
cells

Article

Metabolite Diversity and Metabolic Genome-Wide Marker
Association Studies (Mgwas) for Health Benefiting Nutritional
Traits in Pearl Millet Grains

Chandra Bhan Yadav 1, Rakesh K. Srivastava 2 , Prakash I. Gangashetty 2 , Rama Yadav 1, Luis A. J. Mur 1

and Rattan S. Yadav 1,*

����������
�������

Citation: Yadav, C.B.;

Srivastava, R.K.; Gangashetty, P.I.;

Yadav, R.; Mur, L.A.J.; Yadav, R.S.

Metabolite Diversity and Metabolic

Genome-Wide Marker Association

Studies (Mgwas) for Health

Benefiting Nutritional Traits in Pearl

Millet Grains. Cells 2021, 10, 3076.

https://doi.org/10.3390/

cells10113076

Academic Editors: Francesco Mercati,

Francesco Carimi and

Suleyman I. Allakhverdiev

Received: 18 October 2021

Accepted: 5 November 2021

Published: 8 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan,
Aberystwyth SY23 3 EB, UK; chy10@aber.ac.uk (C.B.Y.); ray7@aber.ac.uk (R.Y.); lum@aber.ac.uk (L.A.J.M.)

2 International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad 502324, India;
r.k.srivastava@cgiar.org (R.K.S.); P.Gangashetty@cgiar.org (P.I.G.)

* Correspondence: rsy@aber.ac.uk

Abstract: As efforts are made to increase food security, millets are gaining increasing importance
due to their excellent nutritional credentials. Among the millets, pearl millet is the predominant
species possessing several health benefiting nutritional traits in its grain that are helpful in mitigating
chronic illnesses such as type−2 diabetes and obesity. In this paper, we conducted metabolomic
fingerprinting of 197 pearl millet inbred lines drawn randomly from within the world collection of
pearl millet germplasm and report the extent of genetic variation for health benefitting metabolites
in these genotypes. Metabolites were extracted from seeds and assessed using flow infusion high-
resolution mass spectrometry (FIE-HRMS). Metabolite features (m/z), whose levels significantly
differed among the germplasm inbred lines, were identified by ANOVA corrected for FDR and
subjected to functional pathway analysis. A number of health-benefiting metabolites linked to dietary
starch, antioxidants, vitamins, and lipid metabolism-related compounds were identified. Metabolic
genome-wide association analysis (mGWAS) performed using the 396 m/z as phenotypic traits and
the 76 K SNP as genotypic variants identified a total of 897 SNPs associated with health benefiting
nutritional metabolite at the -log p-value≤ 4.0. From these associations, 738 probable candidate genes
were predicted to have an important role in starch, antioxidants, vitamins, and lipid metabolism. The
mGWAS analysis focused on genes involved in starch branching (α-amylase, β-amylase), vitamin-K
reductase, UDP-glucuronosyl, and UDP-glucosyl transferase (UGTs), L-ascorbate oxidase, and
isoflavone 2′-monooxygenase genes, which are known to be linked to increases in human health
benefiting metabolites. We demonstrate how metabolomic, genomic, and statistical approaches can be
utilized to pinpoint genetic variations and their functions linked to key nutritional properties in pearl
millet, which in turn can be bred into millets and other cereals crops using plant breeding methods.

Keywords: pearl millet; metabolites; starch; antioxidants; vitamins; germplasm; mGWAS; marker-
trait associations; candidate genes

1. Introduction

Globally, more than half of all deaths are due to malnutrition, and this is driving
the need to improve the nutritional content of staple food crops that are consumed on
a daily basis. Of the many edible plants available, cereals and millets contribute more
than 50 % of human energy intake. Millets are naturally rich in both micronutrients as
well as several other health-benefiting characteristics. Nutrition-rich products derived
from millets, therefore, have the potential to counter human malnutrition. Nowadays,
millets are grown worldwide, but were domesticated mainly in China, Asia, and Africa.
Millets are C4 plant species and so have higher photosynthetic rates compared to other
C3 plants [1,2]. They also display better water use efficiency than other members of
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grass families such as maize, wheat, and sorghum [3]. Millets are usually referred to
as coarse grains; however, due to their important nutritional properties, they are now
being termed as ‘nutria-millets/nutria-cereals’ as well. Most of the millets, including
pearl millet, have high protein, folic acid, vitamins, carotenoid contents [4,5], possess
non-glutinous and non-acid forming properties, and are easy to digest. They are also rich
in nutritionally important minerals like iron, calcium, zinc, magnesium, phosphorous, and
potassium [6–8], and dietary fiber and several vitamins (β-Carotene, niacin, vitamin B6
and folic acid) [9,10]. Millets are also rich in polyphenols, tannins, phytosterols and are a
good source of antioxidants. Despite these positive attributes, the use of millets as a food is
restricted to the conventional consumers, predominantly the subsistence farming families
who grow them. This can be attributed to the non-availability of user-friendly, ready to
use/ready to eat millet-based food products.

The value of millets is specifically underlined by their health benefits. Several research
studies have shown that diets that are dominated by millet grains can contribute to the pro-
tection against several non-communicable diseases (NCDs) such as cancer, cardiovascular
ailments, diabetes, metabolic syndrome, and Parkinson’s disease [11–13]. Until recently the
vitamins, minerals, essential fatty acids, and fiber in grains were considered as the impor-
tant constituents, however, new research suggests that the combination of other bioactive
substances they possess are also important for health benefits [14]. These include slowly
digestible and resistant starches; oligosaccharides; lipids; antioxidants, and flavonoids; and
antinutrients such as phytic acid and tannins [15,16].

