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No plant or cryptogam exists in nature without microorganisms associated with its tissues.
Plants as microbial hosts are puzzles of different microhabitats, each of them colonized by
specifically adapted microbiomes. The interactions with such microorganisms have drastic
effects on the host fitness. Since the last 20 years, the combination of microscopic tools
and molecular approaches contributed to new insights into microbe-host interactions.
Particularly, confocal laser scanning microscopy (CLSM) facilitated the exploration of
microbial habitats and allowed the observation of host-associated microorganisms in
situ with an unprecedented accuracy. Here I present an overview of the progresses
made in the study of the interactions between microorganisms and plants or plant-like
organisms, focusing on the role of CLSM for the understanding of their significance. I
critically discuss risks of misinterpretation when procedures of CLSM are not properly
optimized. I also review approaches for quantitative and statistical analyses of CLSM
images, the combination with other molecular and microscopic methods, and suggest the
re-evaluation of natural autofluorescence. In this review, technical aspects were coupled
with scientific outcomes, to facilitate the readers in identifying possible CLSM applications
in their research or to expand their existing potential. The scope of this review is to
highlight the importance of confocal microscopy in the study of plant-microbe interactions
and also to be an inspiration for integrating microscopy with molecular techniques in future
researches of microbial ecology.
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INTRODUCTION
Plant-microbe interaction studies, including plant colonization
by microbes, have benefitted from the development of high-
throughput molecular methods, such as metagenomics and meta-
transcriptomics (Kint et al., 2010; Röling et al., 2010; Zhang et al.,
2010; Jansson et al., 2012). Consequently, studies of microbe-host
associations have become a core theme in microbial ecology, as
their role for the macroscopic hosts was increasingly recognized.
Omics methodologies based on the extraction of molecules (such
as nucleic acid or proteins) directly from environmental samples,
incremented tremendously the detection limit, thus broadening
the spectrum of potentially targeted organisms to include also
the rare microbiome. On the other hand, such methods have
the disadvantage to lose the spatial information, since micro-
bial cells are physically removed from their original location. For
these reasons, methods allowing localization and visualization of
microbes in microbe-host systems have also progressed during
the past two decades, parallel to molecular microbiology meth-
ods. One of the frequently used approaches includes confocal
laser scanning microscopy (CLSM) (Pawley, 2006). Plants, plant-
like organisms, or fungi, are structurally complex and intricately
linked with their substrates. For analyses of their interactions with
microbes, CLSM has come in the prime of life as one of the stan-
dard techniques used. In this review I highlight the progresses
achieved in understanding microbial interactions with plants and

plant-like organisms using CLSM and image analysis, focusing
on fluorescence in situ hybridization (FISH) and labeling with
fluorescent proteins as common methods to specifically detect
target organisms. As a direct method to study microorganisms,
microscopy avoids the PCR biases typical of molecular meth-
ods, thus is best suited to accurately quantitate environmental
microbes when a statistical approach is applied to image acqui-
sition. I critically discuss this aspect together with the use of
natural autofluorescence. Confocal image series contain an excep-
tional amount of potential information, but suitable methods
for image analysis are required to exploit this potential. Here I
show how different visualization methods can influence outcomes
and conclusions of CLSM observations. Finally, I discuss future
perspectives with CLSM and related techniques, and how their
integration with molecular microbiology methods can contribute
to a better understanding of host-microbe systems ecology. As
already recognized explicitly for biofilms (Lourenço et al., 2012)
I suggest the integration of CLSM with omics techniques as the
optimal approach also in host-microbe interaction studies, both
for laboratory-scale systems as well as for environmental samples.

BASIC PRINCIPLES: IMAGE ACQUISITION, IMAGE
ANALYSIS, AND DETECTION METHODS
CLSM is based on the detection of fluorescent light, but it dif-
fers from conventional epifluorescence microscopy by acquiring
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the fluorescent signal(s) exclusively from the focal plane as a
pinhole excludes out-of-focus light. In addition, consecutive
optical slices along the Z-axis of an image series (“confocal
stack”) can be prepared for projections and three-dimensional
reconstructions. Different signals can be acquired separately
and then assigned to different colors for their discrimination
in the images. Many CLSM instruments allow for addition
of a (non-confocal) transmission light image to the confo-
cal stacks. Confocal stacks can be analyzed in different ways,
either by browsing the image series and selecting individual
optical slices, or by sliding along any of the Euclidean axes to
obtain X-, Y-, and Z-projections, respectively. Proprietary soft-
ware tools can transform original fluorescent signals into arti-
ficial objects. Their surfaces are recognized by differences in
fluorescence intensity (“isosurfaces”) and spheres. Such three-
dimensional models facilitate precise localization of signals and
intimate associations of organisms. For presentation, so-called
time series can be compiled as short video clips, e.g., to
move the viewing perspective, or to zoom regions of interest
(flythrough).

