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Abstract 

Background:  Electronic health records can be used for population-wide identification and monitoring of disease. 
The Territory Kidney Care project developed algorithms to identify individuals with chronic kidney disease (CKD) and 
several commonly comorbid chronic diseases. This study aims to describe the development and validation of our 
algorithms for CKD, diabetes, hypertension, and cardiovascular disease. A secondary aim of the study was to describe 
data completeness of the Territory Kidney Care database.

Methods:  The Territory Kidney Care database consolidates electronic health records from multiple health services 
including public hospitals (n = 6) and primary care health services (> 60) across the Northern Territory, Australia. Using 
the database (n = 48,569) we selected a stratified random sample of patients (n = 288), which included individuals 
with mild to end-stage CKD. Diagnostic accuracy of the algorithms was tested against blinded manual chart reviews. 
Data completeness of the database was also described.

Results:  For CKD defined as CKD stage 1 or higher (eGFR of any level with albuminuria or persistent eGFR < 60 ml/
min/1.732, including renal replacement therapy) overall algorithm sensitivity was 93% (95%CI 89 to 96%) and speci-
ficity was 73% (95%CI 64 to 82%). For CKD defined as CKD stage 3a or higher (eGFR < 60 ml/min/1.732) algorithm 
sensitivity and specificity were 93% and 97% respectively. Among the CKD 1 to 5 staging algorithms, the CKD stage 
5 algorithm was most accurate with > 99% sensitivity and specificity. For related comorbidities – algorithm sensitivity 
and specificity results were 75% and 97% for diabetes; 85% and 88% for hypertension; and 79% and 96% for cardio-
vascular disease.

Conclusions:  We developed and validated algorithms to identify CKD and related chronic diseases within electronic 
health records. Validation results showed that CKD algorithms have a high degree of diagnostic accuracy compared 
to traditional administrative codes. Our highly accurate algorithms present new opportunities in early kidney disease 
detection, monitoring, and epidemiological research.
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Introduction
Globally, the social and economic burden of chronic kid-
ney disease (CKD) is high [1]. The COVID-19 pandemic 
has brought challenges to the traditional model of epi-
sodic, face-to-face care. This has accelerated the adoption 
of electronic health record (EHR)-based technologies to 
facilitate virtual models of kidney care [2] – such tech-
nologies include clinical decision support tools, and 
remote disease monitoring platforms for CKD and acute 
kidney injury. “Electronic phenotype” algorithms are 
the means through which routinely collected EHR data 
can be unlocked for secondary use in clinical care [3, 4]. 
Electronic phenotype algorithms are computerised algo-
rithms that classify patients as disease positive or nega-
tive, based on clinical characteristics found within an 
individual’s existing EHR profile [5, 6]. Typical data ele-
ments used in phenotype algorithms include administra-
tive codes, medication classes, and laboratory values [7].

Early EHR research in nephrology relied solely on 
administrative codes, such as International Classification 
of Disease (ICD) diagnostic codes; however, adminis-
trative codes have limited sensitivity in CKD due to the 
silent nature of early disease, and clinician under-rec-
ognition of the condition [7]. On the other hand, using 
laboratory cut-off definitions of CKD can be oversensi-
tive compared to manual nephrologist chart reviews [8]. 
Contemporary CKD phenotype algorithms use a com-
bination of administrative codes and laboratory values 
to improve diagnostic accuracy [8–13]. Improvements 
to algorithm accuracy signifies a “critical first step” to 
advancing kidney care [14] and allows for rapid identifi-
cation of patients with CKD across health services.