The development of pearl millets varieties to maximize their value as a functional
food and nutraceuticals is being complemented by the availability of the pearl millet
(Pennisetum glaucum) genome sequence [4]. Recent genomic studies have successfully
provided the genetic architecture of complex traits like drought tolerance, N2 use efficiency,
C4 photosynthetic efficiency, and bioenergy properties [5]. The availability of the genomic
sequence is also allowing millets to be used as model plants as they have relatively a
short life cycle. The power of pearl millet genomic studies can be augmented if coupled
with metabolomics, which is emerging as an important analytical approach in food and
nutrition research [17]. Currently, a number of metabolomics platforms such as liquid
chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry
(GC–MS), nuclear magnetic resonance (NMR), flow infusion electrospray ionization high-
resolution mass spectrometry (FIE-HRMS) are accelerating metabolite fingerprinting in
a stated sample [18]. Of these, FIE-HRMS is one of the most accurate, reliable analytical
methods to detect volatile and thermally stable compounds, including sugars, amino
acids, organic acids, and polyamines, as well as biosynthetic pathway precursors [19,20].
Dissection of the genetic bases for food and nutritional metabolites has also allowed the
global identification of genetic determinants for the diversity of plant metabolism.

The present study assessed metabolic diversity in nutraceutical elements using a
subset of randomly picked 197 genotypes drawn from within the world collection of
345 Pearl Millet inbred Germplasm Association Panel (PMiGAP) [21]. Using a metabolic
genome-wide association study (mGWAS) approach, we report candidate genes associated
with a diversity of plant metabolites in this germplasm set.

2. Materials and Methods
2.1. Plant Materials

A total of 197 genotypes were picked randomly from the pearl millet inbred germplasm
association panel (PMiGAP), as described in Sehgal et al. [21] and Yadav et al. [22], were
used in this study. These inbred lines represent the diverse pearl millet germplasm orig-
inating from 22 different countries including 40 accessions from ICRISAT, 15 accessions
from India, 22 from Niger, 10 from Nigeria, 9 each from Namibia, Zimbabwe, Togo, and the
remaining 52 from other pearl millet growing regions (Supplementary Table S1). The seeds
of each of the 197 accessions were multiplied in the uniform field conditions at ICRISAT,
Patancheru, India, following standard agronomic practices as described by Upadhyaya
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et al. [23], Ramya et al. [24], and Yadav et al. [22]. The seeds were collected after selfing un-
der strict pollination conditions to obtain pure seeds of each line. The seeds were supplied
to IBERS, Aberystwyth University, by ICRISAT via standard material transfer agreements.

2.2. Metabolomic Profiling

Metabolites were extracted from frozen milled samples of each accession of the
PMiGAP and were performed in four replicates of each accession. The seed samples
(~50 mg ± 1 mg) were placed into 2 mL microcentrifuge tubes, each containing a single
5 mm diameter stainless-steel ball (acetone cleaned). Samples were immediately flash
frozen in liquid N2 and homogenized using a ball mill and put on ice to which 1 mL of
extraction solution (chloroform/methanol/water, 1:2.5:1, v/v/v) was added followed by
incubation at 4 ◦C for 15 min. The samples were further centrifuged at 14,000 rpm for 5 min
at 4 ◦C and returned to the ice. The aqueous supernatant was transferred into new tubes for
MS analysis. The extracted samples (100 µL) were transferred into the MS vials with inserts
and analyzed for FIE-HRMS (flow infusion electrospray ionization high-resolution mass
spectrometry). The four independent replicates were made for each sample. Metabolite
fingerprinting was performed by FIE-HRMS using a Q Exactive Plus Hybrid Quadrupole
Orbitrap Mass Analyser with an Acella ultra high-performance liquid chromatography
(UHPLC) system (Thermo Fisher Scientific, Bremen, Germany). The sample was injected
into the capillary column in a randomized order. The m/z (mass-ion) values were generated
in both positive and negative ionization modes as described by Skalska et al. [20].

2.3. Statistical Analysis for Metabolites Identification

Individual m/z values were normalized with the Pareto scaling method and log10
transformed for each sample. Multivariate analysis was performed using MetaboAna-
lystR (http://www.metaboanalyst.ca (accessed on 29 September 2021). The significance
of the cross validated p-values, based on the one-way analysis of variance (ANOVA)
was set to p < 0.05. The multiple comparison and post hoc test using Fisher’s Least Sig-
nificant Difference (Fisher’s LSD) were performed. The functional level and pathway
enrichment assessment were performed using the Functional analysis module of Metabo-
Analyst 5.0. Metabolite identification was based on the MS peaks to pathway algorithm
(tolerance = 5 ppm, reference library: Oryza sativa).

2.4. Selection of Metabolites Contributing to Health Benefiting Traits

ANOVA using the Wald statistic in Genstat was used to calculate metabolite variance
across 197 PMiGAP genotypes. The mean values were calculated for all 197 PMiGAP
genotypes. The PMiGAP lines showed significant variation in the following: starch and
sucrose metabolism; cutin, suberin and wax biosynthesis, antioxidants biosynthesis path-
ways (such as folate biosynthesis, inositol phosphate metabolism, flavonoid biosynthesis,
thiamine metabolism, carotenoid biosynthesis, flavone and flavonol biosynthesis, zeatin
biosynthesis, stilbenoid, diarylheptanoid, and gingerol biosynthesis); lipid biosynthesis
(fatty acid degradation, fatty acid biosynthesis, biosynthesis of unsaturated fatty acids),
vitamins (one carbon pool by folate, riboflavin metabolism, nicotinate and nicotinamide
metabolism, linoleic acid metabolism, biotin metabolism, vitamin b6 metabolism) and
nitrogen metabolism. Broad sense heritability (H2) was analyzed as described by Yadav
et al. [22], and the best linear unbiased prediction (BLUP) value was estimated as defined
in the user manual of HAPPI GWAS (Holistic Analysis with Pre- and Post-Integration
GWAS) [25]. The BLUP values were used as the input data for metabolic genome-wide
marker association studies.

2.5. Metabolic Genome-Wide Marker Association Studies

Metabolic genome-wide marker association studies (mGWAS) were performed using a
mixed linear model (MLM) on an R platform implemented in GAPIT (Genomic Association
and Prediction Integrated Tool) for each of the metabolites contributing to the identified

http://www.metaboanalyst.ca
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nutritional traits [26]. MLM is a robust model for rectifying the fixed and random genetic
effects and controlling the bias of population stratification while identifying associations
between SNP polymorphisms and the traits [22]. Additionally, the model also reduces any
confounding effect between testing markers using the kinship matrix (K) and Q matrix as
random effects. SNP markers having a p-value < 0.001 were normally considered signif-
icant. For declaring marker-trait association to be highly significant, a higher threshold
to −log10 ≤ 4.0 was set. Manhattan plots displayed statistically significant associated
markers and quantile-quantile (Q-Q) plots were prepared to graphically visualize the
distribution pattern for associated markers. The R squared values for markers (r2) were
calculated and used to explain the proportion of phenotypic variation explained by each
SNP locus.

