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Objective: Increasing evidence shows that dysregulated RNA binding proteins
(RBPs) modulate the progression of several malignancies. Nevertheless, their clinical
implications of RBPs in HBV-related hepatocellular carcinoma (HCC) remain largely
undefined. Here, this study systematically analyzed the associations of RBPs with
HBV-related HCC prognosis.

Methods: Based on differentially expressed RBPs between HBV-related HCC and
control specimens, prognosis-related RBPs were screened by univariate analyses.
A LASSO model was then created. Kaplan-Meier curves, ROCs, multivariate analyses,
subgroup analyses and external verification were separately applied to assess the
efficacy of this model in predicting prognosis and recurrence of patients. A nomogram
was created by incorporating the model and clinical indicators, which was verified by
ROCs, calibration curves and decision curve analyses. By CIBERSORT algorithm, the
association between the risk score and immune cell infiltrations was evaluated.

Results: Totally, 54 RBPs were distinctly correlated to prognosis of HBV-related HCC.
An 11-RBP model was created, containing POLR2L, MRPS12, DYNLL1, ZFP36,
PPIH, RARS, SRP14, DDX41, EIF2B4, and NOL12. This risk score sensitively and
accurately predicted one-, three- and five-year overall survival, disease-free survival,
and progression-free interval. Compared to other clinical parameters, this risk score
had the best predictive efficacy. Also, the clinical generalizability of the model was
externally verified in the GSE14520 dataset. The nomogram may predict patients’
survival probabilities. Also, the risk score was related to the components in the immune
microenvironment.

Conclusion: Collectively, RBPs may act as critical elements in the malignant
progression of HBV-related HCC and possess potential implications on prognostication
and therapy decision.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the most prevalent type
of liver cancer and represents a common malignant neoplasm
globally (Liu et al., 2019). Because of the high risk of recurrence
and metastasis, the 5-year survival probabilities of advanced
HCC are still undesirable. The epidemiology of HCC is affected
by underlying liver diseases especially hepatitis B virus (HBV)
(Chabrolles et al., 2020). It has been estimated that HBV
infection is responsible for 50% of HCC worldwide (Li et al.,
2019). HBV that integrates into cancer-relevant genes may
drive hepatocarcinogenesis (Nakagawa et al., 2019). Nevertheless,
the mechanism by which HBV infection contributes to HCC
remain deficiently expounded (Torresi et al., 2019). The extensive
decrease in HCC cases demands a broader range of universal
HBV vaccination application and efficient therapy of HBV-
relevant chronic hepatitis, which has a long way to go
(Sagnelli et al., 2020).

RNA-binding protein (RBP) represents a critical mediator
of cancer phenotype (Müller-McNicoll and Neugebauer, 2013).
RBP acts dynamically and multifunctionally on multiple levels
of post-transcriptional gene expression, such as mRNA splicing,
stability and translation (Hou et al., 2019). Over 1,500 human
RBPs have been discovered, which possess 600 structure-specific
RNA-binding domains (Schneider et al., 2019). Most of them
are characterized by evolutionary conservatism and ubiquitous
expression to maintain cellular homeostasis (Chabrolles et al.,
2020). Genetic and proteomic data highlight that alterations in
RBP expression display profound implications on HCC (Lin et al.,
2019). For instance, RBP YTHDF2 facilitates cancer stem cell
phenotype and metastasis in HCC through regulating OCT4 N6-
methyladenosine methylation (Zhang et al., 2020). RBP RPS3
leads to hepatocarcinogenesis through up-regulating SIRT1 at
a post-transcriptional level (Zhao et al., 2019). RBP RBM3
induces proliferation of HCC cells via regulating circRNA-SCD
production (Dong et al., 2019). Despite this, the functions of most
RBPs in HBV-related HCC remain still unclear.

This study systematically dissected the prognosis-related RBPs
of HBV-related HCC, and established and externally verified an
RBP model for predicting prognosis and recurrence by applying
least absolute shrinkage selection operator (LASSO). This model
might serve as a potential prognostic stratification tool and offer
several therapeutic targets for HBV-related HCC.