Several freeware tools are available for qualitative and quan-
titative analysis of CLSM stacks. Although ImageJ was initially
established for analysis of medical images (Schneider et al., 2012;
http://rsbweb.nih.gov/ij/), several plugins were since then devel-
oped and applied for CLSM analyses of microbial communities.
In plants these helped to analyze rhizosphere and phyllosphere
communities (Iverson and Maier, 2009; Downie et al., 2012; Lee
et al., 2012). Image surfer was developed with the specific purpose
of imaging confocal stacks and it is not open to plugin imple-
mentation (Feng et al., 2007; http://imagesurfer.cs.unc.edu/).
Nevertheless, it includes sophisticated visualization tools which
allow the analysis of complex systems such as host-microbes inter-
actions in the rhizosphere (Zachow et al., 2010). DAIME is a
tool for quantitative analysis of complex microbial communi-
ties, such as biofilms, and also includes procedures for evaluation
of fluorescence in situ hybridization probes (Daims et al., 2006;
www.microbial-ecology.net/daime/).

CLSM allows the detection of three kinds of objects: (1)
molecules, cells and tissues stained with one or more flu-
orochromes; (2) genetically modified organisms (GMO) that
express fluorescent proteins; (3) autofluorescent cells, tissues
and substrates. As autofluorescence of biological and synthetic
substrates is usually considered as a negative aspect of CLSM
images, efforts often aim toward avoiding autofluorescent sig-
nals (Lo Piccolo et al., 2010). As will be shown, autofluores-
cence may actually be a useful phenomenon for interpretation
of the confocal images at least in the context of plant-microbes
interactions.

FISH is most frequently used for visualization of microbial
colonization patterns and community composition (Moter and
Gobel, 2000; Amann et al., 2001). Owing to the direct visual-
ization of target cells, FISH-CLSM can provide useful estimates
of bacterial numbers in certain habitats, also because it avoids
any quantification biases associated with methods based on cul-
tivation or PCR (Bulgarelli et al., 2012). FISH is based on the
hybridization of DNA-probes labeled with fluorochromes with
the complementary target sequence. In most cases these are

characteristic signature sequences of rRNA genes. Since speci-
ficity of the probes is defined by their sequence, it is ide-
ally possible to detect a specific taxonomic range. Cautious
interpretation of data is required with some probes which are
known to have a lower specificity than ideally expected. Such
information is included in databases for FISH probes, such
as probeBase (Loy et al., 2003, 2007; http://131.130.66.201/
probebase/).

Detection of mRNA targets is interesting for addressing func-
tional questions, such as to understand the molecular bases of
the mechanism(s) of interactions between beneficial microbes
or pathogens and their respective host. However, low numbers
of targets may impair detection with fluorescent FISH probes.
Eventually, the signal can be increased by double labeling of
oligonucleotide probes (DOPE-FISH; Stoecker et al., 2010) and
by enzymatic amplification of the signal production, or by ampli-
fication of the target via in situ PCR (Ruppel et al., 2006).

FISH usually requires a preliminary fixation. Hence, the confo-
cal images represent snapshots of the dynamic biological system,
taken at the time of fixation. As fixation kills all cells, FISH stain-
ing generally does not allow any live imaging of cells, and separate
samples fixed at different biological stages do not represent “true”
time-lapse experiment. For live imaging (4D microscopy), flu-
orescent proteins produced in host- associated microorganisms
after genetic transformation offer an alternative detection pos-
sibility. With this approach, time-lapse experiments can track
the effects of substrates, growth enhancers and inhibitors. Genes
coding for fluorescent proteins are usually inserted in plasmids
successively cloned into competent cells but they can be also
integrated chromosomally (Morschhäuser et al., 1998). Such pro-
teins include green fluorescent protein (GFP), yellow fluorescent
protein (YFP), and DsRed protein (Leveau and Lindow, 2002;
Larrainzar et al., 2005). The use of the plasmids allows the
insertion of additional genes, such as antibiotic resistance genes,
useful to maintain the strain under selective growth. In fact,
one of the biggest disadvantages of using the fluorescent pro-
teins is their instability. Moreover, only the tagged strain can
be visualized, which explains why GFP-tagged strains are usu-
ally applied in gnotobiotic systems, or used in microcosms with
only one or few different microorganisms. Other plasmid con-
structs can include promoters upstream of the gfp gene, allowing
the investigation of gene regulation by external factors such
as the presence/concentration of chemicals (Rothballer et al.,
2005).