2.6. Identification of Candidate Genes Affecting Metabolites Contributing to Health
Benefiting Traits

The probable candidate gene search from the significant SNP-trait associations ob-
tained from mGWAS was determined based on the extent of linkage disequilibrium (LD)
surrounding the SNP. LD was calculated using D prime in a 10 kb window surrounding
region of the significant SNP by Haploview software version 4.2 [27]. Regions of high LD
(95% confidence bounds on D prime) (i.e., haploblocks) were identified and gene search
has been performed using HAPPI GWAS (Holistic Analysis with Pre- and Post-Integration
GWAS) [25]. Searches for candidate genes were performed using the gene annotated
GFF file from the database (ftp://cegresources.icrisat.org accessed on 29 September 2021)
according to the positions of the closest flanking significantly associated SNPs. SNPs that
were significantly associated with the trait but were not falling within the regions of high
LD, were not considered. The functions of corresponding genes were predicted using
the Blast2 Go program [28]. Homology based identification of probable candidate genes
associated with significant polymorphic SNPs were annotated using available databases
(NCBI-nr, PIR, KEGG, and GO).

3. Results
3.1. Metabolite Fingerprinting of Pearl Millet Seeds

Metabolite fingerprinting was performed using FIE-HRMS (flow infusion electrospray
high-resolution mass spectrometry) for 197 pearl millet accessions originating from differ-
ent parts of the world. A total of 4189 mass features were observed of which 2227 mass
features were in negative ionization mode and 1962 in positive ionization mode for the
PGMiGAP lines.

Principal component analysis (PCA) showed that the metabolomes of the PGMi-
GAP lines exhibited no clear metabolomic sub-populations (Figure 1). The variation
described by principal component (PC) 1 was 13.3% and overall, the first five coordinates
accounted for a total of 40.7% variation. This indicated that there were relatively small
differences in the global metabolomes in the PGMiGAP lines. This stated, ANOVA analysis
along with multiple comparisons by false discovery rate (FDR) statistical approach, iden-
tified significant differences in individual metabolites among the 197 accessions studied
(Supplementary Table S2). ANOVA analysis revealed that 1333 mass features (negative
ionization mode) and 1162 mass features (positive ionization mode) significantly differed
at p < 0.05 in PMiGAP lines. The pairwise comparisons were performed for such potential
metabolites having significant differential quantities among the 197-pearl millet and shown
in the heatmap and dendrograms (Supplementary Figure S1,S2). These suggested that the
PGMiGAP lines could be broadly clustered into three clades.

ftp://cegresources.icrisat.org
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Figure 1. Principal component analysis (PCA) of metabolite profiles of 197 pearl millet accessions.
Each ellipsis describes the variation within four replicates of a single accession.

3.2. Predictions of Metabolic Pathways for Each Metabolic Compound

A total of 2295 (1333 mass feature with negative ionization mode and 1162 with
positive ionization mode) significant mass features were subjected to metabolic pathway
analysis for identifying their suggestive functional information. Metabolite pathway assess-
ments using the mummichog algorithm (https://shuzhao-li.github.io/mummichog.org
accessed on 29 September 2021) identified 1276 (694 negative ion mode and 582 positive
ion mode) mass features showing significantly hits with KEGG pathway libraries at a
cut-off p-value > 1 × 10−5. The most significant association are displayed in Figure 2.
Important pathways identified were galactose metabolism (44 mass features), flavonoid
biosynthesis (40) amino sugar and nucleotide sugar metabolism (37), phenylpropanoid
biosynthesis (36), valine, leucine and isoleucine biosynthesis (30), pyrimidine metabolism
(31), aminoacyl-trna biosynthesis (37), cysteine and methionine metabolism (35), alanine,
aspartate and glutamate metabolism (24), starch and sucrose metabolism (24), purine
metabolism (30), glycine, serine and threonine metabolism (36) and tryptophan metabolism
(16). Less prominent, but biologically important, pathways included the TCA cycle, glycol-
ysis/gluconeogenesis, citrate cycle (TCA cycle), pentose and glucuronate interconversions,
valine, leucine and isoleucine degradation, alanine, aspartate, and glutamate metabolism.

3.3. Metabolites Contributing to Nutritional Health Benefiting Traits

Examination of the identified mass features (1276) allowed the identification of
341 health promoting metabolites (Supplementary Table S3). A total of 24 metabolites
that were identified involved in starch and sucrose metabolism. Other pathway specific
variation targeted included the following: 10 mass features associated with cutin, suberine
and wax biosynthesis; 135 metabolites with antioxidants biosynthesis pathways (such
as folate biosynthesis, inositol phosphate metabolism, flavonoid biosynthesis, thiamine
metabolism, carotenoid biosynthesis, flavone and flavonol biosynthesis, zeatin biosyn-
thesis, stilbenoid, diarylheptanoid, and gingerol biosynthesis); 68 with lipid biosynthesis
(fatty acid degradation, fatty acid biosynthesis, biosynthesis of unsaturated fatty acids); 66
metabolites with vitamins (one carbon pool by folate, riboflavin metabolism, nicotinate
and nicotinamide metabolism, linoleic acid metabolism, biotin metabolism, vitamin b6
metabolism) and 7 metabolites with nitrogen metabolism.

https://shuzhao-li.github.io/mummichog.org
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Figure 2. Metabolite pathway analyses showing metabolite enrichment and variation in pearl millet
lines originated using the mummichog algorithm.

Histogram plot of each health benefiting nutritional metabolite showed a normal
distribution pattern for health promoting metabolites. In Figure 3, the patterns of four rep-
resentative features (positive ion [p] 156.04213 m/z, p384.18817, negative ion [n] 161.04581
and [n] 323.09927) are shown. The heritability of each such nutritional metabolite was
calculated, which ranged from 7.2% to 96.9%. Eight metabolic traits showed less than 50%
heritability (Supplementary Table S3).

