learning thrives when executive re-

sources are depleted, it is likely that the successful extraction

of the statistical contingencies during MW in our ASRT task

was mediated by executive system failure. However, since we

did not directly measure executive control (neither behaviorally,

nor its neural correlates), future studies should address if MW

benefits statistical learning through reduced executive control.

This is especially relevant given the relatively low demands of

the ASRT task, which may not have fostered MW at the expense

of executive performance. Contextual factors, such as task diffi-

culty, influence how individuals allocate attentional resources

between task-focus and MW64,65 and tasks that do not demand

our full attention can lead to task-unrelated thoughts while main-

taining optimal performance.

Studies on the neural correlates of MW suggest that impaired

executive control is not necessarily the sine qua non of MW.

Reduced amplitude of canonical event-related potentials

(P100, N100, and P300) in EEG signals appeared to be robust

markers of dampened cortical processing when participants’

mind wandered, compared to periods when participants

focused on the task, that in turn, elicited larger evoked poten-

tials.16 Interestingly, reduced cortical processing linked to



Figure 3. Visuomotor performance and statistical learning over the course of the task in the MW vs. on-task periods measured by reaction

times

(A) Reaction time inms plotted as a function of task progress. Red boxes indicate data from theMW (off-task) periods, and blue boxes that of the on-task periods.

The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles), whiskers show 1.53 IQR, and horizontal notches show the

median.

(B) Raw statistical learning scores (difference between high- and low-probability trials) over the course of the task in the MW vs. on-task periods. The y axes

indicate learning scores calculated and the x axes mark the blocks of the task. The red color indicatesMWperiods, and the blue color the on-task periods. Higher

values represent better statistical learning (larger difference between high- and low-probability trials).

(C) Estimated marginal means of reaction time learning scores. Error bars and bands represent standard errors.

(B and C) Statistical learning was larger at the beginning of the task during MW periods (Triplet Type 3 MW 3 Block interaction).

See also Table S5.
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task-unrelated thoughts was observed in response to both

target and distractor stimuli, indicating that MW reflects a gen-

eral decoupling from the external environment instead of failures

in task-relevant processing and problems of distraction due to

impaired executive control.66 This argument is strengthened by

the fact that the aforementioned P300 component has been

linked to predictive processes—both with stimulus-locked and

response-locked event-related potentials—measured with the

same statistical learning task used in the current study.67,68

Future studies directly testing the neural correlates of MWduring

statistical learning and predictive processes seem highly

warranted.

Our findings suggest that MW, despite being linked to sensory

decoupling, surprisingly facilitates processing of probabilistic

sensory patterns. We propose that MW presents a transient,

spatially localized offline state24,69–71 that facilitates information

processing during statistical learning. This may be explained
by rapid memory consolidation of statistical information during

sensory decoupling. The stabilization of memory traces is known

to be either time-dependent or sleep-dependent,25 with the latter

being linked to low-frequency neural activity.72,73 Although MW

is associated with slow waves,24,71 these slow waves are gener-

ated in resting wakefulness and expressed inmore localized net-

works, a phenomenon also known as local sleep.24,74,75 Our find-

ings suggest that enhanced statistical learning observed during

MW may be driven by memory consolidation associated with

local sleep in the waking brain.25,76 This implies the existence

of a third category of memory consolidation—in addition to

sleep- and time-dependent consolidation—referred to as local

sleep-dependent consolidation. This type of consolidation may

provide an explanation for the inconsistent findings of sleep-

dependent memory consolidation in procedural or statistical

learning tasks.77 The brain consolidates learned material

using local sleep waves during task-unrelated MW, fitting the
iScience 28, 111703, February 21, 2025 5



Figure 4. Visuomotor performance and statistical learning over the course of the task in the MW vs. on-task periods measured by accuracy

(A) Accuracy in percentage plotted as a function of task progress. Red boxes indicate data from the MW (off-task) periods, and blue boxes that of the on-task

periods. The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles), whiskers show 1.53 IQR, and horizontal notches

show the median. During MW periods, participants were less accurate than during on-task periods.

(B) Raw statistical learning scores (difference between high- and low-probability trials) over the course of the task in the MW vs. on-task periods. The y axes

indicate learning scores calculated and the x axes mark the blocks of the task. The red color indicates MWperiods, and the blue color the on-task periods. Higher

values represent better statistical learning (larger difference between high- and low-probability trials).

(C) Estimated marginal means of accuracy learning scores. Error bars and bands represent standard errors.

