
ORIGINAL RESEARCH
published: 27 November 2019
doi: 10.3389/fonc.2019.01317

Frontiers in Oncology | www.frontiersin.org 1 November 2019 | Volume 9 | Article 1317

Edited by:

Saby George,

University at Buffalo, United States

Reviewed by:

Retnagowri Rajandram,

University of Malaya, Malaysia

Daniele Baiz,

University of Plymouth,

United Kingdom

*Correspondence:

Huiqun Wu

wuhuiqun@ntu.edu.cn

Specialty section:

This article was submitted to

Genitourinary Oncology,

a section of the journal

Frontiers in Oncology

Received: 12 August 2019

Accepted: 12 November 2019

Published: 27 November 2019

Citation:

Jia K, Wu Y, Huang J and Wu H

(2019) Survival-Associated Alternative

Splicing Events in Pan-Renal Cell

Carcinoma. Front. Oncol. 9:1317.

doi: 10.3389/fonc.2019.01317

Survival-Associated Alternative
Splicing Events in Pan-Renal Cell
Carcinoma
Keren Jia 1, Yingcheng Wu 1, Jing Huang 2 and Huiqun Wu 3*

1Medical School of Nantong University, Nantong, China, 2 School of Pharmacy, Nanjing University of Chinese Medicine,

Nanjing, China, 3Department of Medical Informatics, Medical School of Nantong University, Nantong, China

Alternative splicing is an important modification process for the genome to generate

mature mRNA by transcription, which has been found associated with survival in some

tumors. However, systematic analysis of AS events in pan-renal cell carcinoma at the

genome-wide level has been seldom conducted yet. In the current study, Upset plot

and Venn plot were utilized to present the distribution characteristics of AS events.

Those SREs were screened out with multivariate COX regression analyses, and functional

enrichment analysis was performed to figure out potential pathways. ROC model was

conducted to compare the efficiency of those potential SREs. A total of 2,169, 1,671,

and 1,414 SREs were found in renal clear cell carcinoma (KIRC), renal chromophobe

cell carcinoma (KICH), and renal papillary cell carcinoma (KIRP), respectively. Functional

enrichment analysis results suggested possible mechanism such as changes in the

branched-chain amino acid catabolic process due to SREs might play a key role in KIRC.

The binary logistic regression equation based on the SREs had a good performance in

each model compared to the single factor. The 5 year survival model presented that the

AUC of the predicted probabilities in KIRC, KICH, and KIRP were 0.754, 1 and 0.841,

and in the diagnostic model were 0.988, 0.970, and 0.999, respectively. Some AS types

that were significantly different in pan-RCC and paracancerous tissues have also been

discovered to play a role in carcinoma screening. To sum up, alternative splicing events

significantly interfere with the prognosis of patients with pan-RCC and are capable as

biomarkers for prognosis.

Keywords: alternative splicing, splicing factor, renal cell carcinoma, prognosis, bioinformatics

INTRODUCTION

Alternative splicing (AS) refers to the fact that a pre-mRNA produces different mRNA splicing
isoforms at different splice sites through different splicing methods, which is essential for the
regulation of gene expression and the production of protein diversity (1). AS is considered to be
the root cause of eukaryotes with significantly fewer genes than protein species. Under normal
conditions, AS events is precisely regulated, which contributes to physiological functions, such
as the immune system (2). Abnormal AS events will affect tumor cell differentiation, apoptosis,
invasion, and metastasis by affecting gene expression products (3). Even in the absence of
genetic mutations, some cancer-associated AS events may lead to carcinogenesis, which may be
associated withmutations in the intron splice sites of tumor suppressor genes and become potential
therapeutic targets (4). Hence, the study of AS on cancer has becomes a hot area.
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Pan-renal cell carcinoma (pan-RCC) includes renal clear cell
carcinoma (KIRC), renal chromophobe cell carcinoma (KICH),
and renal papillary cell carcinoma (KIRP), accounting for 80–
90% of renal malignancies (5). Other rare cancers (including
duct carcinoma, renal medullary carcinoma, and urothelial
carcinomas) with low incidence also occur in the kidneys
(6, 7). The classification of RCC based on pathology model is
widely accepted, but studies have shown that morphological
parameters cannot be used as an effective indicator for prognosis
(8). Some researchers have classified RCC into nine major
types based on multidimensional and comprehensive molecular
characterization (9). In addition, genemutations, gene expression
profiles, and inflammatory markers have also attracted attention
in the development and prognosis of RCC (10–12).

The research evidence in recent years partly brings to lights
the ways in which AS affects RCC. PTBP1 plays a tumorigenic
role in KIRC by mediating PKM2 AS, and it may be a potential
prognostic marker as well as a promising molecular target for
the treatment of KIRC (13). Epithelial splicing regulatory protein
2 (ESRP2) is one of the key regulators of AS in epithelial
cells, expressed in KIRC, whereas ESRP1 is downregulated in
most KIRC patients (14). Interpretation of splicing factors (SFs)
expression in KIRC may result in selective splicing damage of
genes regulating tumor growth, and this approach contributes
to the carcinogenesis process (15). These studies focus on KIRC,
demonstrating the decisive position of AS events in influencing
the production of RCC.

Considering AS events could be a diagnostic and prognostic
marker, even be a new classification basis for pan-RCC, the
investigations on AS events in pan-RCC is imperative. Based on
RNA sequencing data, we systematically analyzed AS events in
pan-RCC and paracancerous tissues, as well as identified SREs
in the three subtypes of pan-RCC. Furthermore, the potential
of these SREs in the diagnosis of RCC was validated. Mapping
regulatory networks of genes in SREs for KIRC, KICH, and KIRP
sharpens our insight into understanding the specific pathways by
which AS acts on RCC.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
The TCGA SpliceSeq database systematically identified mRNA
splicing events in 33 tumors (total number of samples >10,000)
in the TCGA database, each tumor data including high-
throughput sequencing data, AS events, and partial clinical
information for cancerous and paracancerous tissues (16). Since
the clinical data in TCGA SpliceSeq is not comprehensive
enough, all clinical data was downloaded from the TCGA
database for more detailed analysis. SpliceSeq, a Java application
that more intuitively demonstrates the AS pattern in high-
throughput sequencing data by calculating the Percent-Spliced-
In (PSI) value for each event (17). PSI values are used to quantify
each AS event, making it possible to analyze AS events using
biometric methods. TCGA SpliceSeq classifies AS events into
seven types: Exon Skip (ES), Retained Intron (RI), Mutually
Exclusive Exons (ME), Alternate Donor site (AD), Alternate
Acceptor site (AA), Alternate Promoter (AP), and Alternate

Terminator (AT). The PSI values for seven types of AS events
in the three tumors contained in pan-RCC were downloaded
from TCGA SplicSeq. We removed the events that contained the
vacancy values to make the results more reliable. Finally, data for
KIRC were obtained from 605 samples (533 cancer tissues and
72 adjacent cancer tissues). Data for KICH were obtained from
91 samples (66 cancer tissues and 25 adjacent cancer tissues).
Data for KIRP were obtained from 322 samples (290 cancer
tissues and 32 adjacent cancer tissues). Cancer tissue samples
and some paracancerous tissue samples from different patients
were obtained. Each sample could be matched to corresponding
patient to acquire their clinical information.

