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ABSTRACT

Motivation: The identification of transcription factor (TF) binding
sites and the regulatory circuitry that they define is currently an
area of intense research. Data from whole-genome chromatin
immunoprecipitation (ChIP–chip), whole-genome expression
microarrays, and sequencing of multiple closely related genomes
have all proven useful. By and large, existing methods treat the
interpretation of functional data as a classification problem (between
bound and unbound DNA), and the analysis of comparative data
as a problem of local alignment (to recover phylogenetic footprints
of presumably functional elements). Both of these approaches
suffer from the inability to model and detect low-affinity binding
sites, which have recently been shown to be abundant and
functional.
Results: We have developed a method that discovers functional
regulatory targets of TFs by predicting the total affinity of each
promoter for those factors and then comparing that affinity across
orthologous promoters in closely related species. At each promoter,
we consider the minimum affinity among orthologs to be the fraction
of the affinity that is functional. Because we calculate the affinity of
the entire promoter, our method is independent of local alignment.
By comparing with functional annotation information and gene
expression data in Saccharomyces cerevisiae, we have validated that
this biophysically motivated use of evolutionary conservation gives
rise to dramatic improvement in prediction of regulatory connectivity
and factor–factor interactions compared to the use of a single
genome. We propose novel biological functions for several yeast
TFs, including the factors Snt2 and Stb4, for which no function has
been reported. Our affinity-based approach towards comparative
genomics may allow a more quantitative analysis of the principles
governing the evolution of non-coding DNA.
Availability: The MatrixREDUCE software package is available from
http://www.bussemakerlab.org/software/MatrixREDUCE
Contact: Harmen.Bussemaker@columbia.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Genome sequences encode not only the sequences of RNAs,
but also the rates at which these are transcribed under various
conditions. This cis-regulatory code is a consequence of the
sequence specificity of transcription factors (TFs) and their
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interactions with other TFs, nucleosomes and other chromatin-
associated proteins. The identification of cis-regulatory elements
on a genomic scale is complicated by the fact that, although
TF sequence specificity is generally well-characterized in vitro,
functional elements in the genome are in fact much sparser
than would be predicted from sequence alone (Gao et al.,
2004; Pilpel et al., 2001). There are two types of constraint
on the in vivo selection of functional targets by a given TF:
those that prevent the TF from binding to DNA, and those
that prevent a bound TF from driving transcription (Fig. 1).
Functional and comparative genomics data are therefore needed
in concert with knowledge of TF sequence specificity and DNA
sequence to infer regulatory networks. The advantage of the
functional genomics approach is that the contribution of sequence
to the recruitment of a particular TF, and the association of that
TF’s binding with transcription, can be quantified. Comparative
genomics, on the other hand, can lend evidence of the biological
utility of TF binding through the application of evolutionary
principles.

Most comparative genomics methods rely on local alignment
of orthologous promoters or statistical measures of sequence
overrepresentation (Cliften et al., 2003; Kellis et al., 2003; Li
and Wong, 2005; Moses et al., 2004; Siddharthan et al., 2005;
Sinha et al., 2004), neither of which reflect the evolutionary
constraints on regulatory sequence. Local alignment is not well-
suited to detect lower affinity binding sites, which may be distant
in sequence space yet functional; nor can it capture the rapid
turnover of binding sites, which often occurs without conservation
of position (Dermitzakis and Clark, 2002; Ludwig, 2002; Tautz,
2000; Wray, 2003). These limitations could be overcome by not
directly comparing orthologous sequences, but rather comparing
their predicted affinities for various TFs. Various biophysically
motivated models of promoter-TF affinity have been developed
(Bintu et al., 2005; Djordjevic et al., 2003; Liu and Clarke, 2002;
Roider et al., 2007; Ronen et al., 2002; Stormo et al., 1986)
that allow such a comparison. In this article, we build upon the
principles of conservation of promoter-TF affinity across a wide
range of interaction strengths (Tanay, 2006) and conservation of
the core transcriptional network (Pritsker et al., 2004), and posit
that the fraction of a promoter’s affinity that is conserved in all
species—that is, the minimum total affinity among orthologous
promoters—can be used as a proxy for the fraction of the affinity
that is functional.