3.4. Metabolic Genome-Wide Marker Association Studies

mGWAS analyses were performed for 333 mass features using 76648 polymorphic
SNPs, which were filtered following Yadav et al. [22] with minor allele frequencies (MAFs)
< 0.05, or missing data > 20% from the peal millet 28 M SNP described in Varshney
et al. [4]. A total of 6714 SNP showed significant association with 333 metabolites at the
p-value of ≤ 0.001 (Supplementary Table S4). The metabolic variance (R2) explained by
each locus ranged from 7.0 to 28.1%. Approximately, 30 metabolites (negative ion mode)
were found to be linked with more than 10 loci during marker-trait association analysis
(MTA) whereas 20 mass features (positive ionization mode) were influenced by more than
10 loci. One of the negative ion mode mass feature (n401.13098 likely to be flavanone
7-O-beta-D-glucoside) was genetically controlled by a maximum of 24 loci followed by
n297.24417 (likely, oxooctadecanoic acid) with 20 loci. Similarly, the positive ion mode
mass feature p496.34027; (likely, lysophosphatidylcholine (16:0)) was genetically controlled
by a maximum of 16 loci followed by p86.06037 (likely, pyroglutamic acid) with 15 loci,
p455.10834 (likely, apigenin 4’-O-glucoside) with 14 loci.
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Figure 3. Histogram distribution pattern for selective mass features (p156.04213-in anthocyanin/lipid metabolism,
p384.18817-vitamins metabolism, n161.04581-vitamins/starch metabolism, n323.09927-starch and sucrose metabolism) used
for mGWAS (metabolic genome-wide association analysis).

A total of 897 SNPs were found to be associated with health benefiting nutritional
metabolite at the −log10 ≤ 4.0. Out of these, 616 SNPs were associated with negative ion
mode and 333 SNPs with positive ion mode metabolic compounds (Supplementary Table S5).
Thus, a total of 287 metabolite features had at least one associated locus at the significance
level of -log p-value ≤ 4.0 in the mGWAS analysis. The markers were plotted against
their chromosomal positions and the observed p-values (on a –log10 scale) to show the
significantly associated markers. The Manhattan and Q-Q plot visualization indicated
that significantly associated SNPs at the lowest p-value ranged from 9.9 × 10−5–2.1 × 10−7

(Figure 4). MLM-based association analysis demonstrated that the 2_210427657 locus
exhibited highly associated MTA with the positive mode metabolite p611.16241 (most
likely, rutin) at a p-value of 1.4 × 10−7. Similarly, the same locus (2_210427657) had a
strong association with the negative mode metabolic compound n610.15161 (most likely, a
hydrocinnamic acid compound) at a p-value of 2.1 × 10−7.
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3.5. Suggesting Candidate Genes Affecting Metabolites Contributing to Health Benefiting Traits

The SNPs that are significantly associated with metabolites were annotated for prob-
able candidate genes using the Pennisetum glaucum reference genome assembly (http:
//ceg.icrisat.org/ipmgsc/genome.htmL accessed on 29 September 2021). Putative genes
surrounding the significant SNPs mapped within the regions of high LD blocks (r2 > 0.6)

http://ceg.icrisat.org/ipmgsc/genome.htmL
http://ceg.icrisat.org/ipmgsc/genome.htmL
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in 20 kb windows were considered as a probable candidate gene in mGWAS analysis.
Genes contained or partially contained within the LD blocks were also considered as a
trait associated candidate gene. If no genes overlap the haploblock, or the significant
SNP does not fall within an LD block, the gene directly upstream and downstream of the
significant SNP is given. In addition to genes that were the nearest neighbors to significant
SNPs but not mapped in LD blocks, were not considered as candidate genes. Thus, seven
hundred and thirty-eight candidate genes were identified in the surrounding regions of
the significantly associated SNPs and high LD haploblock.

Out of 738 SNPs, 53 (0.07%) SNP’s adjoining genes were detected to be of simi-
lar functions to starch biosynthetic pathway-related genes. Among them, beta-amylase
(Pgl_GLEAN_10022932, Pgl_GLEAN_10018323 and Pgl_GLEAN_10021788), alpha-amylase
(Pgl_GLEAN_10005587 and Pgl_GLEAN_10031363) and starch synthase, catalytic domain
(Pgl_GLEAN_10027180) were predicted to be involved in starch biosynthetic pathway-
related genes (Supplementary Table S6). Mass features such as n217.02998 (likely to be
a glucose adduct) showed significant association with SNP (1_224032459) at the p-value
7.7 ×10−5 and flanking gene (Pgl_GLEAN_10017489) was likely involved in starch and
sucrose metabolism. Similarly, n99.04523 (likely, erythrose 4-phosphate) exhibited strong
association with SNPs (2_17284984, 2_17284990, 2_17285011 and 2_17285041) at the p-value
>2.4 ×10−6 and flanking gene (Pgl_GLEAN_10005402) had regulatory role in starch and
sucrose metabolism. Likewise, mGWAS exhibited mass feature (n323.09927, likely to
be sedoheptulose) showing a strong association with SNP (3_214922811) at the p-value
7.8−5 and functional annotation of a nearby gene (Pgl_GLEAN_10031396) encoding alpha-
amylase/branching enzyme, having molecular active sites involved in the initiation and
formation of starch granules and the conversion of amylose and amylopectin. Thus, the
observations suggested that more than ten genes are having active roles in starch biosyn-
thesis regulating the various chemical pathways to promote changes in sugar metabolism
leading to the accumulation of amylose and starch. Several other candidate genes involved
in starch and sucrose metabolism pathways were also detected during mGWAS, but these
genes regulated distantly related metabolic pathways. For example, Pgl_GLEAN_10018323
encodes β-amylase involved in the chemical reactions and pathways resulting in the break-
down of a polysaccharide, a polymer of many (typically more than 10) monosaccharide
residues was identified as a candidate gene associated with n183.00641 (likely to be 2-
hydroxy-3-oxobutyl phosphate) having a critical role in plant vitamin metabolism. It was
noteworthy that Pgl_GLEAN_10004380, which encodes lipase or esterase activities having
an essential role in digestion, transport, and processing of dietary lipids, has been detected
to be a probable candidate gene for mass feature n297.24417 (likely, oxooctadecanoic acid)
involved in starch and lipid metabolism.