Several CKD phenotype algorithms have been pub-
lished in recent years – Table  1 provides a summary of 
key CKD algorithm features and validation results. Pub-
lished CKD algorithms primarily differ from one another 
on eGFR cut-offs used to define CKD, proteinuria meas-
ures used, and whether their CKD phenotype defini-
tion includes or excludes patients on renal replacement 
therapy (RRT). Algorithm validity refers to the diagnostic 
sensitivity and specificity of algorithm-classified diagno-
sis, compared with clinician chart reviews [5, 15]. The 
plurality of CKD algorithms demonstrate a lack of con-
sensus on a single, “standard” phenotyping approach 
[16]. There are several reasons for this – firstly, algorithm 
logic is rarely executed uniformly across healthcare set-
tings due to a lack of standardisation in EHR data struc-
tures and coding systems across proprietary vendors [17]; 

secondly, CKD guidelines and diagnostic criteria differs 
across countries; thirdly, algorithm requirements dif-
fer according to purpose – for example, a CKD pheno-
type algorithm designed for research recruitment may 
be unsuitable for use in clinical decision support. Given 
the context-specific nature of phenotype algorithms, we 
sought to develop and implement chronic disease algo-
rithms suitable for clinical use within our context in the 
Northern Territory, Australia.

The overall objective of the Territory Kidney Care 
(TKC) project is to improve care for people with CKD 
in the Northern Territory. Here, we describe the devel-
opment and validation of chronic disease algorithms 
to enable region-wide EHR-based initiatives in quality 
improvement and clinical decision support. Develop-
ment of our algorithms initially focussed on CKD but 
subsequently expanded to several commonly co-morbid 
conditions including type 2 diabetes mellitus (T2DM), 
hypertension, and cardiovascular disease. Phenotype 
algorithms rely on secondary use of available EHR data 
and as such, EHR data quality affects algorithm perfor-
mance. Previous authors have called for EHR data quality 
to be reported alongside validation work [5, 16] – for this 
reason, a secondary aim of the study was to describe data 
completeness of the TKC database.

Methods
Algorithm development
The Territory Kidney Care project began in 2017. The 
scope of the overall project included 1) linking multiple 
EHR data sources across the Northern Territory into a 
consolidated TKC database; 2) developing algorithms to 
identify patients with CKD and related chronic disease; 
3) building a user-interface that utilises algorithm out-
puts for clinical decision support; and 4) working with 
health service partners to implement clinical decision 
support into routine individual-level and service-level 
care. In this paper, we focus on the algorithm develop-
ment and validation component of the TKC project. 
We used an “Agile” approach to algorithm development 
– undertaking continuous short cycles of guideline con-
sultations, testing, and adaptations to meet user needs 
[18]. In 2020, the chronic disease algorithms underwent 
formal face validation as a part of the clinical decision 
support implementation process. We consulted clinicians 
within the research team and a panel of local specialists 
external to the project. The clinicians involved in face 
validation included 4 nephrologists, 1 endocrinologist, 
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1 cardiologist, 1 general practitioner, 1 renal nurse, and 
1 health informatics nurse working across the Northern 
Territory. The panel of local clinicians met and reached 
consensus through discussion on the agreed evidence 
base, logic of algorithms, and key algorithm assumptions.

Key assumptions for our CKD diagnostic algorithm 
are outlined in Table  2. The CKD algorithm assigns 
patients to a CKD stage according to Kidney Disease: 
Improving Global Outcomes (KDIGO) guidelines 
[19], according to estimated glomerular filtration rate 
(eGFR) for G-staging and urine albumin-to-creatinine 
ratio (uACR) for A-staging of CKD. To fulfill the cri-
teria for a CKD diagnosis based on eGFR, 2 or more 
readings of persistently reduced eGFR at least 3 months 
apart was required. The Chronic Kidney Disease Epi-
demiology Collaboration (CKD-EPI) equation was 
used for eGFR calculations. Other data elements used 

included administrative coding from International 
Classification of Diseases Australian Modified (ICD-
10 AM) [20] and primary care International Classifica-
tion of Primary Care (ICPC-2) codes [21]. Patients were 
identified as CKD pooled phenotype positive if they 
had CKD of any stage, or had evidence of renal replace-
ment therapy (RRT) based on administrative codes or 
ICD procedural codes for RRT.

A similar algorithm logic approach was used for 
related chronic diseases including T2DM, hyperten-
sion, and cardiovascular disease. Figure  1 shows a 
simplified general schema of our chronic disease algo-
rithm logic and Fig. 2 demonstrates how the algorithm 
logic was applied specifically to CKD and RRT phe-
notype algorithms. Full details and executable code of 
our chronic disease algorithms are publicly available 
online [22].

