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Abstract
This review highlights some of the highest-profile developments and
advancements in the research on  , the Lyme diseaseBorrelia burgdorferi
spirochete, that have emerged in the last two years. Particular emphasis is
placed on the controversy surrounding genus nomenclature, antigenic
variation at the   locus, genes involved in infectivity and virulence,vlsE
membrane characteristics of  , and developments inB. burgdorferi
experimental approaches.
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Introduction 
Borrelia burgdorferi is an intriguing and unique bacterium. It is 
most notorious for being the primary causative agent of Lyme  
disease in North America1. With more than 42,000 probable and 
confirmed cases reported to the Centers for Disease Control and  
Prevention (CDC) in 2017 and other estimates in the range of 
300,000 cases annually in the US, Lyme disease is the most  
common arthropod-borne disease in North America and  
Europe2,3 (CDC, https://www.cdc.gov/lyme/datasurveillance/index.
html). Case numbers have increased over the past several years 
and continue to be a growing concern as the range of the tick  
vector, Ixodes scapularis in particular, expands in North  
America4 (CDC, https://www.cdc.gov/lyme/datasurveillance/ 
index.html). Although antibiotic regimens are available and  
effective for treating the early stages of infection, Lyme disease 
often progresses without diagnosis5. Serious long-term effects 
include arthritis, carditis, and neuroborreliosis5,6. Consequently, 
much research has focused on the development of a vaccine to 
administer to humans in endemic regions such as the Northeast  
and upper Midwest of the US7.

B. burgdorferi is a motile, Gram-negative, pathogenic spirochete 
with a highly segmented genome composed of a linear  
chromosome and about 20 linear and circular genomic  
plasmids1,8. It exists in an enzootic life cycle alternating between 
specific Ixodes ticks and vertebrates9. Humans can become  
incidental hosts through the bite of an infected tick9. Whereas 
some Borrelia species, including B. burgdorferi, cause Lyme  
disease, other species cause relapsing fever, which is character-
ized by recurring episodes of fever and illness correlated with  
the bacterial burden in the bloodstream10.

The focus of this article is to briefly highlight some of the 
major developments and advancements in understanding  
B. burgdorferi published within the last two years. As such, the 
content of this review is inherently selected on the basis of the  
authors’ interests and perspectives. Nevertheless, this article 
provides a summary of some of the most significant recent  
developments regarding genus nomenclature, antigenic variation 
at the vls locus, genes involved in infectivity and viru-
lence, membrane chemistry, and advancements in laboratory  
techniques.

Genus name and species 
A recent source of controversy and confusion in the spirochete  
world surrounds the genus name itself. Historically, B. burg-
dorferi sensu lato is a designation inclusive of all Lyme disease  
Borrelia species and includes Borrelia afzelii and Borrelia 
garinii species known to cause disease in Europe and Asia,  
whereas B. burgdorferi sensu stricto exclusively denotes  
B. burgdorferi9. Lyme disease–causing and relapsing fever– 
causing spirochetes collectively resided in the single genus  
Borrelia since both clades have general microbiological features 
in common and genomic similarities (reviewed in 11). The clades 
do have differences regarding tick vector species, geographic  
distribution, ecology, transmission, and clinical manifestation 
and pathogenesis (reviewed in 11). In 2014, Adeolu and Gupta  