We tested this idea using Saccharomyces cerevisiae and
three closely related yeast species. We used the position-
specific affinity matrix (PSAM) model (Foat et al., 2006) to
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Fig. 1. Model for conservation of TF affinity. Promoter-TF affinity may
be partitioned three ways: (1) affinity that does not lead to occupancy, (2)
affinity that leads to occupancy but not function and (3) affinity that leads
to occupancy and function. (1) and (2) might be expected to correlate with
nucleosome occupancy, (2) and (3) with TF occupancy as measured by ChIP–
chip and (3) with expression. Only (3) is expected to be conserved across
orthologous promoters.

predict the affinity of each promoter in each species for a
set of TFs with previously characterized sequence specificities
(MacIsaac et al., 2006). For each TF, this yields a value for the
total affinity at every promoter in S. cerevisiae (NT ). The minimum
of the four orthologous promoters’ affinities defines the conserved
promoter affinity (NC) at each promoter, and the unconserved
promoter affinity (NU ) is calculated by subtracting NC from
NT (Fig. 2). We find that compared to the unconserved affinity
NU , the conserved affinity NC tends to exhibit greater bias
toward Gene Ontology (GO) categories, better explains TF-promoter
susceptibilities inferred from expression data, and correlates more
strongly with nucleosome depletion. For several TFs, we detect GO
category enrichment using the conserved affinity NC when none is
observed using the total single-species affinity NT and no function
has been reported in the literature.

We also develop a measure of correlation between genome-wide
NC landscapes for pairs of TFs (affinity co-conservation). The
interactions thus predicted are highly enriched for known physical
or functional interactions between TFs. When the same approach is
repeated using NT (affinity co-occurrence), no such enrichment is
detected.

Our method holds promise for predicting in vivo function when
only in vitro TF binding data and an ensemble of closely related
genome sequences are available. It is fundamentally different from
other methods because it is free of the parameters which govern
local alignment, thresholding between targets and non-targets, and

Fig. 2. Partitioning total affinity NT at each promoter into a conserved
fraction NC and unconserved fraction NU , where NC is defined as the
minimum predicted affinity across the four orthologs of each promoter, and
NU = NT −NC .

any distinction between conserved and non-conserved instances of
individual binding sites.

2 METHODS

2.1 Modeling TF affinities for orthologous promoter
sequences

Genome sequences for S. bayanus, S. cerevisiae, S. mikatae and
S. paradoxus were obtained from Kellis et al. (2003). Only genes for
which the authors defined orthologs in all species were considered. For
the correlation and GO analyses, we extracted sequences 500 bp upstream
from each start codon and truncated them to exclude any upstream coding
sequences. For the co-occurrence and co-conservation analyses, to negate
length effects and spurious correlations, we extracted 500 bp upstream
sequences without regard for upstream coding sequences; additionally,
to avoid any overlap, we considered only the sequence upstream of the
gene encoded on the Watson strand at divergent promoters with a length
<1 kb.

We used the PSAM model for TF–DNA binding affinity (Foat et al.,
2006), consisting of a matrix of parameters wjb. These weights represent
the energetic consequences of mutations from the highest affinity sequence
Sref to nucleotide j at position b within the binding window, resulting in a
mutated sequence Smut with an increased free energy of binding:

wjb = Ka(Smut)

Ka(Sref )
=e��G/RT (1)

As described by Foat et al. (2007), assuming independence between
positions, we can multiply the weights within a binding window to arrive
at the relative affinity of the TF for any sequence Smut. If we further
assume a non-saturating physiological concentration of TF relative to
DNA, the occupancy N of a sequence Smut is directly proportional to this
association constant Ka and the concentration of the factor [TF]. Finally,
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we sum the occupancies of each subsequence within a sliding window
across a promoter to calculate the predicted occupancy Ng for a promoter
sequence Ug of any length i:

Ng =[TF]Ka(Sref )

Lg−Lw+1∑

i=1

Lw∏

j=1

wjUg(i+j−1). (2)