(B and C) Statistical learning was larger during MW periods (Triplet Type 3 MW interaction).

See also Table S6.

iScience
Article

ll
OPEN ACCESS
opportunistic theory of memory consolidation, which posits that

consolidation occurs during awake, asleep, or local-sleep

states.27 In addition, our finding fits into the emerging number

of studies indicating that even ultra-short periods of post-

learning waking rest are beneficial for the stabilization of memory

traces.25,76 To test this hypothesis, it will be essential to conduct

imaging, neurophysiological studies or experimental manipula-

tions to induce sleep-like neural activity (i.e., increasing slow fre-

quency oscillations in wakefulness) to provide direct evidence

regarding the relationship between MW, local sleep, and

enhanced learning performance. Future research should aim to

clarify whether (a) MW directly facilitates predictive processing

through local sleep-mediated memory consolidation by

demonstrating a direct association between local slow waves

and learning efficiency, or if (b) MW increases reliance on predic-

tive processes indirectly, by consuming executive functions,

which in turn improves consolidation of implicitly processed

information.
6 iScience 28, 111703, February 21, 2025
Our assumptions imply that the positive association between

MW and memory consolidation may be limited to undemanding,

effortless task conditions, allowing the brain to enter into periods

of waking rest. In contrast, task performance during MWmay be

disrupted only when facing higher cognitive load that requires

executive control (but see results on mental effort in Figure S7;

Tables S15 and S16). Therefore, our findings pointing to the ben-

efits of MW may not generalize to such contexts. Accordingly,

the beneficial influence of MW on cognitive performance was

mainly observed under undemanding task conditions which al-

lowed the mind to wander more frequently.19,23 Nevertheless,

given the paucity of data in this regard, the limits and boundary

conditions of MW-related cognitive benefits are still a question

that warrants future research.

Our findingsmight appear to contradict previous results where

impaired sequence learning was previously reported during

MW.10 This previous study compared explicit and implicit condi-

tions, finding that only explicit learning was impaired and implicit



iScience
Article

ll
OPEN ACCESS
learning remained intact. It is crucial to recognize that determin-

istic and probabilistic sequence learning (investigated in our

study) are fundamentally different. Probabilistic learning involves

higher-order associations with varying level of uncertainty, so

that predicting a current event requires considering the statisti-

cal constellations of more remote ones. This makes probabilistic

learning unique in terms of relying more heavily on predictions in

the face of the statistical interdependencies between immediate

stimulus sequences, and consequentially, less prone to devel-

oping conscious awareness about task structure.78 To gain a

clearer understanding, future research needs to directly examine

howMW influences both deterministic and probabilistic learning.

While here we argue that MW facilitates the extraction of

statistical relationships in the environment, a process that

commonly occurs without conscious awareness, some results

on the influence of MW on memory encoding points at detri-

mental effects.65 However, there is emerging evidence that

MW may actually enhance encoding under certain conditions.

Specifically, when the content of MW is related to the material

being processed, it may enhance episodic memory encoding.79

Additionally, studies have showed that stimulus-dependent

thoughts enhance retrieval success in an incidental learning

task, while stimulus-independent thoughts were not interfering

with performance.80,81 This distinction between task-relevant

and task-irrelevant MWmay explain the seemingly contradictory

effects of MW on learning outcomes. Altogether, findings on the

effects of MWon learning aremixed, andmay depend on several

factors, including the type of to-be-learned information, task de-

mands, as well as the content of MW episodes. Future studies

should aim to clarify the specific circumstances under which

MW can exert a positive effect on memory encoding.

MW may hinder precise reactions to external stimuli, but it

can also improve the recognition of consistent patterns, leading

to better event prediction. Future studies could explore if these

findings apply to other memory domains (e.g., episodic encod-

ing of memory traces). MW might benefit the automatic acqui-

sition of predictable patterns, which occurs without effortful

processes. Statistical learning, crucial for predicting stimulus-

outcome dependencies, aligns with MW’s prospective nature,

central to planning and future-oriented behavior. The extraction

of environmental regularities might be fundamental to MW’s

role. Since statistical learning is vital for skill and habit develop-

ment,82–85 our results might generalize to these learning

functions. Consequently, our findings could inform on MW’s

advantages in various learning domains, including language

acquisition, motor skills, music learning, and social skill

development.
Limitations of the study
This study lacked analysis stratified by age, sex, gender,

ancestry, race, and ethnicity. This omission may restrict the

generalizability of the findings to broader populations.
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Data and code availability

d Behavioral data have been deposited at OSF and are publicly available
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d All original code has been deposited at OSF and is publicly available at
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openmaterials/581806. Any additional information required to reanalyze
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(2017). Dynamics of EEG functional connectivity during statistical learning.