published a controversial proposition to divide the genus into  
Borrelia and Borreliella, the former including agents of  
relapsing fever and the latter denoting the Lyme disease– 
causing species, on the basis of average nucleotide identity  
(ANI)12. This work aimed to identify conserved signature  
insertions/deletions and conserved signature proteins that could 
be used to distinguish between the groups. Their approach was 
criticized for presupposing differences between the clades in  
their analysis and overlooking the similarities between these  
groups, and the proposed naming system has been controver-
sial and largely not adopted in the literature. In recent response 
to this work, Margos et al. outlined how ANI, though useful  
for determining relatedness between strains of a given species, 
is not appropriate for differentiating genera13. Instead, they used  
pairwise analysis of percentage of conserved proteins (POCP) 
to determine whether there were differences significant enough 
to warrant the division of the Borrelia genus13. The result was  
negative and rather suggested that Borrelia species exist more 
as a continuum13. In an additional letter to the editor, Margos  
et al. itemized scientific criticisms and practical concerns  
about the genus split14, which are largely and rather con-
vincingly countered by Barbour et al.15. A non-scientific yet  
compelling argument against the genus split is the confusion 
and public health concern associated with altering the name of a  
pathogen16. Lending further backing to the reunification of the  
genus, a phyloproteomic analysis found insufficient functional 
differences between Lyme disease and relapsing fever clades to  
warrant individual genera17. Annotated proteomes from species 
representing each of the five spirochete genera and 40,000  
proteins representing key biological processes were compared 
by a series of methods to demonstrate more relatedness between  
Lyme disease–causing and relapsing fever–causing Borrelia  
than exists between species of other genera17. Of additional  
note, the genome of Borrelia anserina, an avian-associated  
species, was recently fully sequenced18 and new species  
continue to be discovered, such as Borrelia mayonii, which 
was isolated in the North Central US in 201619,20 and echidna- 
associated Candidatus Borrelia tachyglossi13,21. It is our opinion 
that the Borrelia genus should not be split into Borrelia and  
Borreliella, because if different scientific approaches do not  
yield the same results, no firm conclusion can be drawn at this  
time. Perhaps as more species are discovered and character-
ized, the scientific merit or detriment of splitting the genus will  
become clearer.

Antigenic variation of VlsE 
B. burgdorferi is able to establish persistent infection in  
immunocompetent hosts (as reviewed in 6,9). Antigenic variation 
in the vlsE locus is thought to play a large part in immune  
evasion since VlsE is expressed during mammalian infection 
but not within the tick vector22, and Borrelia strains lacking  
vlsE are unable to maintain infection in immunocompetent 
mice as opposed to severe combined immune deficiency (SCID)  
mice23–25. The vls system, encoded on lp28-1 (in B31-type 
strains), includes a series of silent cassettes upstream of the vlsE  
promoter26,27. Through a segmental gene conversion mechanism, 
unidirectional transfers of sequences from the silent cassettes 
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to the vlsE variable regions generate chimeric antigens during  
infection28. Research on the vlsE locus-switching mechanism 
has been impaired by the necessity for mammalian infection,  
coupled with the limitations of sequencing strategies that align 
short reads, and therefore cannot capture the nuances in genomic 
changes during infection26,29. In a groundbreaking study, Verhey  
et al. advanced the field by applying PacBio long-read sequenc-
ing to sequence the vls locus26. These long reads are sensitive 
to single-nucleotide polymorphisms and reduce the ambiguity  
associated with contig assembly26. These authors also built  
Variable Antigen Sequence Tracer (VAST), a powerful  
program that analyzes the data and aligns the vls locus to the 
reference sequence. This technique was applied to study vlsE 
switching in the context of infection by injecting wild-type 
(WT) and SCID mice with B. burgdorferi, harvesting multiple 
tissues at various time points, and sequencing the re-isolated  
spirochetes26. A number of interesting findings resulted and build 
off previous findings30. First, the base-change frequencies of 
vlsE were dramatically higher in the WT mice in comparison to  
SCID mice, confirming earlier work suggesting that pressure  
from the acquired immune response facilitates detection of vlsE 
variants23–25. Second, they observed that 99.6% of vlsE variants  
were found to be unique in each tissue in any given mouse26. 
This sheds light on the dissemination process in mice. During  
infection, B. burgdorferi replicates and disseminates through 
the bloodstream to different tissues31. The uniqueness of the  
vlsE variants in each tissue suggests that B. burgdorferi cells 
colonize a tissue, and reside there, rather than re-entering the  
bloodstream and colonizing additional tissues26. Third, lack of  
obvious preference toward switching at the 5′ or 3′ end of the  
gene suggests that vlsE switching occurs stochastically rather 
than in a biased fashion26. Fourth, three-dimensional structure  
mapping of the VlsE amino acid changes found in WT mice  
versus SCID mice showed that infection in WT mice required 
switching on surface-exposed loops as opposed to switching in 
the hydrophobic α-helices26. These hydrophobic α-helices are  
putatively involved in dimerization, suggesting that func-
tional dimerization of VlsE is necessary in vivo and therefore  
conserved26. This work was performed with B. burgdorferi  
strain B31, and similar results were obtained with strain JD1,  
which differs in several respects: it lacks 17 base-pair direct  
repeats in the vls system, its silent cassettes are arranged differ-
ently, the inverted repeat sequences at the vls locus are different,  
and the vls sequences themselves are different32. Investigations  
into other features of the vls locus, such as the long inverted  
repeat that resides in the vlsE promoter, have been undertaken 
through the construction of mini-vls plasmids33. This work  
suggests that vlsE switching occurs in cis and that the inverted 
repeat is not required for switching to occur33. The mechanistic 
details whereby vls switching occurs and how VlsE protects  
B. burgdorferi from the host antibody response remain of great 
interest for further investigation.