Multivariable Survival Analysis
A total of 516 patients with KIRC, 64 patients with KICH, and
276 patients with KIRP were included in the survival analysis.
Patients with a total survival of <30 days or >5,000 days in
clinical data were omitted. Cox’s proportional hazards regression
model was used to calculate the relationship between PSI values
and overall survival (OS) in patients with cancer, the results of
which includes the coef value, 95% confidence intervals, and P-
values. Only AS events with a P < 0.05 were considered to be
potentially relevant to survival. The coef value is a key parameter
that reflects the impact and direction of the event on prognosis.
A positive coef value would increase the risk of death, while a
negative value would reduce the risk of death. The magnitude of
the value is related to the degree of impact. Life activities are the
combined result of a variety of AS events. The PSI value of some
SREs was multiplied by the coef value to obtain a weighted PSI
value for each patient, which was used to analyze the correlation
of multifactors with survival. A more objective reflection of the
impact of AS events on patient survival will be obtained in
this way. We performed independent factor survival analysis for
events incorporating multivariate analysis as well. The patients
were isolated into two groups by the median of the single event
PSI value and the multi-event weighted PSI values for all patients.
The Kaplan-Meier (K-M) survival analysis was used to see if there
was a significant difference in prognosis between the two groups.
This algorithm is implemented by survival and survminer, two R
language packages, which can be downloaded and installed from
Bioconductor (18). Outcomes with a P < 0.05 were considered to
be statistically different.

Upset Plot and Venn Plot
Upset plot is the inheritance and development of venn plot,
which can more intuitively display the intersection of multiple
sets (usually ≥5). When the number of sets is <5, the venn plot
showed better readability. Upset plots presented the intersection
of seven types of all AS events and related genes or only survival
related events and genes in pan-RCC. The venn plot was drawn
only for cross-tumor analysis to compare the distribution of AS
events and related genes in pan-RCC (19).

Protein-Protein Interaction (PPI) Network
and Enrichment Analysis
In order to gain insight into how genes involved in potential
SREs perform mutual regulation in pan-RCC, these genes were
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FIGURE 1 | The AS events, SREs and relevant genes in RCC. (A–C) The height of the pink strip represented the number of AS events. The height of the orange band

represented the number of relevant genes. (D) The orange, blue, and gray areas represent the events in KIRC, KICH, and KIRP, respectively. The percentage value in

(Continued)
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FIGURE 1 | the middle represented the ratio of the AS events co-existing in the three sets to all AS events. (E) The orange, blue, and gray areas represent the genes in

KIRC, KICH, and KIRP, respectively. The percentage value in the middle represented the ratio of the ASRGs co-existing in the three sets to all ASRGs. (F–H) The height

of the pink strip represented the number of SREs. The height of the orange strip represented the number of SRGs. Because the number of MEs and ME related genes

was too small; black dots on the bar graph indicated their existence. (I) The orange, blue, and gray areas represent the SREs in KIRC, KICH, and KIRP, respectively.

The percentage value in the middle represented the ratio of the SREs co-existing in the three sets to all SREs. (J) The orange, blue, and gray areas represent the

SRGs in KIRC, KICH, and KIRP, respectively. The percentage value in the middle represented the ratio of the SRGs co-existing in the three sets to all SRGs.

submitted to the STRING database (www.string-db.org/) for
constructing a PPI network. The threshold is set to 0.9, helping
us get more reliable data. In the PPI network, a gene with
higher degree is considered to be hub gene, indicating its central
position in the regulatory network. They were submitted to
the GO and KEGG database for enrichment analysis as well,
figuring out the functions and pathways involved in SREs
(20, 21).

Statistical Analysis
The receiver operating characteristic curve (ROC) combines
sensitivity and specificity in a graphical manner that accurately
reflects the relationship between specificity and sensitivity of
an analytical method, proven to be a reliable method for
testing the diagnostic value of an indicator for a disease (22–
24). In each tumor, the PSI values of the 10 most significant
events and the weighted PSI value obtained by weighting these
events were used for ROC analysis to comprehensively compare
the power of predicting outcomes in 5 year survival models.
Considering that some factors may improve or worsen the
prognosis of the disease, but work as a criterion for diagnosing
the disease, we explored the ability of the PSI values of the 10
events with significant prognosis and the weighted PSI value
in terms of selecting tumor tissues from all tissues. We fit
the binary logistic regression equation using the PSI values
of the 10 most significant events and compare the predicted
probabilities with the weighted PSI values, with the help of
the ROC curve. In addition, the study examined whether PSI
values for each type of AS event differed between cancerous and
paracancerous tissues. Whether these indicators are effectively
classified for cancer tissues and adjacent tissues is also tested.
The calculation of binary logistic regression equation and ROC
analysis are realized by SPSS19.0 software (SPSS Inc., Chicago,
IL) (25, 26).

The Regulatory Network Containing
Splicing Factors (SFs)
A total of 68 SFs were found to be involved in the regulation of
AS events in pan-RCC, which were available from the SpliceAid 2
(www.introni.it/spliceaid.html) database (27). TCGA provided a
level three gene expression profile of KIRC, KICH, andKIRP. The
original read counts were normalized to eliminate differences
in the total amount of data, gene length, and number of genes,
ensuring the reliability of the results. Univariate COX regression
analysis was used to mine survival-related SFs. The Pearson
correlation coefficient was used to measure the regulatory
relationship between SFs and AS events.

RESULTS

Distribution of AS Events as Well as
Related Genes in Pan-RCC
In KICH, there were a total of 10,226 genes involved in 29,722
AS events, which were identified AS-related genes (ASRGs). We
found 2,446 genes in 3,263 AAs, 2,141 genes in 2,759 ADs, 3,489
genes in 3,489 APs, 3,642 genes in 3,642 ATs, 6,542 genes in
13,728 ESs, 155 genes in 157 MEs, and 1,839 genes in 2,684 RIs.
In KIRC, there are a total of 10,567 genes involved in 30,979 AS
events. We found 2,562 genes in 3,416 AAs, 2,192 genes in 2,813
ADs, 3,620 genes in 3,620 APs, 3,729 genes in 3,729 ATs, and
6,840 genes in 14,451 ESs, 170 genes in 173 MEs, and 1,902 genes
in 2,777 RIs. In KIRP, there are a total of 9,988 genes involved
in 27,820 AS events. We found 2,285 genes in 3,023 AAs, 1,974
genes in 2,531 ADs, 3,201 genes in 3,201 APs, 3,661 genes in 3,661
ATs, and 6,221 genes in 12,634 ESs, 130 genes in 130 MEs, and
1,802 genes in 2,640 RIs.