Recently a new protocol for FISH without prior sample fixa-
tion was presented (Yilmaz et al., 2010). This method offers new
and exciting perspectives for enabling simultaneous detection of
FISH-stained natural populations and fluorescent protein-tagged
strains. FISH was often coupled with other staining techniques.
Many protocols have been developed; among others, Raman-
FISH (Read et al., 2009), catalyzed reporter deposition-FISH
(CARD-FISH; Pernthaler et al., 2002) and enhanced element
labeling-FISH (EL-FISH; Behrens et al., 2008) address one of
the most critical points of microbial ecology: to link identity
and function of members of the natural microbial communi-
ties. These hybrid methods have not been used yet to study
plant-microbes interactions.
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CLSM APPLIED TO HOST-MICROBE INTERACTIONS
PLANTS
CLSM in microbial ecology was first used by Schloter et al.
(1993) to show the interactions between wheat roots and
Azospirillum brasilense SP7, a plant growth promoting rhizobac-
terium (PGPR). In this case, the bacteria were stained with
specific fluorescent labeled antibodies, and the authors pointed
out the advantages of CLSM observations in comparison with
those of traditional epifluorescence microscopy: they could pre-
cisely localize bacteria, root tissue and mucilaginous layer, and
used XY or Z-scan images to show them. In this pioneering work,
the authors could clearly show the great potential of CLSM in the
field of microbial ecology. In the following 20 years, the number of
scientific articles based on, or discussing, CLSM in plant-microbe
interactions increased regularly, reached a plateau during the first
decade of the new century of about 20 publications per year
followed by a recent increase. This trend clearly reflects the techni-
cal development of new confocal systems. Applications of CLSM
during these two decades ranged from studies of plant coloniza-
tion to tracking the fate of inoculated strains. The studied hosts
comprised vascular plants as well as cryptogams, such as mosses
and lichens. A selection of relevant papers of the last 5 years is
presented in Table 1 Supplementary material.

Plants provide a variety of microniches and surface types for
bacterial colonization. Hence, the benefit of CLSM is to precisely
localize the bacterial cells on plants. Bacteria were either detected
on the rhizoplane, inside the root (endorhiza), in the apoplastic
spaces, embedded in extracellular matrices, inside root cells, or
inside the xylem vessels. Plant-associated bacteria not only use the
microhabitats provided by the host as a house and eventually as
substrate, but instead can actively shape them by modifying their
development (Zamioudis et al., 2013).

Ahmed et al. (2010) described five distinct phases of root col-
onization by the Cyanobacterium Leptolyngbya within the same
optical view (from root cell intrusion until total filling). As an
alternative to multiple observations, this approach is only feasi-
ble when two prerequisites are met: (1) the target microorganism
shows a stepwise colonization behavior with clearly discernible
differences between the steps, and (2) its high density allows
detecting different stages of colonization in close vicinity. CLSM
offers the unique opportunity to elegantly show successive steps
of microbial colonization as movies (Czymmek et al., 2007) or as
image gallery (Prieto et al., 2011).

Zachow et al. (2010) studied interactions between fungal
and bacterial beneficial strains in the root of sugar beet. The
authors combined volume rendering and isosurface imaging to
display the interactions between fungal hyphae and plant roots
(Zachow et al., 2010), so providing an example of the CLSM
versatility in imaging different organisms by mean of different
visualization techniques. The results were interpreted in light of
the microbial effects to the plant. It was concluded that neither
endophytism nor direct contact with the pathogen was the dis-
criminative feature of efficient biocontrol strains, so shedding
light on their possible modes of action. Similarly, Maldonado-
González et al. (2013) showed that, although not showing a direct
contact with the pathogen, the biocontrol agent Pseudomonas flu-
orescens PICF7 was able to affect both the colonization patterns

and the disease incidence of the tumor inducing Pseudomonas
savastanoi NCPPB3335. Also in the phyllosphere of grapes, Gasser
et al. (2012) showed that Pantoea ananatis BLBT1-08 efficiently
controlled the plant pathogen Botrytis cinerea, although neither
contact nor inhibition of conidia germination was observed.

Complementing CLSM with the identification of native ben-
eficial bacteria in environmental samples sheds light onto the
ecology of such strains in nature or under field conditions, as
shown by Köberl et al. (2013) for Bacillus and Streptomyces in an
arid ecosystem.