Infectivity and virulence attributes distinct from 
antigenic variation 
The genome of B. burgdorferi is relatively small and does not 
encode enzymes key to several metabolic processes8. This 

leaves B. burgdorferi dependent on its host for many nutri-
ents and presumably renders essential many of the genes it 
does possess. Genes essential for survival in the tick vector 
or in the mammalian host (or both) continue to be identified. 
One such gene is bb0210, which encodes Lmp1, an antigenic  
outer-membrane protein34. Lmp1 appears to be a multifunctional 
protein (similar to BBK3235–37) with roles that include adhe-
sion at the middle domain38,39, immune evasion for persistent  
infection40, and tissue tropism during infection41. Although three 
domains of Lmp1 were previously recognized41, the necessity  
of the individual domains for a mammalian infection has not 
been fully investigated. In a recent publication, Zhuang et al.34  
provide evidence for reduced bacterial burden of the Δlmp1  
mutant in mouse tissues at 3 weeks post-infection, the 
requirement for both the N-terminal and middle domains in  
tick-to-mouse transmission, the existence of multiple Lmp1  
species, and the degradation of Lmp1 by the periplasmic serine 
protease BbHtrA34. Further investigation of the complexities 
of the in vivo roles of the Lmp1 protein and its fragments is  
warranted.

In a separate inquiry, recent work demonstrated that BB0405 
is necessary for mouse infection42. This is interesting because  
BB0405 and BB0406 may be pore-forming proteins43 that are 
immunogenic, highly paralogous (differing by a five–amino acid 
deletion in the N-terminal region of BB0405 and a nine–amino 
acid deletion in the C-terminal region of BB0406), and  
co-transcribed8,42. A null mutant of bb0405 effectively disrupted  
production of both BB0405 and BB0406 at the protein level. 
The bb0405 mutant was complemented with either bb0405 or  
bb0406 by insertion into a different replicon, circular plasmid  
26 (cp26). When these strains were used to infect mice,  
culture-positive tissue samples were recovered for the bb0405- 
complemented, but not for the bb0405 mutant or bb0406- 
complemented, strains. This confirms that BB0405 is essential 
in mammalian infection but the role of BB0406 remains  
unknown. Despite their similarities, BB0405 and BB0406 do 
not appear to be co-expressed, as evidenced by reactivity with 
baboon sera collected at different times post-infection. The 
mechanism underlying this apparent co-transcription without  
co-expression of these genes warrants further investigation of 
the transcriptional and translational regulators critical to the  
infection process.