Table 2  Key assumptions for CKD phenotype algorithm

Abbreviations: eGFR estimated glomerular filtration rate, ICD-10-AM International Classification of Disease Australian Modified, KDIGO Kidney Disease: Improving 
Global Outcomes, RRT​ Renal replacement therapy, uACR​ urine albumin-to-creatinine ratio
a To fulfill the criteria for CKD based on eGFR, 2 or more readings of persistently reduced eGFR at least 3 months apart was required

1. Fulfills eGFRa and/or uACR criteria for CKD sub-phenotype stages 1 to 5 according to KDIGO definitions (Supplemental Table 1)

OR
2. Has one or more: administrative code or procedural codes criteria for RRT (Supplemental Table 1)

OR
3. Has one or more: other administrative codes related to CKD (e.g. chronic glomerulonephritis)

Fig. 1  General schema of algorithm logic for chronic disease phenotyping
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Setting and study population
We applied the chronic disease algorithms to the TKC 
database. The TKC database is conceptually similar to 
a EHR-based CKD registry. The development of this 
region-wide database was a substantial undertaking 
– geographically, the Northern Territory covers an 
area of approximately 1.4 million km2; from an EHR 
point of view, the database consolidates siloed EHR 
systems across all public hospitals (n = 6), all publicly-
funded remote primary health care clinics (n = 56), 
and participating non-government primary health 
care services (n = 12) in the Northern Territory. Indi-
vidual records from each health service are mapped 
and linked prior to phenotype algorithm execution. 
The consolidated database includes adults with CKD 
or a risk factor for CKD and has up to 24 years span 
of longitudinal data (1998 to 2022). Adults at risk of 

CKD included patients with pre-existing diabetes 
and hypertension, a history of renal disease or acute 
kidney injury, and patients with a high cardiovascu-
lar risk score (Framingham five-year cardiovascular 
risk > 15%).

As of 07 February 2021, there were n = 48,569 patients 
within the TKC database who were active – active is 
defined as patients with a TKC database entry within the 
past 2 years. A stratified random sample of active patients 
with various chronic diseases, including mild to end-
stage CKD, was selected for validation (total n = 360). All 
patients had to have 3 or more laboratory and observa-
tion entries to be considered for inclusion. Six subgroups 
of patients were selected to ensure that the validation 
cohort included both algorithm positive cases, and algo-
rithm negative controls for each of the chronic diseases 
of interest (CKD, diabetes, hypertension, cardiovascular 

Fig. 2  Algorithm logic for chronic kidney disease and renal replacement therapy phenotyping. Abbreviations: eGFR – estimated glomerular 
filtration rate; ICD – International Classification of Disease; ICPC – International Classification of Primary Care; KDIGO – Kidney Disease: Improving 
Global Outcomes; MBS – Medicare Benefits Scheme; RRT – Renal replacement therapy; uACR – urine albumin-to-creatinine ratio
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disease). Subgroup criteria are described in Table  3. 
Briefly, subgroup 1 were patients at risk of CKD with 
no known disease; subgroups 2, 3 and 4 were patients in 
mild, moderate and severe CKD stages; and subgroups 
5 and 6 were patients with comorbidities (e.g. diabetes) 
with or without CKD. Subgroup selection was based on 
CKD stages or co-morbidities, as defined by algorithm 
outputs. A random number generator selected n = 60 
patients within each of the 6 subgroups.

Chart reviews
Algorithm generated diagnoses were compared against 
blinded clinician reviews of de-identified patient charts. 
Pilot testing of a smaller sample of patients (n = 120) was 
conducted. Five physicians across nephrology, internal 
medicine, and general practice participated in the study 
(WC, PG, JK, DT, CB). Inform consent was obtained 
from clinician participants. Each reviewer was assigned 
a random subset of the validation cohort, which con-
tained a mix of patients from each of the subgroups. Two 
independent clinicians reviewed all administrative codes, 
medications, observations, laboratory results and other 
structured data available in the TKC database, via a front-
end user interface. Clinicians had access to text search 
and result visualisation functions within the front-end 
interface. Identifiable patient demographic information 
(name, date of birth, health record number) was masked, 
and participants were blinded to algorithm generated 
diagnoses. Clinicians recorded their diagnoses for CKD 
staging according to KDIGO definitions, and presence 
or absence of diabetes, hypertension, and cardiovascu-
lar disease using a structured tool. Discordant diagnoses 
between the two clinicians were resolved by consensus 
with reference to the agreed evidence base and by a third 
clinician where consensus could not be reached. For 
example, the agreed evidence base at the time of clini-
cian manual review included the 2012 KDIGO guidelines 