Neurobiol. Learn. Mem. 144, 216–229. https://doi.org/10.1016/j.nlm.2017.

07.015.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

A total of 152 participants completed an online experiment. The sample consisted of students fromEötvös LorándUniversity in Buda-

pest, Hungary, who received course credit for their participation. Quality control measures were implemented to ensure the integrity

of the data, resulting in the exclusion of 17 participants for non-compliance with instructions (see section ‘‘quality control of the

data’’). The final sample contained 135 participants (114 females; Mage = 22.58 years ± 5.67 SD; 103 Bachelor and 32 Master stu-

dents), each of them allocated to the experimental group. This study did not include analyses based on age, sex, gender, ancestry,

race and ethnicity, which may limit the generalizability of our results. Informed consent was obtained from all participants, and the

studywas approved by the Research Ethics Committee of Eötvös Loránd University, Budapest, Hungary. The sample size was deter-

mined based on a previous online study where within-subject differences were reported with the ASRT task.86

METHOD DETAILS

Alternating Serial Reaction Time task
The ASRT task was programmed in JavaScript using the jsPsych library v.6.1.0.87,88 The task involved presenting participants with a

visual stimulus (a drawing of a dog’s head) in one of four horizontal locations on the screen, and participants were instructed to indi-

cate the location of the target stimulus by pressing the corresponding key on the keyboard (S, F, J, or L keys from left to right) (Fig-

ure 1A). In case of correct response, the target stimulus disappeared, and after a 120 ms interstimulus interval, the next stimulus ap-

peared. In case of an incorrect response, the target stimulus remained in place until the first correct response. The stimuli followed a

probabilistic eight-element sequence, with pattern and random elements alternating with each other (e.g., 2 – r – 4 – r – 3 – r – 1 – r,

where r indicates a random location, and the numbers represent the predetermined positions from left to the right). Each participant

was assigned to one of 24 possible sequences, which they were exposed to throughout the task. The ASRT taskwas composed of 25

blocks, with each block containing ten repetitions of the eight-element sequence. After each block, participants had to take a short

break and were instructed to answer the thought probes before continuing (Figure 1B).

The ASRT task featured a probabilistic sequence structure where certain runs of three consecutive stimuli (triplets) appeared with a

higher probability (high-probability triplets) than others (low-probability triplets). A trial refers to a single element in the sequence that

could be either a pattern or random element, and, crucially, also the last element in a high- or low-probability triplet (high-vs. low-

probability trials). It is important to emphasize that the analysis hinges on whether the provided trial constitutes the final element

of a high- or low-probability triplet, rather than its classification as a pattern or a random element within the alternating sequence.

For example, in a sequence such as 2 – r – 4 – r – 3 – r – 1 – r, triplets such as 2-X-4, 4-X-3, 3-X-1, and 1-X-2 (where X represents

the middle element of a triplet) occurred more frequently than triplets such as 2-X-1 or 2-X-3 (Figure 1C). Please note that only three

triplets are highlighted on Figure 1C for visualization purposes [2(P)-1(R)-4(P) as a pattern-ending high-probability triplet, 2(R)-3(P)-

4(R) as a random-ending high-probability triplet, and 4(R)-1(P)-2(R) as a random-ending low-probability triplet]. However, every three

consecutive elements form either a high- or low-probability triplet. Therefore, in the above example, from these 8 consecutive ele-

ments - 2(P)-1(R)-4(P)-2(R)-3(P)-4(R)-1(P)-2(R) - 6 triplets can be formed. If we consider the pattern element 2 as a starting point, then

the triplets are in the following order: 2(P)-1(R)-4(P), 1(R)-4(P)-2(R), 4(P)-2(R)-3(P), 2(R)-3(P)-4(R), 3(P)-4(R)-1(P) (these are all high-

probability triplets), and 4(R)-1(P)-2(R) (low-probability triplet). When referring to triplet type in the later parts, the focus is on trials

that serve as the final element of a high- or low-probability triplet.

Throughout the task, a total of 64 distinct triplets could potentially occur (16 with high-probability and 48 with low-probability).

High-probability triplets could be formed by either having two pattern trials and one random trial in the center (occurring in 50%

of trials) or by having two random trials and one pattern trial in the center (occurring in 12.5% of trials). Of all trials, 62.5% represented
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the last element of a high-probability triplet (referred to as high-probability trial), and 37.5%were assigned to the last element of a low-

probability triplet (referred to as low-probability trial) (Figure 1D).