We converted a library of position-specific scoring matrices (PSSMs)
representing S. cerevisiae TF specificities from MacIsaac et al. (2006) to
PSAMs using the transformation previously described by Foat et al. (2007)
and Bussemaker et al. (2007b)

fjb ∝ (wjb)λpb, (3)

where λ is an evolutionary selection parameter (Berg and von Hippel, 1987;
Stormo et al., 1986), pb is the background probability of base b, and fjb is the
frequency at position j and base b in the PSSM. Using a selection parameter
λ=1 and equal background frequencies pb, we converted the log2-likelihood
scores sjb = fjb/pb to weights wjb =2sjb . We then normalized each column of
the PSAM so that the highest affinity base b at each position j was equal to
one, and scaled the weights for the other bases accordingly.

We used the AffinityProfile utility from the MatrixREDUCE software
package to calculate the affinity Ngfs for each promoter g for each TF f
in each species s. We define the total promoter affinity NT

gf as the affinity

Ngfs for s= S. cerevisiae, and the conserved promoter affinity (NC
gf ) of a

promoter g for a TF f as the minimum of Ngfs among all four species s. The
unconserved promoter affinity is given by

NU
gf =NC

gf −NT
gf . (4)

The genome-wide total promoter affinity conservation for each factor was
calculated as

cf =
∑
g

NC
gf

∑
g

NT
gf

. (5)

2.2 Correlation with functional genomics data
We selected those TFs for which both a PSAM and a corresponding
TF deletion expression microarray experiment from Hughes et al. (2000)
were available and calculated the Pearson correlation between NU for all
promoters and the corresponding log2 expression ratios, and between NC

for all promoters and the corresponding log2 expression ratios.
Similarly, we considered TFs for which Gao et al. (2004) applied the

MA-Networker algorithm, which predicts the regulatory susceptibility of
each promoter to a given TF by combining whole-genome chromatin
immunoprecipitation (ChIP–chip) data with a compendium of expression
profiles. We calculated the Pearson correlation between both NU and NC

for each TF and the corresponding promoter–TF coupling T -values from
MA-Networker.

To investigate the relationship between conservation and nucleosome
occupancy, we used the nucleosome ChIP–chip data from Bernstein et al.
(2004). We calculated the Pearson correlation between either NU or NC for
each TF on one hand, and the mean log2 ratios across nucleosome ChIP
experiments on the other.

2.3 GO enrichment analysis
We performed GO (Ashburner et al., 2000) analysis using a non-parametric
variant of the T-profiler algorithm (Boorsma et al., 2005) described by Scheer
et al. (2006) and Bussemaker et al. (2007a). Briefly, using the NT , NC , and
NU for each TF, we performed a Mann–Whitney–Wilcoxon test between
the affinities for genes within each GO category and affinities for all other
genes. We performed a Bonferroni correction on the resulting P-values by
multiplying them by the number of unique GO categories. We use the YEAST
package from the BioConductor platform (Gentleman et al., 2004) within the
R statistical programming environment.

2.4 Affinity co-occurrence and co-conservation
We define the affinity co-occurrence between two TFs as the rank correlation
between NT profiles of those TFs beyond what is explained by the
similarity between pairs of PSAMs. Affinity co-conservation is defined
similarly, but using NC instead of NT . We first calculated the Spearman
correlation coefficient ρ using each of the 7626 pairs of TFs. To control
for the confounding effect of similarity between PSAMs, we then randomly
permuted the sequence of every promoter in each genome, and performed the
same analysis. Using 3874 random samples, we obtained a null distribution
for ρ for each TF pair. This procedure was performed separately for
co-occurrence and co-conservation. These distributions were found to be
normal upon examination of a Q–Q plot, which then allowed us to calculate
a mean and SD for the null distribution for each TF pair, and assign
two P-values to each TF–TF pair which served as our co-occurrence and
co-conservation metrics. We also assigned a false-discovery rate (FDR)
threshold α to each pair as described by Benjamini and Hochberg (1995). We
assigned ranks i to the co-affinity and co-occurrence P-values, and calculated
the FDR threshold α=pn/i, where n is the number of pairs (7626).