Fan et al. (2012) were able to show, in gnotobiotic systems, how
the same rhizobacterium exhibited different colonization patterns
on three different hosts, thus suggesting that every plant-microbe
system is putatively unique and that it would be imprudent to
draw general conclusions from results obtained with one system.

Bacterial-fungal interactions in the rhizosphere (such as
mychorrizal systems) are ubiquitous and play an outstanding
role for soil ecosystems, yet, they were not extensively studied by
CLSM in situ. Mogge et al. (2000) studied the bacterial commu-
nity on the ectomycorrhizal mantles of beech (Fagus sylvatica)
and characterized its taxonomic composition by FISH. By using
the fluorescence intensity as a quantitative reporter of metabolic
activity, they demonstrated that incubation with nutrient sources
such as yeast extract did not increase bacterial metabolism. In
the rhizosphere of barley, intrahyphal occurrence of Paenibacillus
and Rhizobium strains was proved with CLSM and correlated with
their beneficial effect on the plant fitness (Sharma et al., 2008).

Rhizobia are unique among plant symbionts. They frequently
induce development nodules as specific symbiont-hosting organs
in certain plant lineages. Their infection process, elucidated at
both phenotypic and molecular level, was also complemented
by CLSM studies (Timmers et al., 1999; Haynes et al., 2004).
Burkholderia strains (so called “β-rhizobia”) have been isolated
from root nodules of several plants in the past. Such non-rhizobial
symbionts were shown by CLSM to actually nodulate Cyclopia ssp.
as well as the promiscuous legume Macroptilium atropurpureum
(Elliott et al., 2007), and Mimosa pigra (Chen et al., 2005). CLSM
revealed more bacterial species to be able to colonize the internal
parts of root nodules, such as Paenibacillus polymyxa (Annapurna
et al., 2013).

Kamilova et al. (2007) observed substantial differences in the
interactions between a pathogenic fungus and its biocontrol agent
in vivo and in vitro. While analysis in vitro does not suggest
significant effects of Collimonas fungivorans, this bacterial strain
exerts antagonistic activity in vivo. The authors illustrated their
finding by CLSM and found no direct interaction between bacte-
rial cells and fungal hyphae at microscopic scales. Olivain et al.
(2006) followed colonization patterns of two different strains
of the ascomycete Fusarium oxysporum (a pathogenic one and
its antagonistic strain) in tomato roots. The image segmenta-
tion demonstrated that the two strains co-occur in the same
areas of the root, which suggests competition for nutrients rather
than a competition for space. This example shows how CLSM
can contribute to the understanding of ecological relationships
between microbes, including biological control. In situ auxine
(indole-3-acetic acid) production of two Azospirillum brasilense
strains was compared by using a fusion construct where the
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promoter of the gene ipdC (responsible for auxine synthesis) was
integrated in a plasmid upstream of the gfp gene (Rothballer
et al., 2005). Differences between the signal intensity of the two
strains were then explained at molecular level by sequence anal-
ysis, which revealed the occurrence of a region exclusive for the
most performing strain, probably involved in the regulation of
expression. The same technique could be theoretically used for
studying the in situ expression of any gene of interest.

Colonization of xylem vessels was shown, among others, for
Enterobacter gergoviae (An et al., 2006), Bacillus subtilis (Ji et al.,
2008), Herbaspirillum frisingense (Rothballer et al., 2008) and
Burkholderia terricola (Gasser et al., 2011). Such observations are
among the most challenging, because they are strongly dependent
on the quality of the sectioning and the integrity of root anatomy.
Clear identification of root tissues and preservation of the root
anatomy provide the perfect background to investigate the local-
ization of microorganisms in the rhizosphere or in the endorhiza.
For example, cellulose autofluorescence revealed details of root
anatomy, both with longitudinal (Maciá-Vicente et al., 2008) or
transversal sections (An et al., 2006; Kutter et al., 2006).

Pathogenicity represents a special case within host-microbe
interactions. The role of confocal microscopy can be relevant
when complemented with molecular tools such as transformation
and mutation. Mechanism(s) of interactions with the host can
be understood and dynamics of infection processes elucidated.
In the phyllosphere of lettuce the human pathogen Salmonella
enterica intrudes the plant via the open stomata (Kroupitski et al.,
2009). In this work, differential interference contrast images were
overlapped with the confocal images, to visualize the inner tis-
sues of the leaf, and co-occurrence of both bacterial signal (GFP)
and chloroplasts (chlorophyll autofluorescence) revealed endo-
phytically living bacteria in the plant’s leaf tissue. Demonstrating
the entry through the stomata is of critical importance, since
this explains why conventional sanitation strategies based on
soil treatment may fail to prevent pathogen infection of leafy
vegetables. Li et al. (1999) demonstrated, by quantification of flu-
orescent signals derived by a promotorless GFP gene, that the
expression level of vir genes in Agrobacterium tumefaciens varies
during the infection process, also accompanied by changes in cell
morphology. Newman et al. (2003) identified the vessel-to-vessel
movement as the mechanism of infection responsible for the
degenerative disease of Vitis vinifera induced by Xylella fastidiosa
(an otherwise harmless endophyte).