Figures 1A–C visually presented the contrast between AS
events and ASRGs in pan-RCC. Interestingly, ADs and ATs are
identical in number to related genes, which can be observed in
all subtypes of pan-RCC. In each type of RCC, ESs are the most
AS events, and MEs are the fewest AS events. The common gene
distribution of seven types of AS events was shown in Figure 2.
In KIRC and KICH, the AP&ES gene group contained 694 and
660 genes, respectively, which was the group with the largest
number of genes in all groups with genes involved in two types
of events. However, in KIRP, the group with the largest number
of genes involved in two types of events is the AT&ES gene
group, containing 669 genes. In each subtype of pan-RCC, the
groups with the largest number of genes were involved in three or
four types of events are AP&AT&ES and AA&AP&AT&ES gene
group, respectively. 79.46% of AS events and 86.90% of ASRGs
were present in all subtypes of pan-RCC, more details could
be found in Figures 1D,E. Overall, pan-RCC has the similar
ratio of AS events/ASRGs and distribution characteristics of AS
events and ASRGs, suggesting that they may have associated
pathological features.

Splicing Feature of SREs and SRGs in
Pan-RCC
Biological processes are the result of interactions between
multiple AS events. The effects of individual factors on outcomes
can be quantified by multivariate survival analysis. In KIRC,
1,904 candidate genes (SRGs) are present in 2,169 SREs,
including 91 genes in 93 AAs, 60 genes in 63 ADs, and 204 genes
in 204 APs, 1,164 genes in 1,164 ATs, 345 genes in 384 ESs, 7 genes
in 7 MEs, and 228 genes in 254 RIs (Figure 1F). For KICH, 1,442
SRGs are present in 1,671 SREs, including 127 genes in 133 AAs,
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FIGURE 2 | The distributions of ASEs and ASRGs in each kind of RCC. The Upset plot shows the distribution of ASRGs and ASEs in the pan-RCC. The bar chart

above represents the number of genes contained in each type of group. The bar chart at the bottom left represents the number of events included in each type of AS

events. The dotted line at the bottom right shows the types of events contained in the group. Pink indicates the group with the largest number of ASRGs in the groups

containing one event type. Red indicates the group with the largest number of ASRGs in the groups containing two event types. Yellow indicates the group with the

largest number of ASRGs in the groups containing three event types. Blue indicates the group with the largest number of ASRGs in the groups containing four event

types. (A) KIRC; (B) KICH; and (C) KIRP.

123 genes in 130 ADs, and 193 genes in 193 APs, 365 genes in 365
ATs, 621 genes were in 671 ESs, 7 genes in 7 MEs, and 154 genes
in 172 RIs (Figure 1G). In KIRP, 1,244 SRGs were observed to
involve in 1,414 SREs, including 119 genes in 125 AAs, 85 genes
in 91 ADs, and 93 genes in 93 APs, 557 genes in 557 ATs, 374

genes in 408 ESs, 1 gene in 1 MEs, and 124 genes in 139 RIs
(Figure 1H). The detailed information about SREs was presented
in Supplementary Table 1.

Most of the genes affecting prognosis occur only one AS event.
ATs are the main AS types affecting the prognosis of patients with
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FIGURE 3 | The distributions of SREs and SRGs in each kind of RCC. The strip at the bottom left shows the number of SREs included in each AS type. The dot and

line at the bottom right represent the subsets of AS events. The AS types corresponding to dots were contained in the subtype. The number of relevant genes in each

subset is represented in the histogram, which is the upper part of the whole plot. (A) KIRC; (B) KICH; and (C) KIRP.
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TABLE 1 | The information of top10 survival related events.

Type Events ID Coef 95% CI lower 95% CI upper P-value

KIRC

C4orf19_AT_5 69001 −2.873 −3.520 −2.227 <0.05

EPC2_AT_15 55538 −6.284 −7.772 −4.796 <0.05

SCP2_ES_12 3045 2.837 2.116 3.557 <0.05

FAM120C_AT_17 89238 −3.433 −4.306 −2.560 <0.05

PCMTD1_AT_8 83807 −14.851 −18.695 −11.008 <0.05

ZNF814_AT_4.2 52355 8.437 6.236 10.638 <0.05

INPP4B_AT_35 70691 −7.025 −8.867 −5.184 <0.05

FAM72A_AT_6 9578 3.849 2.817 4.881 <0.05

HAGH_ES_6 33146 −27.773 −35.307 −20.240 <0.05

TAF1D_RI_12.4 18313 3.940 2.871 5.008 <0.05

KICH

TATDN1_AD_4.2 85085 19.167 10.734 27.600 <0.05

FAM195A_ES_3 32927 −21.988 −32.280 −11.697 <0.05

PLEKHB2_AD_8.2 55376 29.819 15.557 44.082 <0.05

TATDN1_ES_3 85090 −33.292 −49.233 −17.352 <0.05

DPM3_AP_1 7946 −89.941 −133.516 −46.366 <0.05

PEX16_ES_4 15523 84.717 43.551 125.883 <0.05

DEPDC5_AT_46 61896 −98.093 −146.147 −50.038 <0.05

BCL2L13_ES_7 96058 −31.186 −46.554 −15.819 <0.05

MRPS24_RI_1.2 79352 42.536 21.439 63.634 <0.05

UBAP2L_AT_29 7814 −25.624 −38.488 −12.760 <0.05

KIRP

COPE_ES_4 48520 −167.002 −214.158 −119.846 <0.05

PPP1CA_ES_2.2 17184 −68.743 −88.308 −49.178 <0.05

RBM39_AT_24 59235 −77.423 −99.691 −55.155 <0.05

PKIG_ES_2.2 59481 7.228 5.056 9.400 <0.05

CLDN11_AT_3 67616 3.696 2.574 4.818 <0.05

FKBP8_AA_6.1 48446 −16.366 −21.358 −11.373 <0.05

GLS_AT_20 56589 −5.232 −6.861 −3.603 <0.05

GUK1_AA_7.1 10188 −45.194 −59.292 −31.096 <0.05

KIF4A_AT_32 89373 4.438 3.045 5.832 <0.05

AUH_AT_11 86823 −11.438 −15.095 −7.780 <0.05

Events are identified as symbol_splice type_exons. ID is the unique number used by The TCGA SpliceSeq database to represent each AS event in each kind of tumor. Coef values are

used to represent the quantitative relationship between variables and results. Absolute values represent correlation strength. Positive numbers represent positive correlations. Negative

numbers represent negative correlations; CI, confidence interval.