Thought probes
After each block of the ASRT task, participants were asked to reflect on their thoughts and respond to questions about their MW

state. Even though the current study primarily investigated if MW, defined more generally as task-unrelated thought, is associated

with implicit statistical learning, in amore exploratory approach, we also tested if such beneficial effects are linked to 1) MWepisodes

with reportable content in contrast to ‘‘mind blanking’’ (MB),89 and to 2) spontaneous or deliberate manifestations of MW.

Thus, after each block, participants were asked to respond to three questions aimed at distinguishing between 1) on-task vs. off-

task (MW) periods, 2) MW and MB periods, and 3) deliberate vs. non-deliberate/spontaneous episodes. The first question (Q1) was

‘‘To what degree were you focusing on the task just before this question?’’ (1 - Not at all; 4 - Completely). Here, a response of 1 meant

that their thoughts were completely diverted (e.g., friends, weekend plans), and a response of 4 meant that they were only thinking

about the task at hand (where the dog’s head appears, and which key to press as soon as possible). The second question (Q2) was

‘‘To the degree to which you were not focusing on the task, were you thinking of something in particular or just thinking about

nothing?’’ (1 - I was thinking about nothing; 4 - I was thinking about something in particular). Here, the response of 1 meant that their

mindwandered away from the task, but they were not thinking about anything. The response of 4meant that they were thinking about

something while engaging in mind wandering (e.g., a book, recent events, the task was too easy/difficult, being hungry, it was un-

comfortable to sit and do the task, etc.). The third question (Q3) was ‘‘Were you deliberate about where you focused your attention

(either on-task or elsewhere) or did it happen spontaneously?’’ (1 - I was completely spontaneous; 4 - I was completely deliberate).

Here, a response of 1 meant that maintaining their attentional focus occurred effortlessly, without deliberation. The response of 4

meant that they consciously directed their attention somewhere. The first question (Q1) has been used in previous studies,49,62

whereas the other two were phrased to either distinguish between MWwith reportable content vs. MB (Q2) or between spontaneous

vs. deliberate MW (Q3). Even though it is common to directly differentiate between on-task periods and either MW vs. MB, or unin-

tentional vs. intentional MW in a single thought probe,7,64 we decided to explore these dimensions of MW in two follow-up questions

in order to avoid presenting participants with too many response options at once, and also, to gain a more nuanced view about their

mental states during the ASRT task. Participants were asked to select their answers by clicking the corresponding checkbox using

their mouse or touchpad. For the results pertaining to Q2 and Q3, see Figures S1–S4 and Tables S1–S4, respectively.

Procedures
The Gorilla Experiment Builder (https://www.gorilla.sc) was utilized to host the experiment.90 At the beginning of the study, partici-

pants completed a picture description task to test their compliance. Then, they were presented with instructions for the ASRT task,

which involved pressing the key corresponding to the location of the target stimulus as quickly and accurately as possible, using their

left middle and index fingers and their right index and middle fingers from left to right, respectively. Participants were informed that

after each block of the ASRT task, they would be asked three questions to evaluate their thoughts in the previous block and assess

their level of MW which was operationalized as task-unrelated perceptions, thoughts, or memories. A detailed explanation was pro-

vided on the different options along with examples of how participants should respond in various scenarios. Subsequently, partic-

ipants completed a short quiz to evaluate their understanding of how to answer the questions about their thoughts, with feedback and

explanations provided afterward. Participants had the option to retake the quiz or proceed to the task.

Following the two initial practice blocks of the ASRT task with random stimuli, participants completed 25 additional blocks of the

ASRT task. After responding to the thought probes in each block, participants received performance feedback, which included in-

formation on both mean speed and accuracy. In order to guarantee that the ASRT task functioned in a similar manner to previous

studies,78 we assessed the participants’ conscious knowledge of the hidden sequence. Participants were asked a series of questions

at the end of the ASRT task. Specifically, they were asked if they noticed anything unusual or any regularities in the task, and if so, to

elaborate on their response. None of the participants were able to accurately describe the alternating sequence.

After completing the ASRT task, participants were asked to respond to demographic questions (age, gender, education, etc.).

Additionally, they were asked to complete a short questionnaire about their surroundings during the online experiment to test poten-

tial non-compliance with instructions during task completion.