for diagnosing CKD [19] and the 2016 Australian Heart 
Foundation guidelines for hypertension [23]. The study 
was completed within a four-week timeframe in February 
2021.

Sample size
Using the Buderer formula for calculating sample size 
for diagnostic accuracy testing [24], a sample of n = 277 
patient records was required to obtain a margin of error 
of ± 5% for sensitivity and specificity. This is based on an 
expected sensitivity of 95%, specificity of 90%, prevalence 
of disease set at 50%, and an alpha of 0.05. Sensitivity and 
specificity estimates were based on pilot testing results.

Analysis
Algorithm diagnoses were compared against chart 
reviews as the reference gold standard. Sensitivity and 
specificity of each chronic disease and 95% confidence 
intervals (asymptotic method) were reported. Over-
all accuracy for the overall CKD algorithm (CKD of any 
stage) and accuracy of CKD staging algorithms (CKD 
sub-phenotypes for CKD stages 1 to 5, and RRT) were 
reported. For validation, RRT sub-phenotype was con-
sidered mutually exclusive to all other CKD stages. 
We conducted a sensitivity analysis with 1) CKD phe-
notype defined as KDIGO stage 3a and above, which 
is the main definition of CKD used in previous stud-
ies (Tables  1 and 3) CKD phenotype algorithm using a 
more stringent uACR criteria of two or more elevated 
readings over > 3  months. Accuracy of administrative 
codes (ICD/ICPC) was also compared to that of clinician 
chart reviews (gold standard). For EHR data quality, we 
used the domains of assessing data completeness pro-
posed by Wieskopf et al. [25] – descriptive statistics were 
reported for documentation, breadth, and density of the 
data within the TKC database. The proportion of patients 
within the database meeting several data completeness 

Table 3  Subgroup criteria for validation cohort

Abbreviations: ICD International Classification of Disease, ICPC International Classification of Primary Care
a CKD stages and the presence of comorbidities was based on algorithm output

Subgroup Inclusion criteriaa Number in final 
validation cohort (total 
n = 288)

Subgroup 1 Patients at risk of CKD, with no known diagnosis of CKD n = 50

Subgroup 2 Patients with CKD stages 1 to 3a n = 49

Subgroup 3 Patients with CKD stages 3b to 4 n = 51

Subgroup 4 Patients with CKD stage 5 or on renal replacement therapy n = 50

Subgroup 5 Patients with 2 or more coded ICD/ICPC co-morbidities (diabetes, hypertension, cardiovascular disease) n = 45

Subgroup 6 Patients with 3 or more medications for chronic disease (diabetes, hypertension, cardiovascular disease 
medications), with or without CKD

n = 43
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metrics were reported. Analysis was conducted using 
Stata version 15.1 (StataCorp, 2017) [26] and R (R Core 
Team 2021) [27].

Ethics approval
The Human Research Ethics Committee of the North-
ern Territory Department of Health and Menzies School 
of Health Research (HREC-2020–3903) and the Central 
Australian Human Research Ethics Committee (CA-20–
3919) approved the study protocol.

Results
Overview
A total of n = 360 patients were selected for the valida-
tion cohort and assigned to 7 clinician participants. Due 
to 2 clinician participants not completing their assigned 
records for review within the study timeframe, n = 72 
patients were excluded from analysis. Five clinician par-
ticipants conducted two independent chart reviews for 
n = 288 patient files (Fig. 3). Table 3 shows the number of 
records reviewed in each subgroup.

