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OBJECTIVE—Type 1 diabetes is a chronic endocrine disorder
in which enteroviruses, such as coxsackie B viruses and echovi-
ruses, are possible environmental factors that can trigger or
accelerate disease. The development or acceleration of type 1
diabetes depends on the balance between autoreactive effector
T-cells and regulatory T-cells. This balance is particularly influ-
enced by dendritic cells (DCs). The goal of this study was to
investigate the interaction between enterovirus-infected human
pancreatic islets and human DCs.

RESEARCH DESIGN AND METHODS—In vitro phagocytosis
of human or porcine primary islets or Min6 mouse insuloma cells
by DCs was investigated by flow cytometry and confocal analy-
sis. Subsequent innate DC responses were monitored by quanti-
tative PCR and Western blotting of interferon-stimulated genes
(ISGs).

RESULTS—In this study, we show that both mock- and cox-
sackievirus B3 (CVB3)-infected human and porcine pancreatic
islets were efficiently phagocytosed by human monocyte–derived
DCs. Phagocytosis of CVB3-infected, but not mock-infected,
human and porcine islets resulted in induction of ISGs in DCs,
including the retinoic acid–inducible gene (RIG)-I–like helicases
(RLHs), RIG-I, and melanoma differentiation–associated gene 5
(Mda5). Studies with murine Min6 insuloma cells, which were
also efficiently phagocytosed, revealed that increased ISG ex-
pression in DCs upon encountering CVB-infected cells resulted in
an antiviral state that protected DCs from subsequent enterovi-
rus infection. The observed innate antiviral responses depended
on RNA within the phagocytosed cells, required endosomal
acidification, and were type I interferon dependent.

CONCLUSIONS—Human DCs can phagocytose enterovirus-
infected pancreatic cells and subsequently induce innate antiviral
responses, such as induction of RLHs. These responses may have
important consequences for immune homeostasis in vivo and

may play a role in the etiology of type 1 diabetes. Diabetes 59:
1182–1191, 2010

T
ype 1 diabetes, or insulin-dependent diabetes, is
a chronic endocrine disorder characterized by
the progressive loss of insulin-producing �-cells.
In the majority of cases, type 1 diabetes is

associated with an autoimmune reaction against �-cell
constituents. Genetic predisposition is a major risk factor
for the acquisition of type 1 diabetes, but the pairwise
concordance between monozygotic twins is limited
(�40%), which indicates that other, environmental, factors
are involved (1). Other observations (e.g., a gradual rise in
the incidence and a 10-fold difference in the occurrence of
type 1 diabetes in various parts of Europe) also point to a
significant contribution of the environment (1).

Enteroviruses of the human enterovirus B (HEV-B)
species of the Picornaviridae, such as coxsackievirus B
(CVB) and echovirus (EV), have long been associated with
type 1 diabetes (2–4). These small, nonenveloped single-
stranded RNA viruses are widespread. Infection usually
remains limited to the gastrointestinal tract and causes
mild disease or even remains asymptomatic; however,
during severe infections it can spread to secondary target
organs such as the pancreas, brain, and heart (5). CVB has
been implicated in type 1 diabetes on the basis of 1)
isolation of virus from patients with acute diabetes, 2)
detection of viral RNA in blood at onset, 3) epidemiolog-
ical surveys, and 4) prospective studies (rev. in 6,7).

Importantly, several recent studies reported detection
of HEV-B in the pancreatic islets of type 1 diabetic patients
at autopsy, providing evidence that these viruses are able
to infect �-cells in vivo (8–10). Inflammation in pancreatic
islets is common in type 1 diabetic patients, and several
immune cells can be detected in the islets of type 1
diabetic patients. Among these are phagocytes, as well as
different subsets of T-cells such as effector CD4� and
CD8� T-cells and, in some cases, regulatory T-cells (Treg)
(8,11,12). The development or acceleration of type 1
diabetes might depend on the balance between autoreac-
tive effector T-cells and Treg (13)—a balance which is
predominantly decided by dendritic cells (DCs).

The importance of antigen-presenting cells (APCs), such
as macrophages and DCs, in the development of type 1
diabetes has been shown in vivo in mouse studies, where
phagocytosis of CVB-infected islet cells was crucial for the
development of autoimmune type 1 diabetes. Resident
APCs were shown to engulf CVB-infected �-cells and
subsequently stimulated antigen-specific T-cell prolifera-
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tion and induced diabetes upon adoptive transfer (14).
Furthermore, mouse studies have revealed that the influx
of macrophages and DCs precedes that of effector T-cells
in the islets and aberrantly expresses proinflammatory
cytokines (15). In human pancreatic islets, DCs are
present in low numbers under steady-state conditions;
however, as �-cell destruction ensues leading to diabetes,
there is an increase in DC infiltrate (16,17), strengthening
the hypothesis that these cells likely play an important role
in the progression of human type 1 diabetes. To our
knowledge, no studies have been performed that examine
the interaction between CVB-infected human islets and
human DCs.