MATERIALS AND METHODS

Data Acquisition
RNA-seq transcriptome data and complete clinical information
of 374 HCC and 50 control specimens were retrieved from the

Abbreviations: HCC, hepatocellular carcinoma; HBV, hepatitis B virus; RBP,
RNA-binding protein; LASSO, least absolute shrinkage selection operator; TCGA,
The Cancer Genome Atlas; GEO, Gene Expression Omnibus; BP, biological
process; CC, cellular component; MF, molecular function; KEGG, Kyoto
Encyclopedia of Genes and Genomes; FDR, false discovery rate; OS, overall
survival; DFS, disease-free survival; PFI, progression-free interval; ROC, receiver
operating characteristic; AUC, area under the curve; DCA, decision curve analysis;
GSEA, Gene Set Enrichment Analyses.

Cancer Genome Atlas (TCGA) database1. Among them, 108
HBV-related HCC were extracted from TCGA dataset, which
were employed as the discovery set. Expression profiling and
clinical features of 224 HBV-related HCC samples were obtained
from the GSE14520 dataset in the Gene Expression Omnibus
(GEO; 2) repository. This GSE14520 dataset was based on the
GPL571 and GPL3921 platforms. This dataset was used as
the validation set. Table 1 listed the clinical characteristics of
HBV-related HCC patients. Each probe was transformed to the
corresponding gene symbol. If multiple probes matched the same
gene symbol, the average value was determined as the expression
value of this gene. Based on published articles, a list of 1,542 RBPs
was collected (Supplementary Table 1).

Differential Expression Analysis
Differences in expression levels of RBPs were analyzed between
108 HBV-related HCC and 50 control samples via limma package
based on RNA-seq transcriptome data (Ritchie et al., 2015).
Under the threshold of | fold-change| > 2 and adjusted
p < 0.001, up- and down-regulated RBPs were screened for
HBV-related HCC.

Functional Annotation Analysis
Gene ontology (GO) enrichment analysis primarily contains
three categories: biological process (BP), cellular component
(CC) and molecular function (MF). Furthermore, Kyoto
Encyclopedia of Genes and Genomes (KEGG) can provide
signaling pathways involved in RBPs. Here, GO, and KEGG
enrichment analyses of differentially expressed RBPs were carried
out via clusterProfiler package (Ashburner et al., 2000). Terms
with false discovery rate (FDR) < 0.05 were significantly enriched
by above RBPs. Functional association between HBV-related
RBPs was analyzed through the STRING database3 (Szklarczyk
et al., 2017). A protein-protein interaction (PPI) network was
conducted utilizing Cytoscape software (Doncheva et al., 2019).

Determining Candidate
Prognosis-Related RBPs
Univariate Cox regression analysis was applied for analyzing
the associations between overall survival (OS) of HBV-related
HCC patients and differentially expressed RBPs utilizing survival
package. Prognosis-related RBPs were determined with the
threshold of p < 0.05. Then, key prognosis-related RBPs
were screened through LASSO regression analysis with glmnet
package (Engebretsen and Bohlin, 2019). Normalized regression
coefficients of key prognosis-related RBPs were calculated based
on multivariate regression analysis.

Establishment of an RBP-Related
Prognostic Model
A risk score was established on the basis of the key prognosis-
related RBPs for HBV-related HCC patients in the TCGA dataset.

1https://portal.gdc.cancer.gov/
2https://www.ncbi.nlm.nih.gov/gds/
3http://string-db.org/
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TABLE 1 | Clinical characteristics of HBV-related HCC patients.

Characteristics TCGA (n = 108) GSE14520 (n = 224)

Age

<65 81 199

≥65 27 25

Gender

Male 89 195

Female 19 29

Survival status

Alive 20 86

Dead 88 138

TNM stage

Stage I 72 96

Stage II 21 78

Stage III 11 50

Stage IV 2 0

Recurred status

Yes 45 125

No 56 99

This study calculated the risk score of each patient, according
to the formula: risk score = expression of RBP1 × regression
coefficient of RBP1 + expression of RBP2 × regression coefficient
of RBP2 + . . . + expression of RBPn × regression coefficient
of RBPn. According to the median risk score, HBV-related
HCC patients were assigned into high- and low-risk groups.
Hierarchical clustering analysis was applied for showing the
associations between expression patterns of above RBPs and
clinical characteristics (stage, grade, gender, and age). Kaplan-
Meier curve analyses were presented for investigating the
differences in OS, disease-free survival (DFS) and progression-
free interval (PFI) between two groups using Survival package.
P values were determined with log-rank tests. Time-dependent
receiver operating characteristic (ROC) curves under one-, three-
and five-year OS, DFS, and PFI were generated by SurvivalROC
package (Heagerty et al., 2000). Then, the area under the
curve (AUC) was calculated to evaluate the predictive usefulness
of the risk score.