KIRC and KIRP, while ESs are the main one in KICH. In pan-
RCC, only a very small number of MEs contribute to prognosis
(Figure 3). Among all SRGs, 4.90% of SRGs were present in three
types of renal cell carcinomas. For SREs, this ratio is 1.33%, which
is less than one-third that of SRGs (Figures 1I,J), suggesting
that different pathological processes alter the prognosis of the
subtype of pan-RCC, which are more dependent on SREs
than SRGs.

Prognostic Models Based on SREs
Information on the 10 most significant SREs in pan-RCC was
shown in Table 1. All entries in it have been selected with
P < 0.05. We established two prognostic models based on
the most significant SREs. The K-M survival curve presented

the trend of survival over time for univariate and multivariate
survival analyses (Figure 4). Univariate survival analysis usually
showed the impact of PSI values on survival. However, it could
be clearly seen that when multi-factor weighted PSI values
were used for grouping, the difference in survival between
the high expression group and the ground expression group
was more pronounced (Figures 4K,V,AG). The ROC curve
compared the 5 year survival outcomes of patients with different
factors (Figures 5A–C), and more details were recorded in
Table 2. The AUC value was regarded as an indicator for
judging the prediction effect. In pan-RCC, the weighted PSI
values always exhibited better or the same predictive effect
than any single SREs. When using SREs to fit a binary logistic
regression equation, the AUC values of predicted probability
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FIGURE 4 | The survival curve for different prognostic factors. In the upper graph, the blue curve represented the group with high PSI values; the pink curve

represented the group with low PSI values. The table below showed the number of people at risk that change over time. (A) Survival curve based on the PSI value of

C4orf19_AT_5 in KIRC. (B) Survival curve based on the PSI value of EPC2_AT_15 in KIRC. (C) Survival curve based on the PSI value of SCP2_ES_12 in KIRC. (D)

Survival curve based on the PSI value of FAM120C_AT_17 in KIRC. (E) Survival curve based on the PSI value of PCMTD1_AT_8 in KIRC. (F) Survival curve based on

the PSI value of ZNF814_AT_4.2 in KIRC. (G) Survival curve based on the PSI value of INPP4B_AT_35 in KIRC. (H) Survival curve based on the PSI value of

FAM72A_AT_6 in KIRC. (I) Survival curve based on the PSI value of HAGH_ES_6 in KIRC. (J) Survival curve based on the PSI value of TAF1D_RI_12.4 in KIRC. (K)

Survival curve based on the weighted PSI value of KIRC. (L) Survival curve based on the PSI value of TATDN1_AD_4.2 in KICH. (M) Survival curve based on the PSI

value of FAM195A_ES_3 in KICH. (N) Survival curve based on the PSI value of PLEKHB2_AD_8.2 in KICH. (O) Survival curve based on the PSI value of

TATDN1_ES_3 in KICH. (P) Survival curve based on the PSI value of DPM3_AP_1 in KICH. (Q) Survival curve based on the PSI value of PEX16_ES_4 in KICH. (R)

Survival curve based on the PSI value of DEPDC5_AT_46 in KICH. (S) Survival curve based on the PSI value of BCL2L13_ES_7 in KICH. (T) Survival curve based on

the PSI value of MRPS24_RI_1.2 in KICH. (U) Survival curve based on the PSI value of UBAP2L_AT_29 in KICH. (V) Survival curve based on the weighted PSI value of

(Continued)
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FIGURE 4 | KICH. (W) Survival curve based on the PSI value of COPE_ES_4 in KIRP. (X) Survival curve based on the PSI value of PPP1CA_ES_2.2 in KIRP. (Y)

Survival curve based on the PSI value of RBM39_AT_24 in KIRP. (Z) Survival curve based on the PSI value of PKIG_ES_2.2 in KIRP. (AA) Survival curve based on the

PSI value of CLDN11_AT_3 in KIRP. (AB) Survival curve based on the PSI value of FKBP8_AA_6.1 in KIRP. (AC) Survival curve based on the PSI value of GLS_AT_20

in KIRP. (AD) Survival curve based on the PSI value of GUK1_AA_7.1 in KIRP. (AE) Survival curve based on the PSI value of KIF4A_AT_32 in KIRP. (AF) Survival curve

based on the PSI value of AUH_AT_11 in KIRP. (AG) Survival curve based on the weighted PSI value of KIRP.

FIGURE 5 | Survival-related SFs in pan-RCC and the ROC curve of three model. (A–I) The ROC curves of 5 year survival model in KIRC, KICH, and KIRP was shown

in (A–C). The ROC curves of the diagnostic model using the PSI value of SREs in KIRC, KICH, and KIRP was shown in (D–F). The ROC curves of diagnostic model

using the weighted PSI value of each AS type in KIRC, KICH, and KIRP were shown in (G–I). The different color of the lines represented different predictors, the

detailed information of which presented in the illustration on the right of figures. The X axis was a (1-Specificity) value. The y-axis was the sensitivity value. (J–L) The

survival-related SFs in KIRC, KICH, and KIRP, respectively. The red nodes represented the SFs that are positively related to survival. The purple nodes represented the

SFs that are negatively related to survival. The cyan node represents the type of RCC.
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TABLE 2 | ROC curve results of survival related factors in predicting 5 year survival.

Cancer type Events Cut-off Sensitivity Specificity AUC 95% CI lower 95% CI upper P-value