For the chart reviewed patients, median age was 46 
(IQR 33 to 57) and 44% were male. Other demographic 
information is included in Table  4. The average time 

taken for clinicians to complete a structured chart review 
within the TKC database was 2.24  min and total time 
taken for all chart reviews in the validation cohort was 
approximately 23 h. Inter-rater reliability was high – raw 
percentage agreement values were between 83 and 94%; 
and Cohen’s Kappa between 0.66 to 0.86 for each chronic 
disease (see Supplemental Table 2).

Fig. 3  Flowchart of the validation cohort

Table 4  Basic demographics of included chart review patients

Abbreviations: RRT​ Renal replacement therapy, T2DM Type 2 diabetes mellitus
a Chronic disease prevalence as per clinician chart review diagnoses

Demographica Chart reviewed patients
Total n = 288
Median (IQR) or N (%)

Age 46 (33 to 57)

Sex – male 127 (44%)

Sex – female 161 (56%)

CKD mild to moderate (1 to 3a) 180 (63%)

CKD moderate to severe (3b to 5) 68 (24%)

RRT​ 40 (14%)

T2DM 80 (28%)

Hypertension 143 (50%)

Cardiovascular disease 77 (27%)
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Accuracy of CKD phenotypes
Algorithm validation results are presented in Table  5. 
Overall algorithm sensitivity for CKD pooled pheno-
type defined as CKD stage 1 or higher (including RRT) 
was 93% (95%CI 89 to 96%), with a specificity of 73% 
(95%CI 64 to 82%)). In the sensitivity analysis (Table 6), 
algorithm sensitivity remained the same (93%), but speci-
ficity improved markedly (97%) when CKD phenotype 
was defined as CKD stage 3a or higher. When albumi-
nuria was defined using the more stringent criteria of 2 
or more elevated uACR readings at least 3 months apart, 
CKD algorithm specificity increased to 94% but sensitiv-
ity dropped to 88%.

A confusion matrix for CKD staging is seen in  Fig.  4 
– reasons why TKC algorithms differed from clinician 
diagnoses included the presence of acute kidney injury 
and episodic haemodialysis (e.g. patients previously on 
maintenance haemodialysis but with no recent episodes), 
wide fluctuations in eGFR readings, and limited availabil-
ity of laboratory data. Algorithms applied strict laboratory 
diagnostic definitions for CKD staging whereas clinicians 
had variable guideline interpretation where objective data 

was insufficient to reach a clear diagnostic conclusion. For 
example, TKC algorithms would classify a patient with 
a single elevated uACR and one eGFR between 60–89 
as “no CKD” (G2A0 as no disease, according to KDIGO 
guidelines), whereas clinicians may classify the same 
patient as having CKD stage 2 despite not strictly meeting 
the KDIGO persistence criteria for a diagnosis of CKD 
[19]. Administrative codes (ICD/ICPC) were less sensitive 
than TKC algorithms at diagnosing CKD (72 vs 93%) but 
had higher specificity (97 vs 73%). For CKD sub-pheno-
types, the algorithms consistently outperformed admin-
istrative codes – algorithm sensitivity for individual CKD 
stages (70.00 to 100%) was substantially higher than that 
of ICD/ICPC coded diagnoses (15 to 100%). Specificity 
of algorithms and ICD/ICPC codes was similarly high, at 
90% or above for all CKD sub-phenotypes. Notably, ICD/
ICPC coded diagnoses of CKD stage 5 without RRT had 
very low sensitivity compared to algorithm sensitivity (21 
vs 100%). Examples where ICD/ICPC coded diagnoses 
missed CKD stage 5 cases included patient records where 
eGFR drop was recent, or in cases where patients had 
recently started RRT.