Prognostic Model Verification
The associations between risk score, age, gender, grade,
stage, and prognosis were evaluated utilizing univariate
cox regression analysis. Prognostic factors with p < 0.05
were incorporated for multivariate cox regression analysis.
Independent prognostic factors were then identified for HBV-
related HCC. Time-independent ROCs of risk score, age,
gender, grade, and stage were separately constructed and the
predictive power was compared. In published literature, Fang
and Chen (2020) proposed a two-m6A RNA methylation
regulator prognostic model (HNRNPA2B1 and RBM15) for
HBV-related HCC prognosis. By ROCs, the predictive efficacy
was compared with our prognostic model. For evaluating
the clinical generalizability of the model, this model was
verified in the GSE14520 dataset. With the same formula,
the risk scores of patients were calculated in this dataset.

Based on the median risk score, OS differences between
high- and low-risk groups were assessed by Kaplan-Meier
curves and log-rank tests. The predictive performance was
verified by ROCs.

Subgroup Analysis
HBV-related HCC subjects in TCGA dataset were stratified
into subgroups according to clinical characteristics, as
follows: age ≥ 65 and < 65 subgroups, female and male
subgroups, grade 1–2 and 3–4 subgroups and stage I-II
and stage III-IV subgroups. In each subgroup, Kaplan-
Meier curves of OS were conducted between high- and
low-risk patients. Survival differences were estimated
with log-rank tests.

Nomogram Construction
A nomogram by incorporating gender, age, grade, stage,
and risk score was created for predicting one-, three-,
and five-year survival probabilities of HBV-related HCC
patients in the TCGA dataset. The accuracy in predicting
prognosis was evaluated by ROC curves, calibration curves
and decision curve analysis (DCA) (Vickers and Elkin,
2006). ROC curves were conducted for evaluating the
predictive performance of this nomogram for one-, three-
and five-year OS. By calibration curves, discrepancy between
nomogram-estimated and actual one-, three-, and five-
year survival duration was analyzed. DCA was applied for
quantifying the clinical practical use with survival outcomes of a
decision considered.

Gene Set Enrichment Analyses (GSEA)
HBV-related HCC specimens were stratified into high-
and low-risk groups. By Gene Set Enrichment Analyses
(GSEA)4, potential mechanisms of this prognosis-related
model were elucidated (Subramanian et al., 2005). GSEA
was carried out for finding enriched KEGG pathways,
with KEGG gene set “c2.cp.kegg.v7.0.symbols.gmt” as
a reference. Pathways with nominal p < 0.05 were
distinctly enriched.

Estimation of Immune Cell Infiltrations
and HLA Expression
By applying CIBERSORT algorithm5, the proportions of 22
immune cells in HBV-related HCC and control specimens
were quantified based on their expression profiling (Newman
et al., 2015). The proportions of all immune cells in each
specimen were equal to 1. The LM22 signature was employed
as a reference set. The permutations were set as 1,000.
Samples with p < 0.05 were screened for further analyses. The
correlations between risk score and infiltrations of immune
cells and HLA family expression were assessed with Spearson
correlation analysis.

4http://software.broadinstitute.org/gsea/index.jsp
5http://cibersort.stanford.edu/
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FIGURE 1 | Expression patterns and functions of RBPs in HBV-related HCC tissues. (A) Volcano plots of up- and down-regulated RBPs in HBV-related HCC than
control specimens. Red dots represented up-regulated RBPs; blue dots represented down-regulated RBPs; gray dots represented no differentially expressed RBPs.
(B) Heatmap visualizing expression values of up- (red) and down-regulated (blue) RBPs in HBV-related HCC and control specimens. (C) The first ten biological
processes (BPs), cellular components (CCs) and molecular functions (MFs) involved in differentially expressed RBPs. (D) KEGG pathways enriched by above RBPs.
The longer the band, the greater the number of enriched genes. The more the color tended to red, the smaller adjusted p-value. (E) A PPI network based on the
differentially expressed RBPs. Red indicated up-regulated RBPs and green indicated down-regulated RBPs.