Quality control of the data
To ensure the validity of the study’s conclusions, pre-registered exclusion criteria were employed to remove participants who did not

comply with the instructions or failed the attention tasks. Two participants were excluded based on their performance on the picture

description task, while five participants gave incorrect answers to out-of-context questions in the questionnaires (e.g., select a spe-

cific response or write a specific answer to an open-ended question). Four participants reported that they had restarted the ASRT

task, indicating severe non-compliance with the instructions. One participant was excluded based on evidence from the ASRT

task data for restarting the task at one point. Additionally, six participants were excluded for unusually low performance on the

ASRT task (<80% accuracy), and one participant was excluded for random button pressing in several blocks. A total of 135 partic-

ipants remained in the final sample (please note that some participants met more than one exclusion criterion).
e2 iScience 28, 111703, February 21, 2025
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical learning scores
We used Python v3.9 for processing the responses in the ASRT task. Each trial was categorized based on the two preceding trials as

the last element of a high- or low-probability triplet. To minimize the impact of pre-existing response tendencies,91 we excluded trials

such as trills (e.g., 1-2-1) and, repetitions (e.g., 2-2-2). The first two trials of each block were also removed, as they could not be cate-

gorized as the third element of a triplet, and trials with a reaction time falling outside of ±1.5 times the individual interquartile range

were also removed from the analysis. We defined two types of learning: statistical learning and visuomotor performance. Statistical

learningwas operationalized as the difference in accuracy between high-probability and low-probability trials (i.e., between the third

element of a high-probability triplet and the third element of a low-probability triplet, henceforth referred to as statistical learning

score). Visuomotor performance, on the other hand, was operationalized as the overall accuracy and reaction time performance

on the task and their changes over time regardless of item probability.

Calculation of MW scores from thought probe responses
A dichotomous variable was created by categorizing the answers to thought probe Q1 into MW (off-task) (answers 1–2) and on-task

(answers 3–4) periods. Contrasts between MWwith reportable content vs. MB were created by dichotomizing responses to Q2 (1–2

vs. 3–4) exclusively to those thought probes where Q1 reports indicated off-task periods. In a similar vein, we contrasted task per-

formance between spontaneous vs. deliberate MW by categorizing responses to Q3 (1–2 vs. 3–4) for thought probes indicating MW

for Q1. Additionally, the mean MW scores across all thought probes were computed for each participant, enabling between-subject

comparison via median split (higher MW propensity: M = 2.483 ± 0.347 SD, lower MW propensity: M = 3.428 ± 0.276 SD). For the

results of questions Q2 and Q3, please refer to Figures S1–S4 and Tables S1–S4, respectively. For the results of the between-subject

comparison, please refer to Tables S7–S10.

Statistical analysis
The statistical analysis was performed using R 4.2.3. Simple regressions were fitted with the lm function of the lme4 package, and

linear mixed models were fitted with the mixed function from the afex package92 with sum-to-zero contrasts. For each linear mixed

model, we first fitted the maximal random-effects structure (i.e., including random effects for all variables and allowing correlations

between them), and then reduced it to achieve convergence by removing correlations between random slopes or the random slopes

themselves. The numerical fixed factors weremean-centered. Estimatedmarginal meanswere computedwith the emmeansRpack-

age. Alpha level 0.05 was applied to all analyses. Figures were created with the ggplot2 supplemented by the cowplot, ggpol, and

afex R packages.92–95

To investigate how MW changed throughout the learning process, we performed simple regressions using the mean MW scores

and the proportion of participants engaged in MW, with Block serving as the predictor. To explore how MW impacted statistical

learning and visuomotor performance, we computed themedian reaction times andmean accuracy of the ASRT task for each partic-

ipant in every block. Thesemeasures were used as outcome variables in linearmixedmodels with the Block (Block 1–25), Triplet Type

(last element of a high- vs. low-probability triplet), andMW (MWvs. on-task periods) as well as their interactions as fixed effects in the

models. For reaction times, the final model achieved convergence using the participants as random intercepts with by-participant

uncorrelated slopes for the Block and MW factors. For accuracy, the final model achieved convergence using the participants as

random intercepts with by-participant uncorrelated slopes for Triplet Type, Block and MW factors. Please note that the Triplet

Type main effect and interactions involving this factor indicate differences in statistical learning, while main effects and interactions

without it can be interpreted as differences in visuomotor performance. For further pre-registered analyses, see Figures S8, S9, and

Tables S17–S21.

ADDITIONAL RESOURCES

The study was pre-registered on OSF, which is available at the following link, OSF: https://osf.io/cq6pg. This study is not conducted

within the framework of a clinical trial.
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