DCs are the professional APCs of the immune system
and play a decisive role in initiating immune responses and
maintaining self tolerance. They not only participate in
innate immunity but also initiate and control adaptive
immunity (18). DCs continuously sample their microenvi-
ronment; they phagocytose pathogens or pathogen-associ-
ated products such as immune complexes, yet apoptotic
cells are also taken up (19). This results in the induction of
immunity against invading pathogens and tolerance to
self-antigens, respectively (20). Induction of an immune
response occurs when DCs detect pathogen-associated
danger signals or pathogen-associated molecular patterns
(PAMPs) through specialized receptors known as pattern
recognition receptors (PRRs). These PRRs include several
receptors that sense the presence of viral RNA, such as
Toll-like receptors (TLRs) 3, 7, and 8 and the retinoic
acid–inducible gene (RIG)-I–like helicases (RLHs), RIG-I,
and melanoma differentiation–associated gene 5 (Mda5)
(21,22). Polymorphisms and mutations in PRR family
members have been associated with disease, including
autoimmune diseases such as type 1 diabetes (23–25). The
interaction between PRRs and PAMPs facilitates DC mat-
uration, after which the DCs migrate to draining lymph
nodes where they present antigen to T-cells (18). During
viral infection, the triggering of these receptors induces
type I interferons (IFNs). The IFNs are crucial for a first
innate line of defense against invading viruses, yet they
also influence adaptive immunity by affecting DC cytokine
production and maturation (26) and autoimmunity (27).

In this study, we set out to investigate the interaction
between human DCs and CVB-infected islets and the
immunological consequences that follow. We used mono-
cyte-derived DCs from healthy blood donors and CVB-
infected pancreatic islet preparations or CVB-infected
Min6 cells, a murine insuloma cell line. We show that both
human islets and Min6 cells are phagocytosed by human
DCs. CVB-infected cells, but not mock-infected cells, in-
duced DC activation as indicated by the expression of
IFN-stimulated genes (ISGs), resulting in protection of the
DCs from subsequent enteroviral infection. These innate
DC responses depended on the recognition of RNA in the
CVB-infected cells and additionally required IFNs pro-
duced by the DC itself, but did not depend on soluble
factors secreted by the infected cells. These virus-induced
alterations in DCs may have important consequences for
immune homeostasis in vivo and may play a role in the
etiology of type 1 diabetes.

RESEARCH DESIGN AND METHODS

Virus stocks and purification. Reference strain EV9 Hill (EV9) was obtained
from the National Institute for Public Health and the Environment (RIVM,
Bilthoven, the Netherlands). CVB3 Nancy (CVB3) was provided by R. Kandolf
(University of Tübingen, Tübingen, Germany). Production of virus stocks and

virus titrations were performed on buffalo green monkey cells as previously
described. Serial 10-fold dilutions were tested in 96-well microtiter plates, and
50% tissue culture infective doses were calculated as previously described
(28).
Islet and Min6 cell culture. Human and porcine pancreatic islets were
isolated in Pittsburgh as previously described (29). Human islets were
obtained from deceased anonymous donors procured by the Center for Organ
Recovery and Education (CORE) (Pittsburgh, PA), and islets were isolated
using a modification of the semiautomated method described by Ricordi
(29,30).

Batches of islets used in this study were obtained from four adult human
pancreata and three porcine donors, cultured for a minimum of 3–6 days in
Connaught Medical Research Laboratories (CMRL)-1066 medium containing
10% FCS, 2 mmol/l L-glutamine, 100 units/ml penicillin, and 0.1 mg/ml
streptomycin (complete CMRL) at 37°C in an atmosphere of 5% CO2. Islet
viability was estimated by dual-fluorescence viability dyes (calcein-AM and
propidium iodide; Invitrogen, Eugene, OR) and was higher than 80% in all
batches. Glucose-stimulated insulin release was carried out by dynamic
perifusion (31). After culture for 3–6 days, the islets were sent to Nijmegen as
free-floating islets and cultured in complete CMRL in ultra-low attachment
culture plates (Corning) at 37°C in 5% CO2. Islets were cultured in Nijmegen
for a maximum of 2 days before the start of the experiments.