TABLE 2 | The first 20 up-regulated RBPs and 6 down-regulated RBPs in HBV-related HCC.

ID logfold-change Average expression t P Adjusted p B

PEG10 2.387979 2.638582 5.173505 6.75E-07 9.80E-07 4.947393

RNASEH2A 2.299935 4.022123 18.10863 1.07E-40 7.58E-38 82.02684

EEF1A2 2.10402 2.672998 4.815884 3.35E-06 4.71E-06 3.396926

TARBP1 2.052569 3.046862 13.85154 3.05E-29 6.00E-28 55.80843

PABPC1L 2.039105 3.485111 12.0097 3.86E-24 2.85E-23 44.13127

EZH2 2.031468 2.209527 15.56872 6.04E-34 3.73E-32 66.57365

RPS4Y1 2.002975 5.389658 3.65882 0.000343 0.000425 −1.01902

DDX39A 1.983421 5.158247 15.98784 4.45E-35 4.21E-33 69.16769

SMG5 1.942159 5.259853 14.82399 6.46E-32 2.41E-30 61.92894

BOP1 1.938054 5.235709 15.10358 1.11E-32 5.44E-31 63.6776

NELFE 1.937597 5.596385 16.63109 8.36E-37 1.19E-34 73.1174

SNRPE 1.883775 6.305086 16.68019 6.18E-37 1.19E-34 73.41722

MSI1 1.847698 1.586866 8.299861 3.97E-14 9.03E-14 21.2786

SNRPB 1.780655 7.311245 16.16782 1.46E-35 1.59E-33 70.27684

RPL22L1 1.747909 4.488432 10.002 1.26E-18 4.14E-18 31.52673

SPATS2 1.733092 2.806658 14.71432 1.29E-31 4.26E-30 61.24148

SF3B4 1.698588 5.667539 14.66409 1.77E-31 5.46E-30 60.92638

RBM3 1.697054 6.272179 13.86538 2.79E-29 5.58E-28 55.89584

PRIM1 1.688578 3.095013 11.94612 5.79E-24 4.17E-23 43.72825

EXO1 1.626191 1.287369 12.87215 1.57E-26 1.87E-25 49.60374

GSPT2 −1.0703 2.210642 −5.84768 2.69E-08 4.25E-08 8.079581

PAIP2B −1.0761 2.263303 −7.60705 2.20E-12 4.47E-12 17.3157

ANG −1.13722 9.092962 −6.28555 2.93E-09 4.93E-09 10.24674

AZGP1 −1.469 9.486897 −9.06554 4.04E-16 1.08E-15 25.81354

CPEB3 −1.4956 2.109004 −13.3884 5.81E-28 9.16E-27 52.87762

ZFP36 −1.65925 7.068678 −9.88183 2.67E-18 8.48E-18 30.78536
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TABLE 3 | Prognosis-related RBPs in HBV-related HCC patients by univariate cox regression analysis.