Table 5  Accuracy of algorithm diagnosis and administrative code diagnosis, versus clinician diagnosis (gold standard)

Abbreviations: CI Confidence interval, ICD International Classification of Disease, ICPC International Classification of Primary Care, RRT​ Renal replacement therapy, 
T2DM Type 2 diabetes mellitus, TKC Territory Kidney Care
a For CKD staging, where ICD/ICPC differed, the average CKD stage of the two were taken, rounded up to the nearest integer. For cardiovascular disease TKC 
algorithms used ICD/ICPC codes only

Phenotype or sub-phenotype TKC algorithm Coded diagnosis (ICD/ ICPC)a

Sensitivity (%, 95%CI) Specificity (%, 95%CI) Sensitivity (%, 95%CI) Specificity (%, 95%CI)

CKD any stage (CKD 1 or higher) 93% (89 to 96%) 73% (64 to 82%) 72% (66 to 78%) 97% (93 to 100%)

CKD stage 1 87% (76 to 98%) 90% (87 to 94%) 29% (15 to 43%) 96% (94 to 98%)

CKD stage 2 70% (56 to 84%) 98% (96 to 99%) 30% (16 to 44%) 91% (87 to 94%)

CKD stage 3a 70% (42 to 98%) 100% (99 to 100%) 70% (42 to 98%) 95% (93 to 98%)

CKD stage 3b 82% (70 to 95%) 99% (98 to 100%) 15% (3 to 27%) 98% (97 to 100%)

CKD stage 4 70% (50 to 90%) 99% (98 to 100%) 30% (10 to 50%) 98% (97 to 100%)

CKD stage 5 100% (100 to 100%) 100% (99 to 100%) 21% (0 to 43%) 100% (100 to 100%)

RRT​ 100% (100 to 100%) 98% (96 to 100%) 100% (100 to 100%) 98% (96 to 100%)

T2DM 75% (66 to 85%) 97% (94 to 99%) 95% (90 to 100%) 91% (87 to 95%)

Hypertension 85% (80 to 91%) 88% (83 to 94%) 76% (68 to 83%) 90% (86 to 95%)

Cardiovascular disease 79% (70 to 88%) 96% (94% to 99%) N/A N/A

Table 6  CKD algorithm sensitivity analysis

Abbreviations: CI Confidence interval, eGFR Estimated glomerular filtration rate, RRT​ Renal replacement therapy
a 2 or more elevated uACR required for diagnosis of CKD stage 1 and CKD stage 2 only

CKD phenotype definition Sensitivity (%, 95%CI) Specificity (%, 95%CI)

CKD defined as stage 1 or higher (eGFR < 60 ml/min/1.732 and/or persistent urine albuminu-
ria, including RRT)

93% (89 to 96%) 73% (64 to 82%)

CKD defined as stage 3a or higher (eGFR < 60 ml/min/1.732, including RRT) 93% (89 to 98%) 97% (94 to 99%)

CKD defined as stage 1 or higher, requiring 2 or more elevated uACR > 3 months aparta 88% (83 to 92%) 94% (88 to 99%)
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Accuracy of other chronic disease phenotypes
For related chronic diseases, the T2DM algorithm had 
a sensitivity of 75% (95%CI 66 to 85%) and specificity of 
97% (95%CI 94 to 99%); hypertension algorithm had a 
sensitivity of 85% (95%CI 80 to 91%) and specificity of 88% 
(95%CI 83 to 94%); and cardiovascular disease had a sen-
sitivity of 79% (95%CI 70 to 88%) and specificity of 96% 
(95%CI 94 to 99%). Differences between TKC algorithm 
and clinician diagnoses occurred where diagnostic codes 
and objective measures were not concordant. As with 
CKD, TKC algorithms generally applied a stricter defini-
tion of disease than clinicians. For example, the algorithm 
required 2 or more elevated HbA1c for a diagnosis of 
diabetes – hence patients with a single historic elevated 
HbA1c reading and several normal range HbA1c read-
ings, with no other evidence of diabetes (e.g. no glucose-
lowering medications) is algorithm coded as “no diabetes”. 
For full sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and area under 
ROC curve results see Supplemental materials.