KIRC

Top10_KIRC −53.062 0.748 0.641 0.748 0.696 0.800 <0.05

C4orf19_AT_5 0.759 0.646 0.627 0.681 0.625 0.737 <0.05

EPC2_AT_15 0.864 0.490 0.809 0.671 0.614 0.728 <0.05

SCP2_ES_12 0.412 0.585 0.714 0.682 0.626 0.738 <0.05

FAM120C_AT_17 0.530 0.442 0.841 0.666 0.609 0.723 <0.05

PCMTD1_AT_8 0.963 0.578 0.695 0.649 0.589 0.708 <0.05

ZNF814_AT_4.2 0.194 0.646 0.664 0.673 0.615 0.730 <0.05

INPP4B_AT_35 0.943 0.701 0.573 0.669 0.612 0.725 <0.05

FAM72A_AT_6 0.420 0.667 0.686 0.702 0.647 0.756 <0.05

HAGH_ES_6 0.986 0.673 0.573 0.644 0.587 0.701 <0.05

TAF1D_RI_12.4 0.271 0.565 0.732 0.666 0.608 0.724 <0.05

Predicted probability 0.520 0.537 0.909 0.754 0.701 0.806 <0.05

KICH

Top10_KICH −248.082 1.000 1.000 1.000 1.000 1.000 <0.05

TATDN1_AD_4.2 0.268 0.750 0.895 0.862 0.709 1.000 <0.05

FAM195A_ES_3 0.615 1.000 1.000 1.000 1.000 1.000 <0.05

PLEKHB2_AD_8.2 0.170 0.750 0.842 0.868 0.722 1.000 <0.05

TATDN1_ES_3 0.918 0.875 0.895 0.888 0.725 1.000 <0.05

DPM3_AP_1 0.972 0.625 0.842 0.730 0.524 0.936 0.063

PEX16_ES_4 0.024 0.875 0.895 0.931 0.837 1.000 <0.05

DEPDC5_AT_46 0.978 0.625 0.842 0.763 0.576 0.950 <0.05

BCL2L13_ES_7 0.822 0.875 0.947 0.921 0.810 1.000 <0.05

MRPS24_RI_1.2 0.104 1.000 0.737 0.836 0.684 0.987 <0.05

UBAP2L_AT_29 0.392 1.000 0.895 0.987 0.953 1.000 <0.05

Predicted probability 0.500 1.000 1.000 1.000 1.000 1.000 <0.05

KIRP

Top10_KIRP −375.499 0.816 0.724 0.817 0.734 0.901 <0.05

COPE_ES_4 0.992 0.500 0.859 0.671 0.560 0.782 <0.05

PPP1CA_ES_2.2 0.979 0.474 0.870 0.683 0.580 0.787 <0.05

RBM39_AT_24 0.975 0.447 0.886 0.706 0.612 0.801 <0.05

PKIG_ES_2.2 0.181 0.816 0.562 0.716 0.622 0.810 <0.05

CLDN11_AT_3 0.189 0.684 0.773 0.753 0.650 0.856 <0.05

FKBP8_AA_6.1 0.690 0.579 0.751 0.704 0.611 0.797 <0.05

GLS_AT_20 0.734 0.658 0.708 0.688 0.584 0.792 <0.05

GUK1_AA_7.1 0.962 0.658 0.686 0.702 0.610 0.794 <0.05

KIF4A_AT_32 0.641 0.553 0.924 0.730 0.628 0.832 <0.05

AUH_AT_11 0.876 0.579 0.816 0.698 0.598 0.798 <0.05

Predicted probability 0.143 0.789 0.784 0.841 0.768 0.915 <0.05

Events are identified as symbol_splice type_exons. Top10_KIRC means the weighted PSI value of the top10 significant SREs in KIRC. Top10_KICH means the weighted PSI value of

the top10 significant SREs in KICH. Top10_KIRP means the weighted PSI value of the top10 significant SREs in KIRP.AUC, area under the ROC curve; CI, confidence interval.

were better or equal than that of the weighted PSI values in most
AS events.

Hub Genes in PPI Network
Hub genes are selected based on the number of genes connected.
In KIRC, hub genes with higher degrees are: RPL9 (degree= 47),
RPL27A (degree = 47), RPL26 (degree = 46), RPS15A
(degree= 46), RPL17 (degree= 46), RPL15 (degree= 46), RPS9
(degree = 46), RPS20 (degree = 45), RPS3A (degree = 45),
RPS6 (degree = 45), RPS25 (degree = 45), RPS5 (degree = 45),

RPL35 (degree = 45). In KICH, 8 hub genes are RPS2
(degree = 16), RPL8 (degree = 16), RPL17 (degree = 16), RPS9
(degree = 16), RPS20 (degree = 15), RPS16 (degree = 15),
RPL27A (degree = 15), RPL10 (degree = 15). Hub genes

in KIRP are RPS20 (degree = 26), RPS15A (degree = 26),

RPS29 (degree = 25), RPL23A (degree = 25), RPS3A
(degree = 25), RPS15 (degree = 25), RPS19 (degree = 25),
RPS7 (degree = 25). The interaction of all genes was shown in
Supplementary Figure 1, with the color of nodes representing
different degrees.
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TABLE 3 | The information of GO terms with the highest ratio.

ID Term Source P-value % associated genes

KIRC

GO:0009083 Branched-chain amino acid catabolic process GO biological process <0.01 52.17

GO:0009081 Branched-chain amino acid metabolic process GO biological process <0.01 50.00

GO:0022627 Cytosolic small ribosomal subunit GO cellular component <0.01 45.10

GO:0006613 Cotranslational protein targeting to membrane GO biological process <0.01 43.81

GO:0006614 SRP-dependent cotranslational protein targeting to membrane GO biological process <0.01 43.00

GO:0045047 Protein targeting to ER GO biological process <0.01 42.20

GO:0072599 Establishment of protein localization to endoplasmic reticulum GO biological process <0.01 41.59

GO:0022626 Cytosolic ribosome GO cellular component <0.01 40.98

GO:0006120 Mitochondrial electron transport, NADH to ubiquinone GO biological process <0.01 38.78

GO:0070972 Protein localization to endoplasmic reticulum GO biological process <0.01 37.78

KICH

GO:0034497 Protein localization to phagophore assembly site GO biological process <0.01 58.33

GO:0032266 Phosphatidylinositol-3-phosphate binding GO molecular function <0.01 40.00

GO:0043001 Golgi to plasma membrane protein transport GO biological process <0.01 39.39

GO:0080025 Phosphatidylinositol-3,5-bisphosphate binding GO molecular function <0.01 37.04

KEGG:04136 Autophagy KEGG 20.11.2017 <0.01 34.38

GO:0007031 Peroxisome organization GO biological process <0.01 34.29

GO:0061951 Establishment of protein localization to plasma membrane GO biological process <0.01 33.33

GO:0015949 Nucleobase-containing small molecule interconversion GO biological process <0.01 32.35

GO:0036002 Pre-mRNA binding GO molecular function <0.01 31.58

GO:0006893 Golgi to plasma membrane transport GO biological process <0.01 30.00

KIRP

GO:0050136 NADH dehydrogenase (quinone) activity GO molecular function <0.01 41.03

GO:0008137 NADH dehydrogenase (ubiquinone) activity GO molecular function <0.01 41.03

GO:0030964 NADH dehydrogenase complex GO cellular component <0.01 40.00

GO:0045271 Respiratory chain complex I GO cellular component <0.01 40.00

GO:0005747 Mitochondrial respiratory chain complex I GO cellular component <0.01 40.00

GO:0097031 Mitochondrial respiratory chain complex I biogenesis GO biological process <0.01 38.33

GO:0010257 NADH dehydrogenase complex assembly GO biological process <0.01 38.33

GO:0032981 Mitochondrial respiratory chain complex I assembly GO biological process <0.01 38.33

GO:0003954 NADH dehydrogenase activity GO molecular function <0.01 38.10

GO:0005753 Mitochondrial proton-transporting ATP synthase complex GO cellular component <0.01 38.10