ID HR HR.95L HR.95H P ID HR HR.95L HR.95H P

DDX41 4.4441 1.4451 13.667 0.0093 UTP6 2.6888 1.1424 6.3284 0.0235

NSUN5 2.6559 1.0087 6.9926 0.048 GPATCH4 2.1814 1.1159 4.2646 0.0226

ILF2 1.9392 1.0166 3.6988 0.0444 MRPS12 2.5059 1.3783 4.5562 0.0026

SNRPA 2.4521 1.1227 5.3556 0.0244 RNF113A 2.0476 1.052 3.9855 0.0349

SRP14 0.3565 0.132 0.963 0.0419 CNOT10 3.1297 1.5282 6.4095 0.0018

F3 3.027 1.2561 7.2945 0.0136 PHF5A 2.7005 1.1897 6.1301 0.0175

TCOF1 2.7229 1.3076 5.6701 0.0074 FTSJ1 2.3828 1.1602 4.894 0.0181

METTL5 2.3697 1.0282 5.4613 0.0428 NOP2 2.4581 1.0643 5.677 0.0352

DYNLL1 3.4144 1.3015 8.9577 0.0126 PPIH 2.6265 1.4203 4.8573 0.0021

NHP2 3.0865 1.3129 7.2564 0.0098 NPM1 2.1356 1.0892 4.1871 0.0272

RRP36 2.3214 1.0739 5.0183 0.0323 METTL1 1.9349 1.0773 3.4753 0.0272

PA2G4 2.8337 1.1739 6.8404 0.0205 PES1 2.1902 1.0737 4.4676 0.0311

RUVBL2 3.0262 1.3085 6.9991 0.0096 RNASEH1 3.0569 1.2504 7.4733 0.0143

POP4 2.1925 1.139 4.2203 0.0188 BUD13 2.2305 1.0776 4.6167 0.0307

EIF3B 2.4609 1.2188 4.9692 0.012 TAF9 2.3771 1.2161 4.6465 0.0113

THOC3 2.8281 1.337 5.9822 0.0065 HNRNPAB 2.8933 1.1947 7.0072 0.0186

HARS2 4.8941 2.1092 11.356 0.0002 RPP40 2.0237 1.0355 3.9551 0.0392

CD2BP2 2.5789 1.0669 6.2337 0.0354 MOV10 3.8285 1.6909 8.6686 0.0013

EIF2B4 4.2515 1.8898 9.5642 0.0005 MRPL33 2.385 1.2963 4.3881 0.0052

LARS 2.3723 1.0776 5.2223 0.0319 TRMT6 2.1637 1.0222 4.5801 0.0437

NOL12 1.9271 1.0658 3.4846 0.03 DKC1 2.1134 1.0423 4.285 0.038

NOP56 2.3817 1.317 4.3069 0.0041 EIF4A3 2.196 1.0119 4.7655 0.0466

WDR4 2.0355 1.0801 3.836 0.0279 POLR2L 2.5862 1.4397 4.6458 0.0015

PTGES3 2.9652 1.1175 7.8681 0.029 BRIX1 2.0967 1.1064 3.9735 0.0232

RARS 8.3614 2.9287 23.872 < 0.0001 ZFP36 1.6328 1.0219 2.6087 0.0403

GEMIN7 1.9608 1.0977 3.5025 0.0229 GAPDH 2.2464 1.2433 4.0587 0.0073

EIF3K 2.0916 1.1255 3.8871 0.0196 RBM24 1.3877 1.0278 1.8737 0.0324

RESULTS

Expression and Functions of RBPs in
HBV-Related HCC
This study collected 1,542 RBPs and analyzed their expression
in 108 HBV-related HCC and 50 control tissues. | Fold-
change| > 2 and adjusted p < 0.001 were set as the screening
thresholds. As a result, 340 RBPs were up-regulated in HBV-
related HCC than control specimens (Figures 1A,B). The first
20 up-regulated RBPs were shown in Table 2. Meanwhile,
there were six down-regulated RBPs (GSPT2, PAIP2B, ANG,
AZGP1, CPEB3, and ZFP36) in HBV-related HCC compared
to controls (Figures 1A,B and Table 2). These RBPs were
primarily enriched in mRNA metabolic biological processes such
as nuclear-transcribed mRNA catabolic process, RNA catabolic
process, nuclear-transcribed mRNA catabolic process, mRNA
catabolic process and ncRNA processing (Figure 1C). Our
KEGG analysis demonstrated that above RBPs were distinctly
related to key pathways including ribosome, spliceosome, RNA
transport, mRNA surveillance pathway, ribosome biogenesis in
eukaryotes and RNA degradation, confirming their roles on post-
transcriptional gene regulation (Figure 1D). A PPI network was
conducted for revealing the interactions between these HCC-
related RBPs (Figure 1E).