Data completeness metrics
As of 07 February 2021, there were n = 48,569 patients 
in the TKC database who had an active entry within the 
last 2 years. Median timespan between first and last data 
entry for a single patient was 11 years (IQR 2–18). Data 
metrics of all active patients are displayed in Supplemen-
tal Tables  3 and 4. The highest number of patients had 
a medication entry compared to other data types (94%). 
Approximately two-thirds of patients had a recorded 
ICPC code, ICD code, observation entry or labora-
tory result. Out of the five data types, laboratory results 
had the highest median number of results per patient 
(n = 116, IQR 40 to 261) and greatest median density of 
results per patient (n = 9.0, IQR 4.0 to 18.6). Four metrics 
were used to report data completeness. Metric 4 had the 
most stringent criteria for data completeness (3 labora-
tory results, 3 observation entries, 1 coded diagnosis, and 
1 medication entry) and this minimum requirement for 
data completeness was met in 61% of individual patient 
files.

Fig. 4  Confusion matrix for algorithm versus clinician diagnosis*. Abbreviations: RRT – Renal replacement therapy; TKC – Territory Kidney Care 
(algorithm). *Cells indicate total number of patients (n) in each category, clinician diagnosis (gold standard) versus TKC algorithm diagnosis
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Discussion
Algorithm-assisted disease identification is gaining 
momentum in nephrology [2, 3]. Accurate, validated 
algorithms are fundamental to EHR-based innovations 
in early CKD detection, intervention, and monitoring 
[14, 28]. To our knowledge, this is the first published 
study describing diagnostic sensitivity and specificity 
for all CKD sub-phenotypes from stages 1 to 5, through 
to RRT. Despite a growing volume of EHR-based 
research and EHR-based clinical decision support 
tools, validation can at times be seen as “a mere poor 
relative of the real original research” [29]. Few rigor-
ous validation studies have been conducted outside of 
large established phenotype collaborations such as the 
eMERGE Network [30].

Our results showed that CKD algorithms consistently 
outperformed administrative codes (ICD/ICPC) in cor-
rectly classifying patients into individual CKD stages. 
The poor sensitivity of administrative codes was particu-
larly striking for CKD stage 5 – the implication of this is 
that ICD/ICPC codes alone are unreliable for EHR-based 
detection of late-stage CKD. Our highly accurate CKD 
staging algorithms unlocks new opportunities for per-
sonalised care. For example, the algorithm outputs have 
been used in the TKC project to drive clinical decision 
support alerts that identify and target interventions for 
patients with rapidly progressing CKD across our region. 
These validated algorithms are also useful for population-
level disease progression monitoring and EHR-based epi-
demiological research.

CKD validation studies to date have primarily consid-
ered CKD as a single pooled disease phenotype (Table 1). 
Only one study in 2021 considered CKD sub-phenotypes 
in their validation – however, a limitation of this study 
by Shang et  al. was that sensitivity and specificity was 
reported for the pooled CKD phenotype but not for CKD 
sub-phenotypes (CKD stages 1 to 5) [13]. We used a 
similar pooled definition of CKD to Shang et al., defining 
CKD as KDIGO stage 1 or higher. In contrast, most other 
CKD validation studies defined CKD as KDIGO stage 3a 
or higher (eGFR < 60 ml/min/1.73m2) – using this com-
mon definition of CKD, our algorithm had a sensitivity of 
93% and specificity of 97%, and was comparable to exist-
ing studies with sensitivities ranging from 93 to 100% 
and specificities ranging from 0 to 99% [8, 10, 11]. Our 
algorithm sensitivity and specificity for diabetes [31–33], 
hypertension [34, 35], and cardiovascular disease [36, 37] 
also have comparable accuracy to that of previously pub-
lished studies.

Evident in several CKD algorithm validation stud-
ies is the problem of “0%” specificity [8, 12]. To reduce 
time burden on clinicians, chart reviews may be lim-
ited to individuals who are algorithm positive for CKD. 

However, where there are no true negatives in the valida-
tion cohort, 0 is the numerator for the specificity equa-
tion, resulting in a specificity of 0% (specificity = true 
negative / true negative and false negatives). We encoun-
tered this problem during our pilot study, but overcame 
the issue through selection of an appropriate true nega-
tive population in our validation cohort – appropriate 
true negatives being patients with risk factors for CKD 
but no known kidney disease.