Approximately, 16 candidate genes having functional properties related to antioxi-
dant compounds, exhibited a strong association with mass features having similarities
with folate biosynthesis, inositol phosphate metabolism, flavonoid biosynthesis, thiamine
metabolism, carotenoid biosynthesis, flavone and flavonol biosynthesis-related genes
during metabolic pathway analysis. For example, SNP (6_106009267) flanking gene
(Pgl_GLEAN_10010541) encoding carbamoyltransferase enzyme, predicted to be a candi-
date gene involved in antioxidants biosynthetic pathway, was found to have a significant
association with mass feature n337.09402 (likely to be a chalone compound) involved in
phenylpropanoid biosynthesis, stilbenoid, diarylheptanoid, and gingerol biosynthesis at
the p-value ≥ 3.3−5. Similarly, GDSL/SGNH-like Acyl-Esterase (Pgl_GLEAN_10002072)
encoding enzyme, having hydrolase activity and especially acting on ester bonds to pro-
mote the accumulation of carotenoids, showed significant association with mass feature
p611.16241 at the p-value of ≥7.1 ×10−5. This suggests that these genes might be the key
factors in these pathways through various chemical pathways to promote the accumulation
of antioxidant-related flavonoid compounds.

A vitamin-K reductase (Pgl_GLEAN_10004357) gene on chromosome 7 was identified
(at the p-value of ≥1.1 × 10−5)), which is known to be related to vitamin K biosynthesis.
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It was found adjacent to an SNP marker (7_149936526) showing significant association
with p156.04213 and n281.03635 mass features involved in anthocyanin biosynthesis and
lipid metabolism. Similarly, fifteen genes encoding UDP-glucuronosyl and UDP-glucosyl
transferase (UGTs) were found to be involved in starch metabolism, anthocyanin, and
flavonol. UGTs have been significantly associated with vitamin, antioxidant, starch, and
lipid metabolism-related mass features.

L-ascorbate oxidase/ascorbase (Pgl_GLEAN_10037006) gene related to vitamins
metabolism act as a cofactor for enzymes involved in regulating photosynthesis, hor-
mone biosynthesis, and regenerating other antioxidants. mGWAS revealed that this
ascorbate gene showed a strong association with n281.03635, which was annotated as
a biotin metabolism-related compound. An important plant bioactive, isoflavone 2′-
monooxygenase encoding gene (Pgl_GLEAN_10031980) having polyphenolic metabolites
with antioxidant properties were detected to be significantly associated with p384.18817
related to zeatin biosynthesis metabolic pathway at the p-value of ≥9.3−5. Similarly, many
candidate genes predicted to be associated with lipid metabolism-related genes were
identified that encoded mitochondrial proteins or proteins linked to stress defense mech-
anisms, growth, and development. Other genes showing similarities with transcription
factors, including MADS-box transcription factor, Nodulin-like, Myb domain transcript,
and auxin-related transcriptome factors, were also identified (Supplementary Table S7).

4. Discussion

A number of research studies have shown that nutrition-rich diets made of millet grain
offer protection against several non-communicable diseases such as cancer, cardiovascular
ailments, diabetes, metabolic syndrome, and Parkinson’s disease [12,13]. Pearl millet grains
possess antioxidants, polyphenols, vitamins, starch especially dietary starch in abundance.
For the metabolome analysis, from among the several available analytical tools such as high-
performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry
(LC-MS), gas chromatography-mass spectrometry (GC–MS), nuclear magnetic resonance
(NMR), FIE-HRMS (flow infusion high-resolution mass spectrometry) available, the latter
is known to offer greater advantages in capturing larger metabolomic information in a
sample [29]. As a result, we employed FIE-HRMS to link health benefiting nutritional
compounds to genetic elements in pearl millet. Thus, FIE-HRMS detected 333 mass features,
which were crucial in determining health benefiting nutritional traits via biosynthesis of
starch, antioxidants biosynthesis, lipid biosynthesis, and vitamin metabolism.

In this report, we employed mGWAS using MLM model to link 896 SNPs with health
benefiting metabolites in a population of 197 pearl millet accessions. In the surrounding
regions of these significantly associated SNPs, 738 probable candidate genes were identified
that were linked to metabolic compounds. In doing so, we for the first-time report in pearl
millet where metabolic trait-associated marker study was conducted using LD to identify
candidate genes controlling health benefiting nutritional traits. In fact, the relationships
between metabolic compound accumulation and their regulation at the genetic level has
frequently been applied to study human diseases, but have only rarely been applied to
plants [30]. These limited studies pertain to both the model plants as well as to some
economically relevant crop species [31–35], however, the identification of the genetic bases
of metabolites content using metabolic association analysis have only been reported in
maize [30,36].

The starch biosynthetic pathway genes we report in this study would help to derive
pearl millet varieties that are rich not only in dietary starch, but also having the charac-
teristics such as low GI and high fiber content (β-glucans). Availability of such varieties
will have hypoglycemic effects when consumed, and hence will be beneficial in prevent-
ing type-2 diabetes. Further, in this study, mGWAS was employed that identified SNP
markers associated with starch biosynthesis-related mass features in pearl millet. A total
of 53 candidate genes were identified in the flanking regions of associated SNP markers
that were significantly associated with starch biosynthesis-related mass features. Among
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these candidate genes, alpha-amylase/branching enzyme and beta-amylase were found
across all selected SNP data sets linked to the starch related metabolic compounds. Our
study corroborates with the findings of Zhang et al. [37], who also previously reported
that starch branching enzymes IIa (BEIIa) was closely associated with starch traits in In-
dica rice. In another study, Parween et al. [38] also suggested alpha-amylase/branching
enzyme having a key regulatory gene contributing to enhance resistant starch in rice. We
also report another important gene having a role in digestion, transport, processing of
dietary starch and lipids (encoded by a lipase gene, Pgl_GLEAN_10004380) linking with
the accumulation of metabolite (n297.24417 oxooctadecanoic acid) involved in starch and
lipid metabolism. This corroborates with Zhang et al. [37], who also reported that a lipase
gene (LOC_Os09 g09360) was associated with slowly digestible starch through their GWAS
study in rice. We have also identified several other starch synthase-related genes, especially
the UTP-glucose-1-phosphate uridylyltransferase (UGT), having a role in starch-related
compound accumulation.