Plant-microbes interactions in plant microbial fuel cells were
studied by Timmers et al. (2012). In such devices, living plant
roots provide electron donor for electricity generation in a mixed
microbial community which generates electricity. The authors
analyzed anode–rhizosphere bacterial communities of a Glyceria
maxima (reed mannagrass) fuel cell. They found electrochem-
ically active bacteria on the root surfaces, but at much lower
abundance than on the graphite anode. As anaerobic cellulolytic
bacteria neighbored the electrogenic bacteria, current production
was enhanced by hydrolysis of cellulose.

CRYPTOGAMS: MOSSES AND LICHENS
In a study of bog mosses of the genus Sphagnum, Bragina et al.
(2012) demonstrated by FISH-CLSM that the hyalocytes, i.e.,

dead moss cells which serve as water containers and are in direct
contact with the external environment, are the preferred coloniza-
tion sites. Further studies on the functions of such endophytes
demonstrated their potential involvement on nitrogen fixation
and methane degradation (Bragina et al., 2011, 2013). This sug-
gests that these specific niches are not only water reservoirs. They
might represent a sort of “micro-bioreactors” for nutrient pro-
duction that supports the growth of the host, and may also exert
direct ecosystem impact (Kip et al., 2010).

Lichens are traditionally considered as mutualistic symbioses
of fungi and photoautotrophs (algae or cyanobacteria). Recent
microscopic studies revealed high abundances of bacteria in these
symbioses, comparable to those of rhizosphere soil and other
microbial hot spots (Cardinale et al., 2008; Grube et al., 2009;
Schneider et al., 2011). Counting of bacteria in confocal images
of FISH-labeled bacteria helped to statistically evaluate the effect
of environmental factors on the frequency of main bacterial phyla
in different lichen species (Cardinale et al., 2012; this was one of
the few cases in which data obtained with confocal microscopy
were statistically assessed). Three-dimensional modeling of lichen
microhabitats lead to reconsider the hypothesis of lichens as
autonomous mini-ecosystems, this time including bacterial com-
munities functionally adapted to the different thallus regions
(Farrar, 1985; Grube et al., 2009; Cardinale et al., 2012).

CRITICAL ISSUES IN CONFOCAL MICROSCOPY OF
PLANT-MICROBE INTERACTIONS
CLSM images are presented as either maximum projections or
single optical slides. Therefore, it is necessary to know the thick-
ness of the confocal stack as well as the Z-step dimension, in the
case of maximum projections, for interpretating the images. In
particular this is critical for studying endophytism, physical inter-
actions and spatial arrangement of microbial populations. In the
case of single optical slices, the thickness of sections should also be
mentioned. If colonization is scant, low resolution may contribute
to a misunderstanding of signals in the images unless critical
interpretation confirms bacterial signal. Size and shape characters
help to distinguish bacterial cells from autofluorescent objects in
the same emission range. Conspecific microbial colonies are then
recognized by discernible single cells with shared phenotype.

Visualization tools are available for sophisticated analyses and
improved interpretation of image data. As an example, the colo-
nization pattern and the endophytism of the PGPR Burkholderia
terricola ZR2-12 (Gasser et al., 2011) in the root system of
sugar beet are impossible to assess in the maximum projection
(Figure 1A), but become apparent only in the volume render-
ing (Figure 1B), three-dimensional modeling, and its cutting
plane (Figures 1C,D, respectively). Such operations are possi-
ble with freeware Image Surfer (Feng et al., 2007) or profes-
sional software such as Imaris (Bitplane, Switzerland) and Amira
(TGS Inc., US).