Establishing a RBP Model for Predicting
HBV-Related HCC Patients’ Prognosis
and Recurrence
By univariate analyses, we investigated which dysregulated
RBPs were in relation to HBV-related HCC patients’ survival
outcomes. With the cutoff of p < 0.05, 54 RBPs were
distinctly correlated to prognosis (Table 3). These prognosis-
related RBPs were utilized for LASSO analysis. As a result,
10 key RBPs were screened for constructing a prognostic
model (Figures 2A,B). The regression coefficients of above
RBPs were as follows: POLR2L = 0.453206443450835; MRP
S12 = 0.00334358058970182; DYNLL1 = 0.0556454917799665;
ZFP36 = 0.215686692231002; PPIH = 0.300574508736105;
RARS = 1.0223374037773; SRP14 = −1.08473362012663; DDX
41 = 0.00122492284215762; EIF2B4 = 0.348820298750318;
NOL12 = 0.155516694418799. The risk score of each subject
from TCGA dataset was determined according to expressions
and regression coefficients of RBPs. Heatmap depicted the
correlations between expression patterns of POLR2L, MRPS12,
DYNLL1, ZFP36, PPIH, RARS, SRP14, DDX41, EIF2B4, and
NOL12 and clinical characteristics of HBV-related HCC patients
(Figure 2C). Patients from the TCGA dataset were assigned
into high- and low-risk groups. As a result, high-risk subjects
were indicative of unfavorable OS (p = 3.734e-06; Figure 2D),
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FIGURE 2 | Establishing an RBP prognostic model for HBV-related HCC patients in the TCGA dataset. (A) Relationships of λ and partial likelihood deviance. The
vertical slash represents the optimal λ value. (B) LASSO regression coefficients of RBPs in this model. (C) Heatmap for the correlations between expression values
of RBPs and clinical features. Kaplan-Meier curves of (D) OS, (E) DFS and (F) PFI between high- and low-risk patients. The ROCs of (G) OS, (H) DFS, and (I) PFI
based on the risk score.

DFS (p = 6.495e-02; Figure 2E) and PFI (p = 2.135e-02;
Figure 2F). The ROCs were plotted for evaluation of the
predictive performance. The AUCs under one-, three-, and five-
year OS were separately 0.900, 0.945 and 0.886, demonstrating
that this model could be precisely predictive of OS probabilities
(Figure 2G). Meanwhile, the AUCs under one-, three-, and five-
year DFS were 0.686, 0.729 and 0.668 (Figure 2H) as well as
the AUCs under one-, three-, and five-year PFI (Figure 2I) were
0.673, 0.784, and 0.667, which were indicative that this model
possessed the well performance on predicting HBV-related HCC
recurrence and progression.

The RBP Model Displays Independent
and Well Predictive Power for
HBV-Related HCC Patients
By univariate analyses, we investigated the associations between
survival outcomes and risk score and clinical parameters in
the TCGA dataset. In Figure 3A, risk score (p < 0.001) and

stage (p = 0.009) were both risk factors of HBV-related HCC.
Following multivariate analyses, the risk score was independently
predictive of survival outcomes (p < 0.00l; Figure 3B). In
comparison to other clinical parameters, this risk score exhibited
the highest AUC of OS (0.940). This demonstrated that the risk
score possessed more excellent predictive performance than other
parameters (Figure 3C). Compared to the published prognostic
model (HNRNPA2B1 and RBM15), higher AUC value was
investigated in our model (Figure 3D). We further evaluated
the clinical generalizability of this model. In the GSE14520
dataset, high-risk scores were also indicative of unfavorable
survival outcomes (p = 2.999e-03; Figure 3E) and the AUC value
was 0.656 (Figure 3F). Collectively, this model displayed the
independent and well power in predicting prognosis.

Subgroup Analysis of This Prognostic
RBP Model in HBV-Related HCC
For investigating the predictive sensitivity of this model in HBV-
related HCC prognosis, survival analyses were carried out in
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FIGURE 3 | Verification of the independency and accuracy of the prognostic model. (A) Univariate and (B) multivariate cox regression analyses of risk score, age,
gender, grade, and stage with HBV-related HCC patients in the TCGA dataset. (C) The ROCs for comparing the AUCs of the risk score with age, gender, grade, and
stage. (D) The ROCs for comparing the AUCs of the risk score with the model constructed by Fang et al. (E) Survival differences between high- and low-risk patients
in the GSE14520 dataset. P value was estimated with log-rank test. (F) The ROC for evaluation of the predictive performance of the risk score.
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FIGURE 4 | Subgroup analysis for assessing the sensibility of the risk score to predict HBV-related HCC patients’ prognosis. Kaplan-Meier curves for survival
outcomes of high- and low-risk patients in (A) age ≥ 65 and (B) < 65 subgroups, (C) female and (D) male subgroups, (E) grade 1–2 (G1-2) and (F) grade 3–4
(G3-4) subgroups, (G) stage I–II and (H) stage III–IV subgroups. P values were estimated with log-rank tests.