Function and Pathway Enrichment Analysis
Based on all SRGs, we have identified 360 GO terms and eight
KEGG terms in KIRC, 250 GO terms and two KEGG terms
in KICH, 180 GO terms and eight KEGG terms in KIRP.
Considering the large number of entries in the results, we
present the 10 terms with the highest proportion of related
gene genes and the 10 terms with the most genes involved
in Tables 3, 4. From the number of participating genes,
most of the SRGs in pan-RCC are involved in intracellular,
intracellular organelle, cytoplasm, intracellular membrane-
bounded organelle, cytoplasmic part, intracellular organelle
part. From the perspective of functionally related genes,
SRGs in KIRC were significantly involved in the branched-
chain amino acid catabolic process, branched-chain amino
acid metabolic process, cytosolic small ribosomal subunit,
cotranslational protein targeting to membrane, SRP-dependent
cotranslational protein targeting to membrane, protein targeting

to ER, establishment of protein localization to endoplasmic
reticulum, cytosolic ribosome, mitochondrial electron transport,
NADH to ubiquinone, protein localization to endoplasmic
reticulum. SRGs in KICH were significantly involved in protein
localization to phagophore assembly site, phosphatidylinositol-
3-phosphate binding, Golgi to plasma membrane protein
transport, phosphatidylinositol-3,5-bisphosphate binding,
Autophagy, peroxisome organization, establishment of protein
localization to plasma membrane, nucleobase-containing
small molecule interconversion, pre-mRNA binding, Golgi to
plasma membrane transport. SRGs in KIRP were significantly
involved in NADH dehydrogenase (quinone) activity, NADH
dehydrogenase (ubiquinone) activity, NADH dehydrogenase
complex, respiratory chain complex I, mitochondrial respiratory
chain complex I, mitochondrial respiratory chain complex
I biogenesis, NADH dehydrogenase complex assembly,
mitochondrial respiratory chain complex I assembly, NADH
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TABLE 4 | The information of GO terms with the most genes.

ID Term Source P value Count

KIRC

GO:0005622 Intracellular GO cellular component <0.01 1676

GO:0044424 Intracellular part GO cellular component <0.01 1662

GO:0043229 Intracellular organelle GO cellular component <0.01 1529

GO:0005737 Cytoplasm GO cellular component <0.01 1400

GO:0043231 Intracellular membrane-bounded organelle GO cellular component <0.01 1386

GO:0044444 Cytoplasmic part GO cellular component <0.01 1223

GO:0044446 Intracellular organelle part GO cellular component <0.01 1201

GO:0043170 Macromolecule metabolic process GO biological process <0.01 1104

GO:0044260 Cellular macromolecule metabolic process GO biological process <0.01 1046

GO:0005634 Nucleus GO cellular component <0.01 948

KICH

GO:0005622 Intracellular GO cellular component <0.01 1271

GO:0044424 Intracellular part GO cellular component <0.01 1260

GO:0043229 Intracellular organelle GO cellular component <0.01 1156

GO:0005737 Cytoplasm GO cellular component <0.01 1066

GO:0043231 Intracellular membrane-bounded organelle GO cellular component <0.01 1050

GO:0044444 Cytoplasmic part GO cellular component <0.01 959

GO:0044446 Intracellular organelle part GO cellular component <0.01 920

GO:0043170 Macromolecule metabolic process GO biological process <0.01 806

GO:0044260 Cellular macromolecule metabolic process GO biological process <0.01 773

GO:0005634 Nucleus GO cellular component <0.01 693

KIRP

GO:0005622 Intracellular GO cellular component <0.01 1064

GO:0044424 Intracellular part GO cellular component <0.01 1057

GO:0043229 Intracellular organelle GO cellular component <0.01 962

GO:0005737 Cytoplasm GO cellular component <0.01 913

GO:0043231 Intracellular membrane-bounded organelle GO cellular component <0.01 864

GO:0044444 Cytoplasmic part GO cellular component <0.01 808

GO:0044446 Intracellular organelle part GO cellular component <0.01 772

GO:0044260 Cellular macromolecule metabolic process GO biological process <0.01 631

GO:0005634 Nucleus GO cellular component <0.01 565

GO:1901564 Organonitrogen compound metabolic process GO biological process <0.01 560

dehydrogenase activity, mitochondrial proton-transporting ATP
synthase complex. This result indicates that the significantly
affected cell functions in pan-RCC are diverse, which may be
responsible for pathological differences.

Diagnostic Test
The PSI values and weighted PSI values of the 10 most significant
genes and the predicted probability of the binary logistic
regression equation were used to diagnose pan-RCC through
the ROC curve (Figures 5D–F). The consequence indicates that
not all SRGs can effectively diagnose pan-RCC. Although with
the significant consequence, partial SRGs cannot be considered
to have diagnostic potential, such as FAM72A_AT_6 in KIRC,
DEPDC5_AT_46 in KICH, and AUH_AT_11 in KIRP. The
weighted PSI values are not always predictive of pan-RCC, while
the predicted probability obtained good diagnostic efficacy in
each type of pan-RCC, similar to 5 year survival model (Table 5).

In KIRC, there was a significant difference in all AS types. Only
ADs, ATs, and RIs had significant differences in KICH. As for
KIRP, significant differences were observed in all AS types except
MEs (Table 6). The ROC curve plays a role in determining the
predictive power of each AS type (Figures 5G–I). The AS types
with AUC value >0.7 are AA, AD, AP, AT, ES, RI in KIRC,
AD, AT, RI in KICH, and AD, AP, RI in KIRP. The AUC values
of predicted probability were 0.935, 0.938, and 0.875 in KIRC,
KICH, and KIRP, respectively, which were more reliable than the
prediction by any AS type (Table 7). AD, AT, and RI had excellent
performance in all subtypes.

Survival-Related SFs and Regulatory
Network
A total of 12, 9, and 6 SFs were associated with prognosis of KIRC,
KICH, and KIRP, and their effects on prognosis were marked by
different colors in Figures 5J–L. At the threshold = 0.4, 4689,
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TABLE 5 | ROC curve results of survival related factors in predicting diagnostic test.

Cancer type Events Cut-off Sensitivity Specificity AUC 95% CI lower 95% CI upper P-value