Apart from dietary starch, plant bioactive metabolites and associated isoflavones
are also equally beneficial for human health. Specifically, they reduce the risk factors
for cardiovascular diseases including lowering liver or blood triglyceride, total and LDL
cholesterol levels. In this study, using mGWAS we have identified SNPs influencing the
antioxidants related bioactive compounds and 16 probable candidate genes including
isoflavone 2′-monooxygenase encoding gene, carbamoyltransferase, GDSL/SGNH-like
acyl-Esterase, and UGTs, which have similarities with the antioxidant biosynthetic pathway-
related genes. These genes have also previously been reported to be associated with
antioxidant metabolism-related pathways using an association analysis in pearl millet [22].
In the present study, we also elucidated more than ten pearl millet genes involved in
biosynthesis of plant vitamins such as biotin, ascorbic acid, zeatin, riboflavin and thiamine
related metabolic compounds. These corroborate findings by Luo et al. [39] in maize
who identified SNP markers and ZmVTE4 genes associated with phenotypic variation of
vitamin E production.

5. Conclusions

Traditional breeding using marker technology is mainly based on the selection of
agronomic traits using linked DNA markers, but the availability of metabolites-based
biomarkers offers an additional toolbox to the plant breeders. Synthesizing a new variety
for crop plants such as of rice, wheat or millets generally requires 5–7 years through
traditional breeding schemes and any approach that can hasten such process is desirable.
Traditional breeding schemes also suffer from a lack of precision as selection based on
phenotype is not only time and labor-consuming, but poor, especially when traits under
selection are complex. We demonstrate that by combining metabolite-based phenotyping
in conjunction with genotypic data, molecular markers associated with health benefiting
nutritional traits can be identified. Identification of candidate genes and metabolites
regulating such health benefiting traits as reported in this study will go a long way in
assisting breeding of useful health benefitting traits in crops plants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10113076/s1, Table S1: Details of the different 197 accessions which is part of pearl
millet Inbred Germplasm Association Panel (PMiGAP) lines originated from different parts of
the world. Table S2: Significant mass features by ANOVA analysis with a p-value threshold of
0.05 correcting for false discovery rates (FDR) in pearl millet germplasm association panel (PMiGAP)
of 197 genotypes. Table S3: Heritability and ANOVA results for 341 mass features (209 positive
ion mode and 132 positive ion mode) in 197 pearl millet lines during metabolic genome-wide
association studies. Table S4: Metabolite profiling for 341 mass features (209 positive ion mode
and 132 positive ion mode) considered as health benefiting nutritional traits in 197 PMiGAP pearl
millet germplasm. Table S5: Significantly associated SNP markers with health benefiting nutritional
traits using 76 K SNPs in pearl millet analyzed through MLM based statistical model on a collection
of 197 individuals of pearl millet. Table S6: List of health benefiting metabolic pathway-related
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candidate gene resided around significantly associated markers in pearl millet. Table S7: Probable
candidate genes resided around significantly associated markers with metabolite in pearl millet.
Figure S1: The heatmaps exhibit differential metabolites in pairwise comparison among the 197 pearl
millet accessions. Figure S2: Dendrogram analysis showing distinct metabolites clustering among
the 197 pearl millet accessions.

Author Contributions: Conceptualization, R.S.Y., C.B.Y. and L.A.J.M.; data curation and statistical
analysis, C.B.Y. and L.A.J.M.; funding acquisition, R.S.Y.; seed multiplication, P.I.G. and R.K.S.;
methodology and visualization, C.B.Y. and L.A.J.M.; writing—original draft, C.B.Y.; writing—review
and editing, C.B.Y., P.I.G., R.K.S., R.Y., L.A.J.M. and R.S.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the UKRI, InnovateUK grant number 105672 and the Royal
Society Newton International Fellowship grant (NIF/R1/191570).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available as Supplementary Files.

Acknowledgments: C.B.Y. acknowledge the Royal Society for providing Newton International Fel-
lowship. Authors acknowledge seed materials received from ICRISAT via Material Transfer Agree-
ment. R.S.Y., P.I.G. and R.Y. acknowledge financial support received via InnovateUK grant 105672.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Srivastava, R.; Singh, R.B.; Vijay, L.P.; Srikanth, B.; Satyavathi, C.T.; Yadav, R.S.; Gupta, R. Genome-wide association studies and

genomic selection in pearl millet: Advances and prospects. Front. Genet. 2020, 10, 1389–1402. [CrossRef]
2. Dwivedi, S.; Upadhyaya, H.; Senthilvel, S.; Hash, C.; Fukunaga, K.; Diao, X.; Santra, D.; Baltensperger, D.; Prasad, M. Millets:

Genetic and Genomic Resources. In Plant Breeding Reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 247–375.
3. Manning, K.; Pelling, R.; Higham, T.; Schwenniger, J.L.; Fuller, D.Q. 4500-year-old domesticated pearl millet (Pennisetum glaucum)

from the Tilemsi Valley, Mali: New insights into an alternative cereal domestication pathway. J. Archaeol. Sci. 2011, 38, 312–322.
[CrossRef]

4. Varshney, R.K.; Shi, C.; Thudi, M.; Mariac, C.; Wallace, J.; Qi, P.; Zhang, H.; Zhao, Y.; Wang, X.; Rathore, A.; et al. Pearl millet
genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotech. 2017, 35, 969–976.
[CrossRef]

5. Bennett, M.D.; Bhandol, P.; Leitch, I.J. Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Annals
Bot. 2000, 86, 859–909. [CrossRef]

6. Ali, M.A.M.; El Tinay, A.H.; Abdalla, A.H. Effect of fermentation on the in vitro protein digestibility of pearl millet. Food Chem.
2003, 80, 51–54. [CrossRef]

7. Ragaee, S.; Abdel-Aal, E.S.M.; Noaman, M. Antioxidant activity and nutrient composition of selected cereals for food use. Food
Chem. 2006, 98, 32–38. [CrossRef]