Strengths and limitations
A strength of this study was the number of CKD and 
related chronic disease algorithms validated for clini-
cal use. Only key algorithms were selected for the pur-
pose of validation, but we developed a large number of 
algorithms to classify patients into additional nuanced 
CKD sub-phenotypes according to operational 
requirements – for example, CKD sub-phenotypes 
based on mode of RRT (e.g. haemodialysis or trans-
plant sub-phenotype), and sub-phenotypes based on 
KDIGO G and A-staging (e.g. CKD G2A2 and G2A3). 
We recognised a need to move beyond the quest for 
an ideal CKD algorithm – therefore, we tested several 
adaptations of our CKD algorithm and conducted a 
sensitivity analysis to quantify sensitivity and specific-
ity trade-offs of minor adjustments to the CKD phe-
notype definition. Our validation study was adequately 
powered to ensure precision of accuracy results. The 
TKC algorithm utilised EHR from diverse health ser-
vices to improve data element availability [17]. For 
example, where previous CKD phenotypes used proxy 
measures for albuminuria (e.g. urinalysis results) due 
to low uACR availability [11, 13] our broad coverage 
of EHR sources across the Northern Territory, includ-
ing laboratory results from primary care, allowed us to 
achieve CKD A-staging directly from uACR values; in 
our study, at least 1 urine ACR was available in 40% of 
active patients in the TKC database, compared to 7% 
urine ACR availability in a previous CKD algorithm 
validation study [11].

Nevertheless, there is room to expand what and how 
EHR data is used in our chronic disease algorithms. 
Several Australian studies described high algorithm 
accuracy through incorporating keyword searches for 
chronic diseases within “reason for encounter” fields 
[32, 33]. These primary care EHR fields are not cur-
rently available within the TKC database but a next step 
of the TKC project is to expand the database to incor-
porate additional EHR systems used in private general 
practices and private specialist outpatients across our 
region. Natural language processing (NLP) for unstruc-
tured data extraction from free text and machine 
learning algorithms have also been incorporated into 
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CKD algorithms [12, 13]. For CKD algorithms, a pos-
sible application of NLP would be to extract free-text 
data within imaging reports to identify structural kid-
ney abnormalities. Despite the increasing popular-
ity of NLP and machine learning [38], using more 
EHR data elements in algorithms does not guarantee 
improvements in diagnostic accuracy [12, 39] – we 
are still investigating how to leverage these techniques 
to optimise our algorithms. Another limitation of our 
algorithms and phenotype algorithms more broadly 
is limited universal portability. Given the heteroge-
neous nature of vendor-specific EHR data structures 
and semantic standards, algorithms cannot be directly 
executed across EHR types without resource-intensive 
customisation [40, 41].

There are several limitations to our validation meth-
odology. Firstly, we used a stratified random sample to 
ensure capture of positive and negative cases – thus, 
our validation cohort is not reflective of the entire TKC 
database. Algorithm studies like ours typically select a 
limited sample of the entire database for validation, as 
manual chart reviews are labour and resource-intensive 
to conduct. Secondly, algorithm validation studies fre-
quently use clinician chart reviews but lack an objective 
gold standard “source of truth” [5, 42, 43]. To mini-
mise bias we used two independent, blinded reviewers 
and achieved a high level of inter-reviewer agreement. 
Thirdly, our validation period was extended from a 
planned two-week period to a four-week period due 
to lack of clinician availability to complete the chart 
reviews within a shorter timeframe. This introduced 
a small possibility of discrepancies in the “live” TKC 
database (e.g. new eGFR results entering the system) 
between time of clinician manual chart review and 
time of extraction for TKC algorithm-coded diagno-
ses. Finally, we reported data completeness metrics but 
other EHR data quality issues could have affected our 
validation results.

Conclusions
As EHR data is increasingly used for secondary purposes, 
there remains a need for algorithm development and val-
idation. Our study describes the development and valida-
tion of algorithms to identify individuals with CKD and 
related chronic diseases. Validation results demonstrated 
that CKD staging algorithms have superior sensitivity 
and specificity compared to administrative codes alone. 
Our highly accurate CKD staging algorithms facilitates 
innovations in early kidney disease detection and moni-
toring, personalised clinical care, and EHR-based epide-
miological research.
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