Min6 cells (32) were a gift from Dr. Merja Roivainen and Dr. Per Bendix
Jeppesen and were cultured in Dulbecco’s modified Eagle’s medium (Gibco)
supplemented with 15% FCS, ciproxin, and 50 �mol/l �-mercaptoethanol at
37°C in 5% CO2. Medium was refreshed every other day.
Infection of islets and Min6 cells. Islets and Min6 cells were infected in a
small volume of CMRL-1066 or Dulbecco’s modified Eagle’s medium, respec-
tively, at indicated multiplicity of infection (MOI) for 1 h at 37°C. Subse-
quently, cells were washed and viral titers were determined at different time
points as described above. In some experiments, supernatant from infected
cultures was harvested at indicated time postinfection and cleared from cell
debris by centrifugation before stimulation of other cells.
Stimulation of monocyte-derived DCs. Monocyte-derived DCs were gen-
erated as described previously (28). Mature DCs were obtained by stimulating
cells with poly(I:C) (20 �g/ml). Stimulation of DCs with supernatant from
Min6 cells or from DC/Min6 co-cultures was performed using a 1:2 dilution of
supernatant. To block the actions of type I IFNs, cells were stimulated in the
presence or absence of neutralizing anti-human IFN antibodies (1:75, Iivari,
Kaaleppi, or bovine serum; courtesy of Dr. Julkunen, National Public Health
Institute, Helsinki, Finland) (33). For infection, stimulated or unstimulated
DCs were harvested using cold PBS and infected in RPMI. After 60 min
incubation at 37°C, cells were washed and viral titers were determined as
described above.
Uptake of human pancreatic islets and Min6 cells. Human and porcine
pancreatic islets or Min6 cells were labeled using PKH26 (Sigma-Aldrich)
according to the manufacturer’s instructions and infected with CVB3 at an
MOI of 10. DCs were labeled using carboxyfluorescein diacetate succinimidyl
ester (CFSE) (Invitrogen) according to the manufacturer’s instructions.
PKH-labeled cells were added to CFSE-labeled DC cultures at a ratio of 1:1.
Alternatively, labeled, infected Min6 cells were incubated for 48 h and
subsequently harvested and resuspended in fresh medium at a density of 5 �
106 cells/ml prior to placing them at �20°C until further use. Freeze-thawed
cell preparations were subsequently used in DC co-cultures at a 1:1 ratio and
resulted in similar inductions of ISGs and innate responses compared with
co-culture with viable cells (supplemental Fig. 1, available in the online
appendix at http://diabetes.diabetesjournals.org/cgi/content/full/db09-1071)
(34). These cell preparations were also used for ribonuclease (RNase)
treatment prior to DC stimulation. For that purpose, Min6 cell preparations
were exposed to a mixture of RNase A, RNase VI, and RNase I (all Ambion)
or an equal volume of PBS for a period of 30 min at 37°C prior to addition to
DCs. Uptake of islets or Min6 cells by DCs was analyzed using flow cytometry
and confocal microscopy. In some experiments, phagocytosis was inhibited
using cytochalasin D (CytD) (2.5 �g/ml), or endosomal acidification was
inhibited using chloroquine (CQ) (10 �mol/l). DCs were pretreated for 30 min
with CytD or CQ, and subsequently stimuli were added. Both treatments had
no effect on cell viability as assessed by trypan blue exclusion 8 h after
stimulation.
Confocal microscopy. Staining and visualization of DCs have been previ-
ously described (34). Human islets were adhered onto fibronectin-coated
coverslips for 2 h at 37°C in islet medium and subsequently fixed in 2%
paraformaldehyde. Cells were blocked in PBS containing 100 mmol/l glycine
and 2% goat serum, permeabilized using TX-100, and stained with mouse
anti-VP1 (Dakocytomation) and rabbit anti-3A (35) followed by incubation
with goat anti-mouse IgG alexa 488 and goat anti-rabbit IgG alexa 594. Cells
were analyzed using a Leica DMR microscope.
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RNA isolation, quantitative PCR, Western blot, and flow cytometry.

These techniques have been previously described (34).
Statistical analysis. Statistical analysis was performed using Student t test
(two-tailed distribution). A P value �0.05 was considered a significant
difference.