different subgroups. Our data demonstrated that high-risk scores
were distinctly predictive of poorer survival outcomes than low-
risk score in age ≥ 65 (p = 0.067; Figure 4A) and < 65
(p < 0.001; Figure 4B) subgroups, female (p = 0.042; Figure 4C)
and male (p< 0.001; Figure 4D) subgroups, grade 1–2 (p = 0.027;
Figure 4E) and grade 3–4 (p < 0.001; Figure 4F) subgroups and
stage I-II (p < 0.001; Figure 4G) and stage III-IV (p = 0.044;
Figure 4H) subgroups.

Constructing a Prognostic Nomogram
for HBV-Related HCC
To facilitate personalized treatment, we constructed a nomogram
by incorporating gender, age, grade, stage, and risk score in
TCGA dataset. This nomogram was utilized for estimating
one-, three-, and five-year survival probabilities (Figure 5A).
ROC curves demonstrated the well performance on predicting
one-, three- and five-year (Figure 5B). As shown in our
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FIGURE 5 | Establishment of the nomogram for HBV-related HCC patients’ prognosis. (A) The nomogram that contained gender, age, grade, stage, and risk score
for estimating one-, three- and five-year survival probabilities. (B) The ROC for evaluation of the predictive performance of this nomogram. (C–E) The calibration
curves for investigating the discrepancy between nomogram-estimated and actual one-, three- and five-year survival duration. (F–H) The DCA for calculating the
clinical net benefit of the nomogram, clinical factor, and prognostic factor in comparison to all or none strategies.

calibration plots, nomogram-estimated one-, three- and five-year
survival probabilities were close to actual survival consequences
(Figures 5C–E). Meanwhile, DCA showed that this nomogram
exhibited the best net benefit for one-, three- and five-year
survival duration (Figures 5F–H). Hence, the nomogram model
could assist clinical management and decision.

Activated Pathways in High-Risk
HBV-Related HCC
For observing potential pathways involved in unfavorable
survival outcomes, GSEA was carried out. We found that

endocytosis (Figure 6A), RNA degradation (Figure 6B),
spliceosome (Figure 6C) and ubiquitin-mediated proteolysis
(Figure 6D) were distinctly activated in high-risk HBV-
related HCC specimens.

The Risk Score Is Associated With
Immune Microenvironment of
HBV-Related HCC
CIBERSORT algorithm was applied for inferring the proportions
of 22 immune cells in HBV-related HCC tissues, including
B cells naïve, B cells memory, plasma cells, T cells CD8, T
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FIGURE 6 | Activated KEGG pathways in high-risk HBV-related HCC samples from the TCGA dataset by GSEA. (A) Endocytosis; (B) RNA degradation; (C)
spliceosome; (D) ubiquitin-mediated proteolysis.

cells CD4 memory resting, T cells CD4 memory activated,
T cells follicular helper, T cells regulatory (Tregs), T cells
gamma delta, NK cells resting, NK cells activated, monocytes,
macrophages M0, macrophages M1, macrophages M2, dendritic
cells resting, dendritic cells activated, mast cells resting, mast
cells activated, eosinophils and neutrophils (Figure 7A). There
was the heterogeneity in the immune microenvironment among
subjects. The close crosstalk between immune cells was found, as
shown in Figure 7B. Also, the risk score was associated with mast
cells resting, NK cells resting, neutrophils, mast cells activated,
macrophages M0, Tregs and eosinophils. Moreover, the risk score

displayed the significant correlations to HLA expression in HBV-
related HCC specimens (Figure 7C). The data indicated that
the risk score was related to the immune microenvironment of
HBV-related HCC.