Autofluorescence is a typical phenomenon of CLSM with plant
material. Pretreatments of the samples may help to reduce aut-
ofluorescence and prevent blurring of target signals in FISH
experiments. In observations of plant-microbes interactions,
however, the genuine autofluorescence can also help in precisely
locating the microorganisms. Multichannel confocal systems with
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FIGURE 1 | Combination of FISH with autofluorescence. Confocal
images showing root colonization by the PGPR Burkholderia terricola
ZR2-12. (A) In the maximum projection it is not possible to assess the
colonization pattern of Burkholderia terricola ZR2-12 (red) on this 3
weeks-old sugar beet root (blue); it is impossible as well to discriminate
endophytism from ectophytism. (B) The volume rendering of the same
confocal stack shows the cells colonizing the internal root tissues but only
in the three-dimensional models (C,D) it appears clear that the same
bacterium shows a double colonization style: ectophytic at the sides of the

root (C) and endophytic, following the apoplastic spaces (D); furthermore,
the data from the three-dimensional models (number of spots, volume,
etc.) can be easily retrieved and treated with statistics. This confocal stack
has a thickness of 70.16 μm and was acquired with a Leica TCS SPE
(Leica Microsystems GmbH, Mannheim, Germany) using the oil immersion
objective Leica ACS APO 40.0x1.15. Z-step was 0.8 μm. Three-dimensional
models were created with the software Imaris 7.3 (Bitplane, Zurich,
Switzerland). Figure was prepared with Adobe Creative Suite version 3
(Adobe Systems Inc., San Jose, CA, USA).

adjustment of detection ranges allow the dedication of one
detection channel to the wavelength band of autofluorescence.
This requires preliminary CLSM observations of unstained sam-
ples to find the lower and upper boundaries of autofluorescence
absorption and emission (as well as its intensity). It is uncom-
mon that a wide emission spectrum of the autofluorescence
prevents application of suitable fluorochromes for staining of tar-
get microorganisms. It otherwise happens that autofluorescence
is relatively weak. Signal accumulation during the image acquisi-
tion followed by a digital improvement by image post-processing
can then help to suitably visualize an autofluorescent host matrix.
Figure 1 gives an example of how the autofluorescence of sugar
beet roots can be exploited to image the microhabitat of microbes
as a reliable three-dimensional model.

Autofluorescence was already used for structural analysis of
biofilm (Muñoz-Egea et al., 2013); however in case of weak aut-
ofluorescence of the host structures, histochemical staining can
be coupled with FISH to enhance the signal of the host tis-
sues supporting the microbial communities. A suitable staining
is the Calcofluor white, which stains α 1-4-glucans characterizing
many plant- and fungal cell walls as well as certain compo-
nents of microbial outer layers (Figure 2). This hybrid approach
allows distinguishing between structurally different populations
within the same taxon, as shown for Betaproteobacteria in
Figure 2.

QUANTITATION OF CLSM DATA
Microscopy is applied often for qualitative description of both
complex populations and single species (for example pathogens
or PGPR) and their localization. Indeed, there is only a handful
of scientific papers on plant-microbes associations where CLSM
data were analyzed quantitatively (e.g., Pivato et al., 2008; Iverson
and Maier, 2009; Cardinale et al., 2012), even though the direct
in situ observations could complement the PCR-based approach
and even reveal PCR biases (Bulgarelli et al., 2012; Cardinale
et al., unpublished data). However, certain factors can strongly
limit the possibility of statistical approaches with CLSM images,
even after it has been verified that detected signals represent target
objects and not artifacts. For example, strain specific variation for
species rich communities cannot be resolved by CLSM. It is thus
advisable to complement CLSM data by other approaches, such
as deep 16S rRNA gene amplicon sequencing, or metagenome
sequencing, which both deliver suitable information for assess-
ment of community structures as well as for evaluation of alfa-
and beta-diversity.

Microbial cells are unevenly distributed on their plant hosts.
Therefore, the values of density of a certain host-associated
microbial community does not inform about its actual disper-
sion across the host. Figure 3 shows an example of how the
bacterial community associated with lettuce root can be differ-
entially dispersed: in the first example (A–C) the community
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FIGURE 2 | Combination of FISH with histochemical staining. Volume
rendering of a confocal stack showing the bacterial colonization of salad
root (Lactuca sativa) by the native bacterial community, stained by FISH.
Gammaproteobacterial (A), betaproteobacterial (B), and other bacterial
cells (C) (green, blue, and red, respectively) stained with the FISH probes
Gam42a (Cy5-labeled), Bet42a (ATTO488-labeled) and EUBMIX
(Cy3-labeled), respectively. (D) Compounds and tissues stained with
calcofluor white (0.15% in H2O, 15 min incubation) appear gray. (E) Overlap
of images (A–D); yellow, Gammaproteobacteria; pink, Betaproteobacteria;
red: other bacteria; gray: compounds surrounding some Betaproteobacteria
stained by calcofluor white. Scale bars: 20 μm. Confocal stack has a
thickness of 16.99 μm, and was acquired with a Leica TCS SPE (Leica
Microsystems GmbH, Mannheim, Germany) using the oil immersion
objective Leica ACS APO 40.0x1.15. The Z-step was 0.38 μm. Volume
rendering was created with the software Imaris 7.3 (Bitplane, Switzerland).
Figure was prepared with Adobe Creative Suite version 3 (Adobe Systems
Inc., CA, USA).