RESULTS

Human DCs phagocytose human pancreatic islets and

induce innate immune responses. Human pancreatic
islets were found to be susceptible to infection by CVB3 as
indicated by the profound increase in virus titer, cyto-
pathic effects, and immunofluorescence staining against
viral proteins 3A and VP1 (Fig. 1A–C). The latter revealed
that only a small number of cells were infected. Infected
cells mainly resided at the outer layers of the islets, where
cells might be more accessible for the virus (Fig. 1C).
Previously it was shown that such a productive infection
results in impaired islet function (36).

To investigate whether human DCs can phagocytose
human pancreatic islets, PKH-labeled human islets were
mock or CVB3 infected for 48 h and subsequently co-
cultured with CFSE-labeled DCs. CVB3 has no direct effect
on human DCs and is incapable of infecting DCs (28).
Mock- and CVB3-infected islets were taken up with equal
efficiency as indicated by the number of DCs that became
PKH positive (Fig. 1D). Confocal analysis confirmed up-
take of human pancreatic islets material by DCs. The DC
plasma membrane was stained with CD86-specific anti-
bodies (green), and PKH-positive islet cells (red) were
observed within the DCs (Fig. 1E).

To examine whether and how DCs respond to virus-
infected human islets, we studied activation of innate
immune response pathways by measuring levels of ISGs,
such as RIG-I, Mda5, protein kinase R (PKR), and IRF-7
following phagocytosis of infected cells. Quantitative PCR
(qPCR) revealed induction of ISGs after engulfment of
CVB3-infected islets; moreover, increased expression was
observed for all ISGs tested (Fig. 1F). Importantly, stimu-
lation of DCs with mock-infected human islets alone did
not induce any ISGs (Fig. 1F). Furthermore, stimulation
with CVB3 alone also did not induce ISGs (28), suggesting
that the induction depends on the presence of virus or
viral products within phagocytosed cells. CVB3 was not
able to replicate in DCs upon entry via phagocytosis, as
determined by end point titration at several times after the
start of co-cultures (data not shown). In some experi-
ments, freeze-thawed mock- or CVB-infected cells were
used. This had no effect on either phagocytosis or ISG
induction (see below).

At this stage, we were unable to discriminate whether
the ISGs were upregulated in DCs or in the islets them-
selves. Therefore, we performed experiments using por-
cine islets, which have been shown as useful models for
studies on the interaction of CVBs with �-cells (37). To
discriminate between ISGs in porcine islets and human
DCs, primers were used that specifically recognize human,
but not porcine, ISG sequences. Infection and uptake of
porcine islets by DC was similar as described above for the
human islets (data not shown). Phagocytosis of CVB-
infected porcine islets resulted in a profound increase in
human ISGs (Fig. 1G). Thus, using porcine islets, we
confirmed induction of ISGs in human DCs upon uptake of
CVB3-infected human islets, and, additionally revealed
that ISG expression is increased in the human DC
population.

Phagocytosis of CVB3-infected Min6 cells by human

DCs results in an antiviral state that protects DCs

from subsequent enterovirus infection. To further
investigate the underlying mechanism of DC responses
upon uptake of islets, we selected the murine Min6 cell
line as a model for pancreatic �-cells. Min6 cells retain the
physiological characteristics of normal �-cells and re-
spond to glucose within the physiological range (32).
These islet-like cells grow in patches (Fig. 2B, left panel)
and were confirmed to express several �-cell–associated
mRNAs (e.g., GAD65, islet-specific glucose-6-phosphatase
catalytic subunit-related protein [IGRP], insulinoma-asso-
ciated protein 2, insulin, [data not shown]). Analogous to
human and porcine islets, Min6 cells were susceptible to
infection with CVB3 as shown by the increase in virus titer
(Fig. 2A). Cytopathic effects were observed in nearly 100%
of the cells (Fig. 2B), suggesting that the majority of cells
were infected. Uptake of mock- and CVB3-infected Min6
cells by DCs was very efficient (up to 75%) as shown by
flow cytometry and confocal analysis (Fig. 2C and D).

Upon engulfment of CVB-infected Min6 cells, IFN-� and
ISGs were strongly induced in DCs (Fig. 2E and F),
reaching a greater than 100-fold increase compared with
unstimulated DCs in the case of RIG-I, while Mda5 and
PKR showed increases of up to 20- and 10-fold, respec-
tively (Fig. 2F). The induction of ISGs following uptake of
infected Min6 cells was confirmed at the protein level by
Western blotting (Fig. 2G). No ISG signal was observed in
mock- or CVB3-infected Min6 cells alone (data not
shown), excluding that the observed protein induction in
DC/Min6 co-cultures is due to detection of Min6 cell
proteins. In some experiments, freeze-thawed mock- or
CVB-infected cells were used. This had no effect on either
phagocytosis or ISG induction (supplemental Fig. 1).