8. Saleh, A.S.M.; Zhang, Q.; Chen, J.; Shen, Q. Millet grains: Nutritional quality, processing, and potential health benefits. Compr.
Rev. Food Sci. Food Saf. 2013, 12, 281–295. [CrossRef]

9. Muthamilarasan, M.; Dhaka, A.; Yadav, R.; Prasad, M. Exploration of millet models for developing nutrient rich graminaceous
crops. Plant. Sci. 2016, 242, 89–97. [CrossRef]

10. Khan, I.; Yousif, A.M.; Johnson, S.K.; Gamlath, S. Acute effect of sorghum flour-containing pasta on plasma total polyphenols,
antioxidant capacity and oxidative stress markers in healthy subjects: A randomised controlled trial. Clin. Nutr. 2015, 34, 415–421.
[CrossRef] [PubMed]

11. Manach, C.; Mazur, A.; Scalbert, A. Polyphenols and prevention of cardiovascular diseases. Curr. Opin. Lipidol. 2005, 16, 77–84.
[CrossRef] [PubMed]

12. Scalbert, A.; Manach, C.; Morand, C.; Remesy, C. Dietary polyphenols and prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005,
45, 287–306. [CrossRef] [PubMed]

13. Chandrasekara, A.; Shahidi, F. Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro
digestion and microbial fermentation. J. Funct. Foods 2012, 4, 226–237. [CrossRef]

14. Fardet, A.; Rock, E.; Rémésy, C. Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected
in vivo? J. Cereal Sci. 2008, 48, 258–276. [CrossRef]

15. Miller, G. Whole grain, fiber and antioxidants. In Handbook of Dietary Fiber in Human Nutrition; Spiller, G.A., Ed.; CRC Press: Boca
Raton, FL, USA, 2001; pp. 453–460.

16. Edge, M.S.; Jones, J.M.; Marquart, L. A new life for whole grains. J. Am. Diet. Assoc. 2005, 105, 1856–1860. [CrossRef]

http://doi.org/10.3389/fgene.2019.01389
http://doi.org/10.1016/j.jas.2010.09.007
http://doi.org/10.1038/nbt.3943
http://doi.org/10.1006/anbo.2000.1253
http://doi.org/10.1016/S0308-8146(02)00234-0
http://doi.org/10.1016/j.foodchem.2005.04.039
http://doi.org/10.1111/1541-4337.12012
http://doi.org/10.1016/j.plantsci.2015.08.023
http://doi.org/10.1016/j.clnu.2014.08.005
http://www.ncbi.nlm.nih.gov/pubmed/25175757
http://doi.org/10.1097/00041433-200502000-00013
http://www.ncbi.nlm.nih.gov/pubmed/15650567
http://doi.org/10.1080/1040869059096
http://www.ncbi.nlm.nih.gov/pubmed/16047496
http://doi.org/10.1016/j.jff.2011.11.001
http://doi.org/10.1016/j.jcs.2008.01.002
http://doi.org/10.1016/j.jada.2005.10.022


Cells 2021, 10, 3076 13 of 13

17. Gibbons, H.; O’Gorman, A.; Brennan, L. Metabolomics as a tool in nutritional research. Curr. Opin. Lipidol. 2015, 26, 30–34.
[CrossRef] [PubMed]

18. Rashid, A.; Ali, V.; Khajuria, M.; Faiz, S.; Gairola, S.; Vyas, D. GC–MS based metabolomic approach to understand nutraceutical
potential of Cannabis seeds from two different environments. Food Chem. 2021, 339, 128076. [CrossRef] [PubMed]

19. Bueno, P.C.; Lopes, N.P. Metabolomics to characterize adaptive and signaling responses in legume crops under abiotic stresses.
ACS Omega 2020, 5, 1752–1763. [CrossRef]

20. Skalska, A.; Beckmann, M.; Corke, F.; Savas Tuna, G.; Tuna, M.; Doonan, J.H.; Hasterok, R.; Mur, L.A.J. Metabolomic Variation
Aligns with Two Geographically Distinct Subpopulations of Brachypodium distachyon before and after Drought Stress. Cells 2021,
10, 683. [CrossRef]

21. Sehgal, D.; Skot, L.; Singh, R.; Srivastava, R.K.; Das, S.P.; Taunk, J. Exploring potential of pearl millet germplasm association panel
for association mapping of drought tolerance traits. PLoS ONE 2015, 10, 1–28. [CrossRef]

22. Yadav, C.B.; Tokas, J.; Yadav, D.; Winters, A.; Singh, R.B.; Yadav, R.; Gangashetty, P.; Srivastava, R.K.; Yadav, R.S. Identifying
antioxidant biosynthesis genes in pearl millet [Pennisetum glaucum (L.) R. Br.] using genome-wide association analysis. Front.
Plant. Sci. 2021, 12, 599649. [CrossRef]

23. Upadhyaya, H.D.; Reddy, K.N.; Sastry, D.V.S.S.R. Regeneration guidelines: Pearl millet. In Crop Specific Regeneration Guidelines
[CD-ROM]; Dulloo, M.E., Thormann, I., Jorge, M.A., Hanson, J., Eds.; CGIAR System-Wide Genetic Resource Programme: Rome,
Italy, 2008; Volume 9.

24. Ramya, R.A.; Ahmed, L.; Satyavathi, C.T.; Rathore, A.; Katiyar, P.; Bhaskar Raj, A.G.; Kumar, S.; Gupta, R.; Mahendrakar, M.D.;
Yadav, R.S.; et al. Towards defining heterotic gene pools using SSR markers in pearl millet [Pennisetum glaucum (L.) R. Br.]. Front.
Plant. Sci. 2018, 8, 1934. [CrossRef] [PubMed]

25. Slaten, M.L.; Chan, Y.O.; Shrestha, V.; Lipka, A.E.; Angelovici, R. HAPPI GWAS: Holistic Analysis with Pre- and Post-Integration
GWAS. Bioinformatics 2020, 36, 4655–4657. [CrossRef]

26. Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. GAPIT: Genome association
and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [CrossRef]

27. Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005,
21, 263–265. [CrossRef] [PubMed]

28. Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization
and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [CrossRef]