spreads evenly over the root surface, but different populations
(Betaproteobacteria and Gammaproteobacteria) are unevenly
distributed since it is possible to find regions exclusively colonized
by one or the other group; the second example (D–F) shows a
more drastic situation: only a big colony of Betaproteobacteria,

surrounded by unidentified bacteria was detected, while the
Gammaproteobacteria appear as single cells evenly distributed
over the root; some regions of the root are almost bacteria-free.
Such features can hardly be assessed statistically. In theory, a
dispersion coefficient can be calculated for any host-associated
microbial community provided that a sufficient number of con-
focal stacks (randomly acquired throughout the specimen) are
analyzed (Ford and Harvey, 2007). The variance of different bac-
terial taxa in situ can be due to different growth strategies or
even death rates. The host actively participates to trigger bacte-
rial communities in the rhizosphere by root exudation (reviewed
by Dennis et al., 2010) and a role in shaping its genetic structure
was also suggested (Mølbak et al., 2007).

Bianciotto et al. (2004) demonstrated the vertical transmis-
sion of a bacterial endophyte of the arbuscular michorrizal fungus
Gigaspora margarita through 4 generations of axenic culture. A
statistical approach using CLSM allowed proving that the den-
sity of intrasporal bacteria strongly diminished from Generation
0 to Generation 4. This approach was based on manual counts of
bacterial cells within 100 × 100 μm squares on single 3 μm-thick
optical slices. The total number of detected cells for all the 7 opti-
cal slides of each confocal stack represented the density expressed
as bacteria∗mm−3. In different approaches the bacterial density is
measured as colony forming units (CFUs, cultivation-dependent
approaches) or as gene copy number (cultivation-independent
approaches, q-PCR) per gram of host; thus a direct compari-
son with the CLSM results (volumetric values) is not possible.
In order to directly compare CLSM data with data obtained by
cultivation and q-PCR, it would be suitable to convert observed
volumes into respective weights of sample. I and colleagues
developed the “Delta-volume method” to express the density of
bacteria detected by CLSM in lichen hosts as number of cells
per gram of lichen thallus (Cardinale et al., 2012). To achive
this, a subsample of the lichen specimens fixed for FISH-CLSM
was immersed into a graduated tube partially filled with water:
the difference in the volume was recorded (Delta-volume) and
then the specimen was dried out and weighted. The ratio Delta-
volume/weight was then used to convert the values expressed
as bacteria∗mm−3 (obtained by FISH-CLSM) into bacteria∗g−1

lichen dw. This method might be applicable to every kind of
environmental sample.

COMBINATION WITH OTHER MICROSCOPIC TECHNIQUES:
CURRENT STATE AND PERSPECTIVES
The combination of CLSM with other microscopic methods
could offer additional advantages. In fact, the resolution of
confocal microscopy, although higher than conventional light
microscopy, is constrained by the optical limitations of the light
microscopy; coupling fluorescent microscopy with cryo-electron
microscopy in a correlative approach offers a possibility to first
localize regions of interest or target objects and then visualize
them at nanometric resolution (Sartori et al., 2007; Jahn et al.,
2012). Coupling CLSM with a scanning probe system (such as an
atomic force microscope—AFM) is another correlative approach
which has been used for medical sciences but not yet for plant-
microbes interactions (Haupt et al., 2006). Although an efficient
CLSM-AFM protocol could be difficult to optimize (due to the
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FIGURE 3 | Microbial interactions in the rhizosphere. Maximum
projections of a confocal stack showing the colonization pattern of salad
root (Lactuca sativa) by the native bacterial community stained by FISH.
(A,D) Gammaproteobacterial and betaproteobacterial cells (green and blue,
respectively) stained with the FISH probes Gam42a (Cy5-labeled) and
Bet42a (ATTO488-labeled), respectively. (B,E) All bacterial cells (red)
stained with the FISH probe EUB338-MIX (Cy3-labeled). (C,F) Overlap of
images (A,B,D,E), respectively; yellow, Gammaproteobacteria; pink,
Betaproteobacteria; red: other bacteria. Different taxa do not share the

habitats, but instead colonize microniches of the rhizoplane dominantly,
excluding each other (see text for more explanations). Scale bars: 20 μm.
Confocal stacks (A,C,D,E) have a thickness of 30.72 and 37.26 μm,
respectively, and were acquired with a Leica TCS SPE (Leica Microsystems
GmbH, Mannheim, Germany) using the oil immersion objective Leica ACS
APO 40.0x1.15. The Z-step was 0.5 μm. Maximum projections were
created with the software Imaris 7.3 (Bitplane, Zurich, Switzerland). Figure
was prepared with Adobe Creative Suite version 3 (Adobe Systems Inc.,
San Jose, CA, USA).