IFNs and ISGs induce an antiviral state that restricts virus
replication (38). To determine whether upregulation of ISGs
following uptake of CVB3-infected Min6 cells protects DCs from
subsequent infection, DCs that had taken up Min6 cells were
infected with EV9, an enterovirus strain that replicates in
DCs (28) but not in Min6 cells (data not shown). Uptake of
mock-infected cells had no influence on replication of EV9 in
DCs. In contrast, phagocytosis of CVB-infected Min6 cells
strongly protected the DCs from EV9 replication (Fig. 2H).
Innate responses in DCs that phagocytosed CVB3-
infected Min6 cells depend on autocrine IFN-�/�
signaling. ISGs can be upregulated through both IFN-
dependent and IFN-independent pathways (39,40). To
investigate whether secreted cytokines such as IFN-�/�
were involved in ISG induction, we stimulated fresh DCs
with cell-free supernatant from DC/Min6 co-cultures. An
increase in ISGs was observed upon stimulation of DCs with
supernatant from co-cultures of DCs plus CVB-infected Min6
cells but not of DCs plus mock-infected Min6 cells (Fig. 3A).
Moreover, the induction of ISGs after uptake of CVB-infected
cells was markedly reduced in the presence of neutralizing
IFN-�/� antibodies at both the mRNA (Fig. 3B) and protein
levels (Fig. 3C [compare lanes 6 and 7]), implying that ISG
induction strongly depends on IFNs.

To determine whether IFNs produced by DCs or the
infected Min6 cells were responsible for ISG upregulation,
supernatants from infected Min6 cultures were added to
DCs, after which ISG induction was monitored. Although
recombinant murine IFN-� induced ISG expression in DCs,
supernatant of either mock- or CVB-infected Min6 cells did
not (Fig. 3D). Thus, cytokines potentially produced by in-
fected Min6 cells are not responsible for ISG expression in DCs.
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Collectively, these data imply that DCs induce an innate
immune response upon uptake of CVB3-infected Min6
cells and that this induction depends on IFN induction by
DCs themselves.

Induction of ISGs in DCs following uptake of CVB3-
infected Min6 cells requires endosomal acidification
and recognition of viral RNA. Both PRRs located on the
cell surface and those with intracellular localization may

A C hoechst VP1 3A 

D

F

E

DC + Islet/M  DC + Islet/CVB  

G

Mock 

Ti
te

r i
nc

re
as

e
(d

el
ta

 (L
og

 T
C

ID
50

/1
00
µl

))

3
4

0 12 24 36 48

CVB3

Time (h p.i.)

2
1
0

m
R

N
A

 e
xp

re
ss

io
n 

(A
U

)

m
R

N
A

 e
xp

re
ss

io
n 

(A
U

)

3
34

2
2

1 1

0

30
40

20
10

0

15
20

10
5
0

3
4

2
1
0

0

9

6

3
0

9

6

3
0

3

2

1

0

0 8 16 24

0 8 16 24

0 8 16 24

0 8 16 24 0 8 16 24 0 8 16 24

0 8 16 24 0 8 16 24

CVB3 

Mock 

CVB3 

IRF-7PKR

Mda5 Med
Porc Islet/M
Porc Islet/CVB

Med
Islet/M
Islet/CVB

RIG-I

C
FS

E

PKH

DC

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

100 101 102 103 104 100 101 102 103 104

100 101 102 103 104 100 101 102 103 104

100 101 102 103 104

Islet/M IsletCVB

DC + Islet/M DC + Islet/CVB

IRF-7PKR

Mda5RIG-I

Time (h p.i.)Time (h p.i.)