29. Draper, J.; Lloyd, A.J.; Goodacre, R.; Beckmann, M. Flow infusion electrospray ionisation mass spectrometry for high through-put,
non-targeted metabolite fingerprinting: A review. Metabolomics 2013, 9, 4–29. [CrossRef]

30. Wen, W.; Li, D.; Li, X.; Gao, Y.; Li, W.; Li, H.; Liu, J.; Liu, H.; Chen, W.; Luo, J.; et al. Metabolome-based genome-wide association
study of maize kernel leads to novel biochemical insights. Nat. Commun. 2014, 5, 3438. [CrossRef]

31. Chan, E.K.F.; Rowe, H.C.; Hansen, B.G.; Kliebenstein, D.J. The Complex Genetic Architecture of the Metabolome. PLoS Genet.
2010, 6, e1001198. [CrossRef]

32. Chan, E.K.; Rowe, H.C.; Corwin, J.A.; Joseph, B.; Kliebenstein, D.J. Combining genome-wide association mapping and tran-
scriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana. PLoS Biol. 2011, 9, e1001125.
[CrossRef]

33. Riedelsheimer, C.; Czedik-Eysenberg, A.; Grieder, C.; Lisec, J.; Technow, F.; Sulpice, R.; Altmann, T.; Stitt, M.; Willmitzer, L.;
Melchinger, A.E. Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat. Genet. 2012, 44, 217–220.
[CrossRef] [PubMed]

34. Chen, W.; Gao, Y.; Xie, W.; Gong, L.; Lu, K.; Wang, W.; Li, Y.; Liu, X.; Zhang, H.; Dong, H.; et al. Genome-wide association analyses
provide genetic and biochemical insights into natural variation in rice metabolism. Nat. Genet. 2014, 46, 714–721. [CrossRef]
[PubMed]

35. Matsuda, F.; Nakabayashi, R.; Yang, Z.; Okazaki, Y.; Yonemaru, J.; Ebana, K.; Yano, M.; Saito, K. Metabolome-genome–wide
association study dissects genetic architecture for generating natural variation in rice secondary metabolism. Plant. J. 2015, 81,
13–23. [CrossRef]

36. Zhou, S.; Kremling, K.A.; Bandillo, N.; Richter, A.; Zhang, Y.K.; Ahern, K.R.; Artyukhin, A.B.; Hui, J.X.; Younkin, G.C.; Schroeder,
F.C.; et al. Metabolome-Scale Genome-Wide Association Studies Reveal Chemical Diversity and Genetic Control of Maize
Specialized Metabolites. The Plant. Cell 2019, 31, 937–955. [CrossRef]

37. Zhang, N.; Wang, M.; Fu, J.; Shen, Y.; Ding, Y.; Wu, D.; Shu, X.; Song, W. Identifying genes for resistant starch, slowly digestible
starch, and rapidly digestible starch in rice using genome-wide association studies. Genes Genom. 2020, 42, 1227–1238. [CrossRef]

38. Parween, S.; Anonuevo, J.J.; Butardo, J.V.M.; Misra, G.; Anacleto, R.; Llorente, C.; Kosik, O.; Romero, M.V.; Bandonill, E.H.;
Mendioro, M.S.; et al. Balancing the double-edged sword effect of increased resistant starch content and its impact on rice texture:
Its genetics and molecular physiological mechanisms. Plant. Biotech. J. 2020, 18, 1763–1777. [CrossRef] [PubMed]

39. Luo, T.; Xia, W.; Gong, S.; Mason, A.S.; Li, Z.; Liu, R.; Dou, Y.; Tang, W.; Fan, H.; Zhang, C.; et al. Identifying vitamin E biosynthesis
genes in Elaeis guineensis by genome-wide association study. J. Agric. Food Chem. 2020, 68, 678–685. [CrossRef] [PubMed]

http://doi.org/10.1097/MOL.0000000000000140
http://www.ncbi.nlm.nih.gov/pubmed/25551800
http://doi.org/10.1016/j.foodchem.2020.128076
http://www.ncbi.nlm.nih.gov/pubmed/33152869
http://doi.org/10.1021/acsomega.9b03668
http://doi.org/10.3390/cells10030683
http://doi.org/10.1371/journal.pone.0122165
http://doi.org/10.3389/fpls.2021.599649
http://doi.org/10.3389/fpls.2017.01934
http://www.ncbi.nlm.nih.gov/pubmed/29552020
http://doi.org/10.1093/bioinformatics/btaa589
http://doi.org/10.1093/bioinformatics/bts444
http://doi.org/10.1093/bioinformatics/bth457
http://www.ncbi.nlm.nih.gov/pubmed/15297300
http://doi.org/10.1093/bioinformatics/bti610
http://doi.org/10.1007/s11306-012-0449-x
http://doi.org/10.1038/ncomms4438
http://doi.org/10.1371/journal.pgen.1001198
http://doi.org/10.1371/journal.pbio.1001125
http://doi.org/10.1038/ng.1033
http://www.ncbi.nlm.nih.gov/pubmed/22246502
http://doi.org/10.1038/ng.3007
http://www.ncbi.nlm.nih.gov/pubmed/24908251
http://doi.org/10.1111/tpj.12681
http://doi.org/10.1105/tpc.18.00772
http://doi.org/10.1007/s13258-020-00981-1
http://doi.org/10.1111/pbi.13339
http://www.ncbi.nlm.nih.gov/pubmed/31945237
http://doi.org/10.1021/acs.jafc.9b03832
http://www.ncbi.nlm.nih.gov/pubmed/31858793

	Introduction 
	Materials and Methods 
	Plant Materials 
	Metabolomic Profiling 
	Statistical Analysis for Metabolites Identification 
	Selection of Metabolites Contributing to Health Benefiting Traits 
	Metabolic Genome-Wide Marker Association Studies 
	Identification of Candidate Genes Affecting Metabolites Contributing to Health Benefiting Traits 

	Results 
	Metabolite Fingerprinting of Pearl Millet Seeds 
	Predictions of Metabolic Pathways for Each Metabolic Compound 
	Metabolites Contributing to Nutritional Health Benefiting Traits 
	Metabolic Genome-Wide Marker Association Studies 
	Suggesting Candidate Genes Affecting Metabolites Contributing to Health Benefiting Traits 

	Discussion 
	Conclusions 
	References