DISCUSSION

In this study, an RBP-related gene model was created, which
could robustly predict prognosis and recurrence of HBV-related
HCC individuals. High risk scores were indicative of undesirable
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FIGURE 7 | The risk score is related to the immune microenvironment of HBV-related HCC in the TCGA dataset by CIBERSORT. (A) The proportions of immune
cells in HBV-related HCC samples. (B) Heatmap of the correlations between the risk score and immune cells. (C) Heatmap visualizing the correlations between the
risk score and HLA expression. Correlation coefficients were marked in the box.

survival outcomes. Our data confirmed RBPs as critical elements
in the malignant progression of HBV-related HCC. The gene
model acted as a key clinical implication in prognostication and
therapy decision.

Alterations in RBP expression may lead to carcinogenesis.
Here, we identified 340 dysregulated RBPs in HBV-related HCC.
These RBPs were distinctly related to mRNA metabolic biological
processes such as nuclear-transcribed mRNA catabolic process,
RNA catabolic process, nuclear-transcribed mRNA catabolic
process, mRNA catabolic process and ncRNA processing as
well as key pathways including ribosome, spliceosome, RNA
transport, mRNA surveillance pathway, ribosome biogenesis in
eukaryotes and RNA degradation. Thus, these RBPs acted as key
regulators on post-transcriptional gene expression.

By LASSO analysis, we created an RBP prognostic model,
which contained POLR2L, MRPS12, DYNLL1, ZFP36, PPIH,
RARS, SRP14, DDX41, EIF2B4, and NOL12. Following external
verification, this model possessed higher accuracy and sensitivity
on prognostication in comparison to other clinical parameters.
The biological implications of above RBPs in this model have
been reported in previous research. Liu et al. (2020) found

that POLR2L displayed a correlation to survival duration
and alternative splicing in lung squamous cell carcinoma
patients. MRPS12 functioned as an oncogene and a prognostic
candidate in ovarian carcinoma (Qiu et al., 2021). DYNLL1
hypomethylation and upregulation was characterized by stage-
and grade-dependent manners and correlated to unfavorable
survival outcomes in HCC (Berkel and Cacan, 2020). ZFP36
down-regulation was detected in HCC tissues and served as
a tumor suppressor (Kröhler et al., 2019). PPIH was highly
expressed in stomach adenocarcinoma and down-regulated PPIH
suppressed cellular migratory and invasive behaviors (Li et al.,
2021). Also, PPIH up-regulation contributed to undesirable
survival outcomes. DDX41 displayed a correlation to tumor stage
and grade in HCC (Qi et al., 2020). NOL12 was in relation to
kidney renal clear cell carcinoma prognosis (Xiang Y. et al., 2020).
Nevertheless, biological roles and clinical implications of these
RBPs may require in-depth exploration in HBV-related HCC.

Our results showed that endocytosis, RNA degradation,
spliceosome and ubiquitin-mediated proteolysis pathways were
markedly activated in high-risk HBV-related HCC specimens,
indicating that these pathways might modulate HCC progress
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and metastasis. RBPs may regulate the stability of mRNAs
encoding immune-related proteins, thereby ornamenting the
immune microenvironment (Käfer et al., 2019). For instance,
RBP ZFP36, as an inflammatory regulator, restrained T cell
activation and anti-viral immunity (Moore et al., 2018). RBP
YTHDF3 restrained interferon-dependent anti-viral response
through increasing FOXO3 translation (Zhang et al., 2019).
Suppressing YTHDF1 in dendritic cells induced durable
neoantigen-specific immunity and enhanced the efficacy of
anti-PD-L1 therapy (Han et al., 2019). PCBP1 served as an
intracellular immune checkpoint toward maintaining T cell
functions (Ansa-Addo et al., 2020). Recently, the roles of
RBPs have been investigated thoroughly in HCC immune
microenvironment of HCC. Xiang J et al. (2020) reported
that RBP SIRT7 enhanced the efficacies of anti-PD-L1 therapy
through MEF2D in HCC cells. Here, our data demonstrated the
close associations of the risk score with immune cells in HCC
tissues such as mast cells resting, NK cells resting, neutrophils,
mast cells activated, macrophages M0, Tregs and eosinophils.
More studies will be carried out for verifying the roles of the risk
score on ornamenting immune microenvironment in HCC.

CONCLUSION

Collectively, this study established an RBP model for predicting
OS and recurrence of HBV-related HCC individuals. Following
external verification, this model possessed the well predictive
efficacy and acted as a robust and specific prognostic indicator.
Thus, our findings might assist guide clinical decision and
personalized therapies.
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