B

FIG. 1. CVB replicates in human and porcine pancreatic islets, and DCs can phagocytose islets, resulting in induction of ISGs. A and B: Human islet cells
were infected with CVB3 at an MOI of 10, and at indicated time points replication was analyzed (A) and at 48 h postinfection (p.i.) images were taken
(B). C: Human islets were infected with CVB3 at an MOI of 10. After 24-h incubation, islets were adhered onto fibronectin-coated coverslips and stained
using 3A (red)- and VP1 (green)-specific antibodies. Hoechst stain is included to visualize cell nuclei. D: Human islets were PKH labeled and infected
with CVB3 at an MOI of 10 and cultured for 48 h before addition to CFSE-labeled DCs. Uptake of islets either mock-infected (M) or CVB-infected (CVB)
was analyzed by flow cytometry 24 h after co-culture. E: Human islets were PKH labeled and infected as in D and co-cultured with unlabeled DCs for
24 h. Subsequently, DCs were harvested, stained using CD86-specific antibodies (green), and analyzed using confocal microscopy. F: Human islets were
infected with CVB3 at an MOI of 10 for 48 h prior to addition to DCs. Expression of RIG-I, Mda5, and PKR mRNA in DCs was analyzed using qPCR. G:
Porcine islets were prepared and co-cultured as in F and ISG-induction was analyzed at indicated times. In some experiments (F and G), freeze-thawed
preparations of islets were used, but these yielded similar results compared with using viable cells. Experiments are representative of 2, 3, or more than
3 independent experiments. Islet/CVB, CVB-infected human islets; Islet/M, mock-infected human islets; Med, medium, i.e., unstimulated DCs; porc
Islet/CVB, CVB-infected porcine islets; porc Islet/M, mock-infected porcine islets. (A high-quality color representation of this figure is available in the
online issue.)
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FIG. 2. Min6 cells are a good model for primary pancreatic cells, are phagocytosed by DCs, and induce innate antiviral immune responses. A and
B: Min6 cells were infected with CVB3 at an MOI of 10, and replication was analyzed at indicated time points (A) and images were taken at 48 h
postinfection (p.i.) (B). C: Min6 cells were PKH-labeled and infected with CVB3 at an MOI of 10. After 24-h incubation, cells were harvested and
added to CFSE-labeled DCs at a 1:1 ratio. After 24-h co-culture, cells were harvested and uptake was determined using flow cytometry. D: Min6
cells were prepared as in C and co-cultured with unlabeled DCs for 24 h, after which DCs were harvested, stained as in Fig. 1E, and analyzed using
confocal microscopy. E and F: Min6 cells were prepared as in C, and after 48-h incubation, cells were harvested and added to DCs at a 1:1 ratio
or DCs were stimulated with 20 �g/ml poly (I:C) or left untreated. At 5 h after addition (E), or 5 h and 8 h after addition (F), mRNA induction
of ISGs was determined as described. G: Protein expression of RIG-I, Mda5, and PKR was analyzed by Western blot 24 h after stimulation of DCs
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mediate the observed responses in DCs. To investigate
whether phagocytosis of cells is required for the induction
of ISGs or whether extracellular exposure to infected cells
might initiate ISG responses in DCs (e.g., via TLRs on the
plasma membrane), phagocytosis was inhibited using
CytD. DCs pretreated with CytD and subsequently stimu-
lated with CVB3-infected Min6 cells did not show any
induction of ISGs, indicating that phagocytosis is required
for ISG induction. Similar decreases in ISG induction were
observed when using CVB-infected primary porcine islets
(data not shown). Poly (I:C)-induced ISGs were also
reduced upon CytD treatment, as has been previously
reported (41). Importantly, lipopolysaccharide (LPS)-in-
duced responses were not abrogated in the presence of
CytD, proving that CytD has no adverse effects on DC
viability or ISG induction (Fig. 4A) (42).

Phagocytosed cells are localized to so-called phago-
somes, which subsequently “mature” via fusion with the
endosomal/lysosomal compartments, followed by progres-
sive decrease in pH (20,43). Intracellular TLRs (TLR3, 7, 8,
and 9) are also recruited to these compartments, enabling
interaction with potentially released PAMPs such as
dsRNA, which occurs in a pH-dependent fashion (44).
Alternatively, phagocytosed material might be translo-
cated into the cytoplasm, where, for example, the RLHs
(RIG-I and Mda5) can interact with viral RNA. To deter-
mine whether endosomal acidification is required for the
induction of ISGs following uptake of infected cell prepa-
rations, we pretreated DCs with CQ, a chemical that
blocks acidification of these compartments. Pretreatment
of DCs with CQ markedly decreased CVB-infected Min6-
induced mRNA expression of RIG-I, Mda5, and PKR (Fig.
4B), suggesting that endosomal acidification is critical for
DC responses upon phagocytosis of infected cells. Similar
decreases in ISG induction were observed when using
CVB-infected primary porcine islets (data not shown).
Flowcytometric analysis showed that phagocytosis of
Min6 cells was not inhibited due to CQ treatment (data not
shown). Poly (I:C) induction, known to require endosomal
acidification, was also decreased (41,44). LPS-induced
responses do not require endosomal acidification (41,44).
As expected, LPS-induced ISG and interleukin-6 expres-
sion was not decreased, indicating that viability and intra-
cellular signaling to induce cytokines were unaltered upon
CQ treatment (Fig. 4B and data not shown).