KIRC

Top10_KIRC −55.416 0.827 0.806 0.887 0.851 0.923 <0.05

C4orf19_AT_5_AT_51R 0.855 0.745 0.917 0.881 0.849 0.913 <0.05

EPC2_AT_15 0.915 0.752 0.389 0.552 0.477 0.628 0.150

SCP2_ES_12 0.231 0.906 0.875 0.939 0.912 0.966 <0.05

FAM120C_AT_17 0.756 0.767 0.903 0.892 0.862 0.921 <0.05

PCMTD1_AT_8 0.982 0.771 0.833 0.862 0.826 0.898 <0.05

ZNF814_AT_4.2 0.129 0.795 0.861 0.883 0.848 0.919 <0.05

INPP4B_AT_35 0.957 0.368 0.819 0.549 0.487 0.611 0.175

FAM72A_AT_6 0.361 0.674 0.611 0.655 0.585 0.725 <0.05

HAGH_ES_6 0.986 0.523 0.708 0.605 0.545 0.665 <0.05

TAF1D_RI_12.4 0.238 0.402 0.889 0.629 0.577 0.681 <0.05

Predicted probability 0.834 0.955 0.931 0.988 0.978 0.998 <0.05

KICH

Top10_KICH −247.040 0.455 0.880 0.688 0.576 0.800 0.006

TATDN1_AD_4.2 0.188 0.636 0.840 0.765 0.668 0.861 <0.05

FAM195A_ES_3 0.655 0.409 0.760 0.552 0.421 0.683 0.444

PLEKHB2_AD_8.2 0.142 0.682 0.520 0.557 0.428 0.686 0.401

TATDN1_ES_3 0.938 0.470 0.760 0.603 0.476 0.730 0.131

DPM3_AP_1 0.947 0.955 0.320 0.598 0.462 0.735 0.149

PEX16_ES_4 0.020 0.576 0.560 0.535 0.404 0.666 0.606

DEPDC5_AT_46 0.985 0.727 0.640 0.656 0.524 0.788 <0.05

BCL2L13_ES_7 0.892 0.879 0.920 0.940 0.891 0.989 <0.05

MRPS24_RI_1.2 0.097 0.561 0.880 0.683 0.578 0.789 <0.05

UBAP2L_AT_29 0.382 0.364 0.920 0.593 0.479 0.707 0.174

Predicted probability 0.614 0.955 0.920 0.970 0.936 1.000 <0.05

KIRP

Top10_KIRP −375.286 0.341 0.906 0.502 0.425 0.571 0.973

COPE_ES_4 0.996 0.562 0.844 0.735 0.651 0.819 <0.05

PPP1CA_ES_2.2 0.989 0.614 0.813 0.697 0.622 0.772 <0.05

RBM39_AT_24 0.983 0.648 0.844 0.737 0.664 0.809 <0.05

PKIG_ES_2.2 0.187 0.531 0.906 0.701 0.627 0.776 <0.05

CLDN11_AT_3 0.261 0.779 1.000 0.918 0.886 0.951 <0.05

FKBP8_AA_6.1 0.723 0.779 0.844 0.839 0.774 0.904 <0.05

GLS_AT_20 0.873 0.859 0.531 0.723 0.622 0.824 <0.05

GUK1_AA_7.1 0.964 0.431 0.719 0.534 0.443 0.625 0.527

KIF4A_AT_32 0.210 0.741 0.813 0.829 0.763 0.895 <0.05

AUH_AT_11 0.890 0.334 0.969 0.618 0.539 0.696 <0.05

Predicted probability 0.923 0.979 1.000 0.999 0.997 1.000 <0.05

Events are identified as symbol_splice type_exons. Top10_KIRC means the weighted PSI value of the top10 significant SREs in KIRC. Top10_KICH means the weighted PSI value of

the top10 significant SREs in KICH. Top10_KIRP means the weighted PSI value of the top10 significant SREs in KIRP.AUC, area under the ROC curve; CI, confidence interval.

966 and 226 SF-AS event pairs were found in KIRC, KICH, and
KIRP, respectively, some of which with larger Pearson correlation
coefficients were shown in Figures 6A–C. In KICH and KIRP,
most of the SFs were negatively related to AS events that prolong
survival, while such trend was not apparent in KIRC.

DISCUSSION

The phenomenon of AS was noticed in the twentieth century,
but it has not been systematically analyzed. Advances in
high-throughput sequencing technology allows us to explain

the rapport between abnormal AS events and pan-cancer
at the genome-wide level. Aberrant AS events have been
proven to interfere with the initiation and progression of
several cancers. Protein is the bearer of life activities and acts
directly on regular or deviant life activities. The generation
of protein diversity depends on the precisely regulated AS
events that occur in pre-mRNA (28, 29). Compared to

genetic mutations, AS has a broader and more direct effect

on proteins. Once the AS event is out of precise regulation,

deviant pre-mRNA modifications are produced and disrupt

the stability of the transcriptome, becoming a potential risk

Frontiers in Oncology | www.frontiersin.org 13 November 2019 | Volume 9 | Article 1317

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Jia et al. SREs in Pan-RCC

TABLE 6 | Difference of PSI value between pan-RCC and normal tissues in each type of alternative splicing.

Splice events KICH KIRC KIRP

Cancer Normal P Cancer Normal P Cancer Normal P

AA 0.619 ± 0.007 0.618 ± 0.003 0.266 0.620 ± 0.013 0.612 ± 0.004 <0.001 0.622 ± 0.014 0.614 ± 0.006 <0.001

AD 0.546 ± 0.010 0.540 ± 0.004 <0.001 0.546 ± 0.014 0.531 ± 0.005 <0.001 0.555 ± 0.015 0.543 ± 0.007 <0.001

AP 0.831 ± 0.011 0.834 ± 0.005 0.197 0.819 ± 0.018 0.832 ± 0.004 <0.001 0.820 ± 0.020 0.832 ± 0.005 <0.001

AT 0.852 ± 0.006 0.858 ± 0.011 0.002 0.859 ± 0.016 0.869 ± 0.007 <0.001 0.858 ± 0.010 0.864 ± 0.010 <0.001

ES 0.714 ± 0.015 0.710 ± 0.003 0.729 0.718 ± 0.017 0.707 ± 0.003 <0.001 0.740 ± 0.017 0.731 ± 0.005 <0.001

ME 0.471 ± 0.010 0.469 ± 0.007 0.241 0.467 ± 0.010 0.463 ± 0.007 0.004 0.487 ± 0.012 0.487 ± 0.007 0.764

RI 0.585 ± 0.018 0.571 ± 0.009 <0.001 0.604 ± 0.034 0.570 ± 0.013 <0.001 0.609 ± 0.032 0.580 ± 0.019 <0.001

TABLE 7 | ROC curve results of PSI of each AS types in diagnostic test.

Cancer type Type Cut-off Sensitivity Specificity AUC 95% CI lower 95% CI upper P-value

KIRC

AA 0.616 0.578 0.917 0.715 0.673 0.758 <0.05

AD 0.538 0.653 0.972 0.848 0.813 0.882 <0.05

AP 0.828 0.666 0.903 0.823 0.785 0.862 <0.05

AT 0.862 0.548 0.875 0.720 0.674 0.767 <0.05

ES 0.709 0.707 0.806 0.796 0.755 0.838 <0.05

ME 0.470 0.332 0.875 0.604 0.541 0.667 <0.05

RI 0.587 0.638 0.944 0.814 0.775 0.852 <0.05

Predicted probability 0.908 0.799 0.958 0.935 0.912 0.959 <0.05

KICH

AD 0.540 0.803 0.720 0.779 0.676 0.882 <0.05

AT 0.859 0.864 0.560 0.708 0.565 0.851 <0.05

RI 0.572 0.864 0.640 0.792 0.688 0.896 <0.05

Predicted probability 0.775 0.833 0.960 0.938 0.888 0.988 <0.05

KIRP

AA 0.616 0.645 0.719 0.695 0.612 0.777 <0.05

AD 0.545 0.790 0.688 0.793 0.716 0.869 <0.05

AP 0.827 0.586 0.906 0.770 0.706 0.834 <0.05

AT 0.866 0.817 0.594 0.714 0.607 0.821 <0.05

ES 0.732 0.645 0.781 0.704 0.625 0.784 <0.05

RI 0.598 0.597 0.875 0.787 0.714 0.859 <0.05

Predicted probability 0.855 0.831 0.781 0.875 0.820 0.930 <0.05

AUC, area under the ROC curve; CI, confidence interval.