fact that AFM works properly only with relatively flat speci-
mens), it has anyway a potentiality to deliver deep structural
information not available with CLSM only, such as interac-
tion forces between beneficial microorganisms, pathogens and
hosts. Correlative microscopy that combines FISH-CLSM with
nanoSIMS could be particularly interesting, as this may ideally
provide information on functional contributions of individual
groups of bacteria. This has not yet been achieved and, until now,
nanoSIMS has still rarely been used for studying plant-bacteria
interactions. Clode et al. (2009) used this approach to visualize
differential partitioning of 15NH+

4 between plant roots and native
soil microbial communities at the submicron scale.

CLSM ANALYSIS AS GUIDANCE FOR DOWNSTREAM
EXPERIMENTS
CLSM has been used to complement studies with other methods,
such as deep sequencing or quantitative-PCR. Yet, the analysis
of the native microbial communities using CLSM can help in
hypothesis development and testing, and for proper sample size
estimation for subsequent experiments. This includes the role
of environmental factors on colonization patterns (Figure 4).
Otherwise FISH-CLSM could guide the focus to particular
bacterial groups in subsequent culture-dependent or culture-
independent studies: in the case of lettuce root colonization
(Figure 3), different taxa do not share the same site, but instead
dominate in microniches of the rhizoplane and exclude each
other (Figures 3A–C), and hence form locally extremely dense
colonies (Figures 3D–F). The following hypotheses could result

from these observations: (A) Lettuce roots either release specific
exudates at microscale resolution, or concentrate them at par-
ticular sites on the root surface; (B) Different bacterial species
arrive at different times, and the initial colonies exclude the
following; (C) Finally, in case these bacteria are simultaneous col-
onizers, some species are locally enriched by faster growth. These
hypotheses can be tested with specifically designed inoculation
experiments under controlled conditions of growth.

CONCLUSIONS AND PERSPECTIVES
Research of host-microbes systems requires a polyphasic
approach to unravel the complexity of their interactions and eco-
logical significance. Still, direct qualitative and quantitative infor-
mation of bacterial colonization and its variation on the hosts’
structures is only possible through direct visualization in situ and
therefore CLSM serves as a central technology in such studies.
The intrinsic variance of this information needs to be properly
assessed by a statistical approach, to gain new and deeper insights
into the stability and plasticity of host associated microbes in a
changing environment.

Several other exciting microscopic techniques emerged over
the past few years, e.g., Coherent Anti-Stokes Raman Scattering
(CARS, Cheng et al., 2002), Multi-Isotope Imaging Mass
Spectrometry (MIMS, McMahon et al., 2006), or Stimulated
Emission Depletion Microscopy (STED, Westphal et al., 2008).
However, these still depend on substantial infrastructure and their
applicability to study a broader range of environmental samples
has still to be shown. FISH-CLSM not only remains as a widely
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FIGURE 4 | Integration of CLSM with other techniques. The workflow shows the combination of CLSM with other methods for plant-microbes interactions
studies. A case study of PGPR is used in this example.

applicable methodology for studying plant-microbe interactions,
but can be extended and complemented by other microscopic
techniques.

In the last few years, microbial ecology was revolutionized by
the advent of the deep-sequencing as a tool affordable for every
laboratory. This was somehow similar to what happened in the
90 years, when fingerprinting techniques allowed for the first time
the study of total microbial communities, including uncultivated
organisms. Once more, the effect was that the scientists’ atten-
tion was focused on the sequence-based information delivered by
the new techniques and microscopy was overshadowed. Here I
showed the critical role that microscopy (especially CLSM) had
in the understanding of the processes. Localization at microscale,
colonization pattern or cell-cell interaction, are not detectable
by cultivation, fingerprinting, or deep-sequencing analysis, yet
being the basic processes of plant-microbe interactions. High-
resolution microscopy, coupled with suitable visualization and
statistical methods, still represent the optimal tool that can pro-
vide such information and represents the best suited method to
validate the results of molecular analysis in microbial ecology
studies.
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