Using RNases, we investigated the contribution of (vi-
ral) RNA in our CVB-infected cells to DC responses. For
this, freeze-thawed Min6 cell preparations were used be-
cause viable cells with an intact plasma membrane will
make degradation of intracellular RNA impossible. RNase
treatment of freeze-thawed Min6 cell preparations prior to
addition to DCs reduced upregulation of RIG-I, Mda5, and
PKR at both the mRNA and protein levels (Fig. 4C and D
[compare lane 4 and lane 6]), demonstrating the important
role of viral RNA present in infected cells for the induction
of innate immunity. Together, our data show that phago-
cytosis of CVB-infected cells is required and that subse-
quent signaling requires endosomal acidification and
depends on the presence of viral RNA.

DISCUSSION

DCs play a critical role in inducing immunity and prevent-
ing autoimmunity. Although diabetes pathogenesis and the
possible role of APCs such as DCs therein have been
investigated in mice (14,15), to our knowledge, no studies
have been performed that examined the interaction be-
tween islets and DCs in humans. In this study, we show for
the first time that CVB-infected human islets are efficiently
phagocytosed by human DCs resulting in a rapid RNA- and
IFN-dependent innate antiviral response by DCs.

The response of DCs was further characterized with use
of porcine islets and murine Min6 cells. Mock-infected
cells did not induce innate responses, even though, sur-
prisingly, their phagocytosis was as efficient. The reason
for equal uptake of mock- and CVB-infected cells is
unknown; islets/�-cells may display enhanced molecular
signals that mediate phagocytosis (“eat me” signals, such
as phosphatidyl serines [PSs]) (45), possibly caused by
endoplasmic reticulum stress inherent to massive insulin
production (46). Preliminary data revealed that PSs are
higher expressed on the outer cell surface of steady-state
insulin–producing Min6 cells when compared with other
steady-state cell lines that are not efficiently phagocytosed
(e.g., HeLa, L929, BGM, and Vero) (data not shown).
Whether PSs or other “eat me” signals are present on
isolated primary human pancreatic islets and facilitate
their engulfment requires further investigation. Neverthe-
less, equal uptake of mock- and CVB-infected cells enabled
us to make a good comparison of DC responses because
only the infection status of islets or Min6 cells or islets
differed. Phagocytosis of CVB-infected islets and Min6
cells invariably resulted in an increase in ISGs. Impor-
tantly, this IFN-dependent ISG increase was sufficient to
completely protect DCs from subsequent EV9 infection.
This reveals a mechanism by which DCs may protect
themselves when attracted to an environment with ongo-
ing infection, ensuring their functional integrity.

Viral RNA is known to be an important inducer of
antiviral immunity by triggering PRRs from the TLR and
RLH family. In this study, we show that induction of innate
responses in DCs requires endosomal acidification and is
largely dependent on the presence of RNA within the
infected cells. Some residual ISG induction is still ob-
served after RNase treatment. Possibly part of the RNA
might be shielded within intact virus particles and there-
fore may be inaccessible for RNases. This residual viral
RNA may have triggered ISG induction when recognized in
endosomes and/or lysosomes following phagocytosis. Al-
though we favor the idea that viral RNA present in
CVB-infected cells triggers antiviral immunity, we cannot
exclude that viral proteins or modified host proteins
contribute to the observed antiviral responses.

Interestingly, engulfment of CVB-infected cells resulted
in the development of type 1 diabetes in a susceptible
mouse model (14). In that study, resident APCs in the
pancreas were shown to engulf CVB-infected �-cells, and
these APCs were able to subsequently stimulate antigen-
specific T-cell proliferation and trigger diabetes, demon-
strating that the (infectious) microenvironment may drive