We compared our co-occurrence and co-conservation scores against four
sources of validation: the subset of cofactor pairs reported by Banerjee and
Zhang (2003) that had been experimentally validated; physical interactions
deposited in the Saccharomyces Genome Database (SGD) (Cherry et al.,
1998), including interactions detected by mass spectrometry affinity capture,
Western Blot affinity capture, complex reconstitution and yeast two-hybrid;
synthetic lethal interactions from SGD; and synthetic rescue interactions
from SGD. We used the Mann–Whitney–Wilcoxon P-value and the area
under the ROC curve (ROC AUC) to assess the performance of the co-
occurrence and co-conservation scores at predicting validated interactions of
each type. We used the ROCR package developed by Sing et al. (2005) within
the R statistical programming environment for calculating the ROC AUC.

3 RESULTS

3.1 Most predicted binding affinity for TFs is
unconserved

For each TF, we first analyzed the overall conservation of affinity cf ,
defined as the ratio of the genome-wide sum of conserved promoter
affinities NC and the genome-wide sum of total promoter affinities
NT . The overall conservation varies greatly between factors (Fig. 3),
but in most cases, the majority of TF affinity is unconserved. This
finding is consistent with previous observations that TF affinity is
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Fig. 3. Histogram displaying the genome-wide total promoter affinity
conservation cf for each of the studied factors.
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not sufficient for TF binding, and that TF binding is not sufficient
for function; in fact, previous work has shown that approximately
42% of TF binding is not functional (Gao et al., 2004).

3.2 Conserved affinity correlates with in vivo
regulatory susceptibility

To explore whether the conserved fraction of the affinity at a
promoter NC corresponds to the part of the affinity that is functional,
and conversely whether the unconserved fraction NU corresponds to
non-functional affinity, we analyzed transcriptional response to TF
deletion as measured using expression microarrays by Hughes et al.
(2000). Using the Pearson correlation between both components of
the affinity and the expression log2 ratios shows that, indeed, the NC

tends to predict the transcriptional response of a promoter better than
the NU (Fig. 4A).

Such microarray experiments are often difficult to interpret,
because of the drastic physiological change induced and the lack
of distinction between direct and indirect targets. The analysis by
Gao et al. (2004) was one of a family of techniques to integrate
binding and expression data to estimate the regulatory susceptibility
of each S. cerevisiae promoter to each of a variety of TFs. The
authors noted that this quantity did not correlate well with sequence-
based predictions of affinity due to an abundance of non-functional
binding. Again using the Pearson correlation, we found that these
susceptibilities are explained by the conserved affinity NC , in
contrast to the unconserved affinity NU (Fig. 4B).

3.3 Conserved affinity correlates with nucleosome
depletion

There are a variety of reasons why a promoter with high affinity
for a TF might not be regulated by that TF and consequently
would not display conserved affinity across orthologous promoters.
Specifically, (i) the TF may occupy the promoter, yet lack the
appropriate cofactors at that promoter, or the preferred binding
site within that promoter might be in the wrong position or
orientation relative to the transcription start site to recruit or
activate polymerase; or (ii) the TF might not bind as predicted by

sequence because of competing occupancy by nucleosomes. We
can distinguish between these two models using ChIP–chip data
that probe genomic occupancy by nucleosomes and by the factors
themselves. When we compare NC and NU for TFs with their
corresponding promoter occupancies as measured by Harbison et al.
(2004), we find modest support for the former mechanism; NC

and NU tend to both correlate with binding of the TF, although
NC often correlates more strongly (data not shown). However,
when we look at nucleosome occupancy data from Bernstein
et al. (2004), we observe a strong and consistent relationship
between nucleosome depletion and NC , but not NU (Fig. 5).
Strikingly, the exceptions to this mechanism are Rap1, Sfp1, and
Fhl1, all of which function to regulate ribosomal protein (RP)
genes (Lieb et al., 2001; Marion et al., 2004; Yu and Morse,
1999).