factor for cancer (4). For instance, BC200 cooperates with
hnRNP A2/B1 and Sam68 to regulate AS of Bcl-x-pre-mRNA
in breast cancer patients. This interaction eventually inhibits
Bcl-xS expression, but simultaneously up-regulates Bcl-xL
expression, which promotes tumor cell proliferation and
increasing resistance to anti-cancer therapies (30). Single AS
event like this is only a microcosm of cancer development
and progression. Further, some researchers have found that
about half of all AS events in ovarian and breast tissue have
abnormal changes in tumor tissue (31). Previous analyses of
small-scale AS events inspire us to follow the significance of
AS events for the course of pan-RCC and their potential as
predictors (15, 32–35).

The current classification is based on the pathological features
of the tumor, and we sought to investigate the association
between various subtypes of pan-RCC through the distribution
of all AS events and SREs. We piloted computational biology
methods to correlate pan-RCC with large-scale AS events, and
mine the characteristics of AS events occurring in pan-RCC at the
genome-wide level, providing a new perspective for the diagnosis
and treatment of Pan-RCC. We identified SREs from genome-
wide levels in patients with KIRC, KICH, and KIRP. We found
that although most of the subtypes of pan-RCC have the same
AS events and ASRGs, there were significant differences between
their SREs and SRGs, which might be the source of differences
in subtypes. In particular, when analyzing the distribution of
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FIGURE 6 | SF-AS events regulatory network and the distribution of the key genes in PPI network. (A–C) The SF-AS events regulatory networks in KIRC, KICH, and

KIRP, respectively. The red nodes represented the AS events that were positively related to survival. The purple nodes represented the AS events that were negatively

related to survival. The red and purple lines represented a positive and negative correlation between the connected nodes, respectively. The larger the correlation

coefficient was, the thicker the line was and vice versa. (D) The distribution of the key genes in PPI network. The orange, blue, and gray areas represent the genes in

KIRC, KICH, and KIRP, respectively. The genes shown in overlapping regions exist in all relevant groups.

SREs in subtypes, we found that the SREs for KIRC and KIRP
are primarily AT, while ES in KICH, suggesting that KIRC and
KIRP have similarities in disease progression. KICH seems to

have different molecular mechanisms. Furthermore, we analyzed
the cross-subtype distribution of SREs and SRGs. Surprisingly,
under the condition of confidence = 0.9, SRGs involved in the
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PPI network indicates that KIRP and KIRC own many identical
genes, which means nearly half of the genes in the PPI network of
KIRP are also present in that of KIRC (Figure 6D). Some views
believe that KIRC and KIRP are two tumors with low association
in pathological changes (6), prognosis (36) and imaging changes
(37). In clinical practice, clear cell papillary RCC with dual
features of KIRC and KIRP was discovered and suggested as an
independent type of RCC (38). Functional enrichment analysis
makes known that most of the SRGs in pan-RCC have the same
biological function, and the heterogeneity of the tumor depends
on some key genes. This seems to expound that although KIRC
and KIRP have many of the same SRGs, they are considered
to be two distinct tumors based on pathological features. In
summary, the current study confirms that KIRC and KIRP
do have common molecular characteristics through analysis of
SRGs associated with AS events, and the key to figuring out
the difference between the two is analyzing the functions of the
relevant genes.

Furthermore, in order to identify the effects of SREs
on the occurrence and prognosis of pan-RCC, we disclosed
gene function and participation pathways through enrichment
analysis and found that a series of single SRE had an impact
on the survival of patients, indicating it has potential to be
therapeutic target point. For instance, the branched-chain amino
acid catabolic process enriched in KIRC is a vital biological
metabolic step, closely related to cancer (39). Many studies have
clarified that cancer has specific metabolic characteristics, an
important direction for studying cancer (40, 41). The enrichment
of KIRP is mainly related to the oxidative respiratory chain,
in which inhibition of NADH dehydrogenase activity has been
proven to promote gastric cancer and breast cancer (42, 43).
Further research should focus on the existence of similar
mechanisms in KIRP. Survival curves with SREs as molecular
features displayed that AS events had significant impact on
patients’ survival. In particular, if we combined multiple events,
a larger difference would be detected between the two groups.
Multiple studies have used SREs as molecular features for
the diagnosis and prognosis of cancer (44). Unfortunately,
previous studies have always analyzed prognostic-related factors
independently by individual or category. Multi-factor models
often exhibit better consequences than single-factor models in
the diagnosis and prediction of prognosis. When building a
multi-factor model, we selected a binary logistic regression
equation instead of a weighted PSI value and obtained a better
performance in this study. Multivariate analysis established a
univariate predictive model to compare their effects. In the 5
year survival model, multivariate prediction illustrated better
accuracy than univariate ones. Diagnostic tests had also provided
similar results, emphasizing that when AS events are used as
predictors of disease, they should be integrated rather than
by individual or type. The binary logistic regression equation
demonstrated superior performance in all analyses and was
accepted as an excellent model for diagnosing pan-RCC and
evaluating patient prognosis. Furthermore, in order to figure
out the pathological and physiological mechanisms of AS

events, we constructed an SF-AS event regulatory network.
Recent studies have revealed that SFs are closely related to
the tumorgenesis and can serve as potential therapeutic targets
(45). Some researchers have noted this phenomenon and studied
AS events in hepatocellular carcinoma, lung cell carcinoma
and RCC (46–48). While our research points out the direction
for subsequent research by mining survival-related SFs and
constructing regulatory networks for SF-AS events. Surprisingly,
some SFs are negatively related to AS events that reduce survival,
whereas SF itself is negatively related to survival, suggesting that
the relevant AS event is not the only way that the SFs affects
the prognosis of the disease. The role of AS events in pan-
RCC is complex and comprehensive, and more details deserve
to be studied.

Despite the findings, some limitations should be addressed.
For instance, SREs used to fit binary logistic regression
equations need to be further extracted from all SREs, which
can increase the representativeness of the variables and
the stability of the equations. All consequences should be
tested in another set of samples to determine the reliability
of the results as well. More specific mechanisms of AS
affecting pan-RCC should be dig deeper to find available
therapeutic targets.

Collectively, our study systematically analyzed transcriptome-
wide AS events and identified novel SREs among KIRC, KICH,
and KIRP, thus providing the foundation for subsequent research
on therapeutic targets.
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