as described for panel E. H: DCs were stimulated as in E, and after 24-h co-culture cells were harvested and infected with EV9 at an MOI of 1. At
indicated times postinfection, EV9 replication was analyzed. Poly (I:C) was used as a positive control (34). In some experiments, freeze-thawed cell
populations were used but these yielded similar results compared with using viable cells (supplemental Fig. 1). Data shown are representative (A–D,
G, and H) or averages (E and F) of at least three independent experiments. Med, medium, i.e., unstimulated cells; M6/CVB, CVB-infected Min6 cells;
M6/M, mock-infected Min6 cells; n.s., not significant. *P < 0.05. (A high-quality color representation of this figure is available in the online issue.)
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FIG. 3. Type I IFNs produced by DCs themselves are required for ISG induction. A: DCs were stimulated with cleared supernatants from
stimulated DC and DC/Min6 co-cultures (harvested 24 h after co-culture started and used at a 1:2 dilution) and mRNA induction of RIG-I, Mda5,
and PKR were determined using qPCR 8 h after stimulation. B: Min6 cells were infected with CVB3 at an MOI of 10 and incubation cells were
harvested and added to DCs at a 1:1 ratio after 48 h. Stimulations were performed in the absence or presence of neutralizing antibodies (Iivari,
Kaaleppi, and bovine anti–IFN-�/�; see RESEARCH DESIGN AND METHODS). After 8 h, mRNA expression levels of RIG-I, Mda5, and PKR were determined
using qPCR. C: DCs were treated as in B and protein expression of RIG-I, Mda5, and PKR was analyzed by Western blotting after 24 h. D: DCs
were stimulated with 100 units/ml mIFN� or cleared supernatants from Min6 cells (harvested 48 h postinfection and used at a 1:2 dilution), and
ISG mRNA induction was determined after 8 h. Data shown are representative of two (C) or average of three (A, B, and D) independent
experiments. IC, poly (I:C); Med, medium, i.e., unstimulated cells; M6/CVB, CVB-infected Min6 cells; M6/M, mock-infected Min6 cells; mIFNa,
murine recombinant IFN-�; n.s., not significant; Sup, supernatant; w/o Ab or w Ab, without or with neutralizing anti–IFN-�/� antibodies,
respectively. *P < 0.05.
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innate, as well as adaptive, and autoimmune responses in
vivo. We studied human DC maturation in vitro and our
preliminary data on the induction of co-stimulatory mole-
cules showed no consistent upregulation, even though ISG

induction was consistently observed. In some donors,
upregulation of CD80 and CD86 and production of tumor
necrosis factor (TNF)-� and interleukin-12 were observed
in DCs upon uptake of CVB3-infected Min6 cells; however,
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in the majority of DC donors, no increases were observed.
The reason for these inconsistent outcomes is unknown
and requires further investigation.

Obviously, during phagocytosis of infected cells by DCs
in vivo, other cell populations are present that can interact
with DCs. These cells, including macrophages, plasmacy-
toid DCs, and natural killer cells, and the cytokines they
produce can greatly influence the microenvironment and
DC responses. For instance, IFNs can, besides their func-
tion in innate immunity, also influence adaptive immunity.
The amount of IFNs, timing of encountering IFNs, but also
possible synergy with other PRR stimuli can greatly influ-
ence DC maturation (47,48). Moreover, other pancreas
constituents, such as duct cells, may influence DC func-
tion. For example, duct cells produce TNF-� upon CVB3
infection (G. Vreugdenhil, F.J.M.v.K., J.M.D.G., and D.
Pipeleers, unpublished observations), and duct cell–de-
rived TNF-� has been shown to influence DC maturation
(49). Further in-depth investigation of adaptive immune
responses in DCs from healthy control subjects upon
encountering CVB-infected islets and the interplay with
other cell types and cytokines would be extremely
valuable.

Most human infections with enteroviruses are efficiently
controlled due to adequate antiviral immune responses.
Prolonged or successive enterovirus infections have been
suggested to play a role in the development of type 1
diabetes (50,51), raising the possibility that individuals
susceptible to type 1 diabetes may have impaired antiviral
defenses. The genetic background of susceptible individ-
uals greatly influences disease development. For example,
polymorphisms in Mda5, the RNA sensor that recognizes
picornavirus RNA (52), have been associated with type 1
diabetes development (25,53). Alterations in Mda5 func-
tion may affect adequate sensing of viral infections and
thus hamper antiviral immunity. CVB infection in a genet-
ically susceptible individual might therefore progress to
chronic inflammation in the pancreas. In this proinflam-
matory environment where self-antigens and viral antigens
are encountered by DCs, autoimmunity might develop or
accelerate, ultimately resulting in type 1 diabetes.

In conclusion, this study shows that CVB-infected hu-
man islets, porcine islets, and Min6 cells are phagocytosed
by human DCs and that this results in an RNA- and
IFN-dependent antiviral state in DCs. These events may
alter the programming of DCs and thus influence the
development of Treg and/or effector T-cell populations.
These novel findings provide important new insights into
the possible role of DCs during human type 1 diabetes
development.
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