3.4 Conserved affinity profiles allow predictions of
novel TF functions

Any genome-wide measure of promoter–TF connectivity can be
combined with prior classifications of genes such as those curated
by the GO consortium (Ashburner et al., 2000) to detect functional
bias (Bussemaker et al., 2007a). We tested the utility of calculating
the conserved affinities NC by analyzing their bias toward GO
categories, and by comparing this bias to that which is detected
using unconserved affinities NU . We expected NU to be distributed
at random in the genome, and that any functional bias should be
restricted to NC . Indeed, we find that in general, the significance
of the bias toward the most enriched GO category is much stronger
when using NC (Fig. 6). Again, the three exceptions are the factors
Rap1, Sfp1, and Fhl1, which all regulate RP genes.

We also find that the number of GO categories within which
significant bias is detected is almost always greater when using the
conserved affinity NC compared to the unconserved affinity NU

(Supplementary Table 1). In some cases, we are able to predict
functions for TFs using NC that are not ascertainable from NT ;
these predictions tend to agree with those provided by the literature,
when available (Supplementary Table 1). We are able to formulate
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Fig. 6. Gene Ontology (GO) bias analysis using conserved promoter affinity
(NC ) and unconserved promoter affinity (NU ). Uncorrected P-values are
plotted; dashed lines represent a P-value threshold of 0.05, Bonferroni-
corrected for the number of categories and factors. The gray solid line
represents y=x. Colored in orange are the factors Rap1, Sfp1, and Fhl1,
which regulate ribosomal protein (RP) genes.

several hypotheses about TF functions using NC that have not been
reported in the literature:

• Snt2, a DNA-binding protein with unknown function, displays
bias in its NC toward genes encoding amine transmembrane
transporters (P=3.3×10−3).

• Stb4, a DNA-binding protein with unknown function,
displays bias in its NC toward genes encoding transporters
(P=1.5×10−4).

• Yap6, a putative TF shown to be associated with salt tolerance
(Fernandes et al., 1997; Mendizabal et al., 1998) displays bias

in its NC toward genes involved with carbohydrate metabolism
(P=0.033).

• The zinc-cluster protein encoded by YDR520C, which has been
shown to be associated with caffeine sensitivity (Akache et al.,
2001), displays bias in its NC toward genes involved with
organic acid metabolism (P=2.5×10−5).

• Yhp1 and Yox1 are both homeobox-containing transcriptional
repressors that bind the cell-cycle regulator Mcm1 and release
their repression on target genes at the M/G1 interval. Pramila
et al. (2002) noted that the two factors’ functions seem
redundant as far as regulating known early cell-cycle target
genes, and that they may interact with other cofactors to
regulate distinct sets of genes. Indeed, we detect distinct
conserved targets for the two factors: Yhp1 displays NC

biased toward genes involved with nucleotide and nucleotide
triphosphate biosynthesis and metabolism (P<4.1×10−3),
and Yox1 appears targeted toward genes involved with the cell
wall (P=4.8×10−5).

3.5 Affinity for TFs that regulate RP genes displays a
unique conservation pattern

In the course of our analysis, we made the surprising discovery
that the factors Rap1, Sfp1, and Fhl1 do not follow the same
pattern as the other studied factors: the unconserved affinity
NU for these factors appears to be functionally biased and
associated with nucleosome depletion more so than the conserved
affinity NC . Each of these TFs is known to regulate RP genes,
whose expression constitutes half of the RNA polymerase II
transcription in rapidly growing yeast cells (Warner, 1999). Our
GO analysis for these factors indicates that the strongest functional
bias toward RPs in each case is found by considering NT

rather than either NU or NC . One explanation might be that
the function of Rap1/Sfp1/Fhl1 affinity is context independent,
leading even unconserved affinity to be functional, whereas
for other TFs, a uniform background level of NU is found
throughout the genome (because it is non-functional outside of the
proper genomic context, and therefore not selected against). The
association of NU with RP promoters, which one would expect
to be exceptionally nucleosome depleted, explains the observed
anomalous correlation between NU for these factors and nucleosome
depletion.

3.6 Affinity co-conservation provides evidence for
TF–TF interactions

Co-occurrence and co-conservation of individual TF binding sites
has been an extensively studied line of evidence for predicting
cofactor pairs (Chiang et al., 2003; Pilpel et al., 2001; Sudarsanam
et al., 2002). Pairwise comparison of genome-wide NT and NC

distributions constitutes a natural extension to these methods,
which we term affinity co-occurrence and affinity co-conservation.
Similarity in genome-wide NT and NC profiles between two TFs
is governed, to an extent, by the similarity between their sequence
specificities (PSAMs); we controlled for this effect by developing
a null model for each TF–TF pair based on scrambled genomes.
At a FDR threshold of α<0.05, we discovered 29 pairs using
co-occurrence and 1530 by co-conservation (reported in full in
Supplementary Table 2). We first compared these results to the
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subset of 11 cofactors predicted by Banerjee and Zhang (2003)
that were experimentally validated. None of these validated pairs
were among the 29 co-occurring pairs, while 8 of the 11 validated
pairs were among the 1530 co-conserved pairs (hypergeometric
P=1.9×10−5). At this FDR-level stringency it is difficult to
compare the two methods, so we used the ROC AUC (Fig. 7)
and Wilcoxon-Mann-Whitney tests to compare their performance at
predicting the 11 validated pairs. Strikingly, affinity co-occurrence
fails to predict these cofactors by either measure, while affinity
co-conservation predicts them with significant strength.

We then compared our predictions to other sets of TF interactions
discovered via high-throughput experiments: physical interactions,
synthetic lethal interactions, and synthetic rescue interactions
(Table 1).

While physical interaction or synthetic lethality between two TFs
does not necessarily imply that they act together as cofactors or
even target the same genes, we nevertheless find that these types
of evidence are associated with significant signals of affinity co-
conservation. Synthetic rescue interactions are not associated with
co-conservation, which is to be expected because such interactions
indicate a complementary rather than synergistic relationship.Again,
it is notable that in none of these cases does co-occurrence of affinity
in a single genome provide evidence that agrees with experimentally
validated pairs.

The pairs of interactions that we detect by co-conservation
(Supplementary Table 2) are biologically plausible. The master cell-
cycle regulators Fkh1 and Fkh2 have many interaction partners;
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Fig. 7. ROC curves comparing the performance of the co-occurrence (black
line) and co-conservation (red line) methods at predicting the cofactor pairs
reported by Banerjee and Zhang (2003).

Table 1. Comparison of performance of the co-occurrence and co-
conservation methods

Validation source Co-occurrence Co-conservation
ROC AUC Wilcoxon P ROC AUC Wilcoxon P

Known cofactorsa 0.65 0.08 0.87 1.9×10−5

Physical interactions 0.52 0.64 0.59 7.1×10−3

Synthetic lethal 0.66 0.09 0.73 1.7×10−2

Synthetic rescue 0.53 0.66 0.47 0.69

aBanerjee and Zhang (2003).

the cell-cycle regulators Mcm1 and Yox1 are connected; the RP
regulators Fhl1, Rap1, and Sfp1 are connected; heme-activator
proteins Hap1, Hap2, Hap3, and Hap4 are connected; sulfur amino
acid biosynthesis regulators Met4 and Met32 are connected; and
glycolysis regulators Gcr1 and Gcr2 are connected. Interestingly,
the serum response factor like protein Rlm1 has many interaction
partners, suggesting that it has a genome-wide regulatory function
that is shared by many factors with diverse functions.

CONCLUSION
We have exploited the pattern of TF affinity conservation across
orthologous promoters to infer the fraction of TF affinity at
each promoter that is functional. This method should be broadly
applicable to situations where the in vitro binding specificity of a
TF is known, but its in vivo function has not been demonstrated
experimentally. It may also be especially useful in the analysis of
the genomes of higher eukaryotes, in which non-functional binding
sites outnumber functional ones to an even higher degree than in
yeast. In contrast to phylogenetic footprinting methods, information
from the full range of potential binding affinities is incorporated,
allowing for more sensitive detection of potential TF–promoter and
TF–TF interactions.
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