Membrane characteristics 
The membrane composition and characteristics of B. burgdorferi 
differ markedly from those of other Gram-negative bacteria. 
For example, the outer and inner membranes are separated by  
periplasm and peptidoglycan, as is usual, but also by periplas-
mic flagella44. Borrelia species lack lipopolysaccharide, and  
B. burgdorferi has an unusually large number of lipoproteins 
on its outer membrane45,46. Recent work has investigated the  
existence of lipid rafts in both the outer and inner membranes. 
Although this work was performed on outer- and inner-membrane 
fractions prepared in vitro, data from liquid chromatography, 
anisotropy and fluorescence resonance energy transfer (FRET)  
analysis, mass spectrometry, and proton nuclear magnetic  
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resonance (1H-NMR) experiments have led to some interesting 
conclusions47. Lipid rafts have previously been demonstrated 
in the outer membrane, but there is now evidence for lipid rafts 
in the inner membrane48. The inner membrane has a different  
quantity of cholesterol glycolipids and more unsaturated 
bonds in the acyl chains of the phospholipids than the outer  
membrane, causing it to have a lower propensity to lipid raft  
formation than the outer membrane47. As expected, the proteomic 
profiles of the membranes differ such that the inner membrane 
harbors more transport proteins and signaling proteins whereas 
the outer membrane harbors porins and lipoproteins, at least some 
of which interact with the host47. In another ambitious study, the 
localization of the entire lipoproteome of B. burgdorferi was 
determined49. This was accomplished by using an algorithm to  
identify putative lipoproteins in the B. burgdorferi genome, 
then generating a 125-member plasmid library encoding  
C-terminally His-tagged lipoproteins, and transforming these 
constructs into B. burgdorferi for analysis49. Transformants 
were screened for tagged lipoprotein localization by protein-
ase K digestion, membrane fractionation, pronase digestion, and  
multidimensional protein identification technology (MudPIT) 
mass spectrometry49. Although there are always caveats to the 
use of overexpressed tagged proteins, some of the results are still  
striking. Of the 125 lipoproteins examined, 86 were surface-
exposed, 31 were in the inner membrane and exposed to the  
periplasm, and only eight were in the outer membrane and  
exposed to the periplasm49. This is in contrast to other Gram- 
negative bacteria, which have higher proportions of lipopro-
teins in the outer membrane exposed to the periplasm, again 
highlighting the uniqueness of B. burgdorferi49. Although 
the significance of differential lipoprotein expression and  
localization during tick and mammalian infection is one of the  
most established tenets in Borrelia biology, a comprehen-
sive study had never been performed. Understanding the 
membranes of B. burgdorferi and their components may 
well lead to identification of novel vaccine targets in the  
future.

Progress in the development of experimental 
approaches 
Genetic manipulation of B. burgdorferi has been greatly hindered 
by a number of factors, including slow growth, loss of genomic 
plasmids during in vitro cultivation, lack of a minimal defined  
medium, a highly A/T-rich genome, and lack of homology in 
many cases to the genes and proteins of model organisms8,50,51.  
Therefore, many of the tools and techniques used for the manip-
ulation of bacteria such as Escherichia coli have not been  
tractable in B. burgdorferi. However, great strides have recently 
been made to expand the toolbox. In 2016, the first report of the 
application of transposon sequencing (Tn-seq) in the context of 
B. burgdorferi infection was published52. This study used the  
signature-tagged Mariner Himar1 transposon library in an infec-
tious strain background to address the utilization of various 
carbohydrate sources in vitro and to identify genes important  
during mammalian infection52–55. The following year, Tn-seq 
was used to identify genes involved in resistance to nitric oxide,  

hydrogen peroxide, and tert-butyl hydroperoxide in vitro56.  
These studies pave the way for future high-throughput screens  
both in vitro and in vivo for B. burgdorferi.

An additional advance in B. burgdorferi research is in the 
introduction of constitutive promoters of different strengths.  
Although strong promoters from the flaB and flgB genes have 
been used historically, transcriptome data have now been used to  
identify constitutively weak (P

0526
) and moderate (P

0826
, P

resT
, P

0031
,  

and P
0026

) promoters which will be useful for expressing more 
biologically relevant levels of a gene of interest57. Furthermore,  
monomeric fluorescent markers have been adapted for  
B. burgdorferi, including cyan, green, yellow, red, and infrared 
fluorescent proteins. The infrared marker requires the addition of 
exogenous biliverdin, but the excitation wavelength is less toxic 
to cells than other markers and results in less autofluorescence.  
These markers will inevitably prove useful in co-localization  
studies and other research and allow simultaneous imaging of up 
to four distinct proteins in a cell57. In the same publication, the  
options for antibiotic markers were expanded. Historically, 
kanamycin (aphI), gentamicin (aacC1), and streptomycin  
(aadA) resistance genes have been the available markers of  
choice57. Now resistance markers that enzymatically inactivate 
the translation inhibitors hygromycin B and blasticidin S have  
been adapted for use in B. burgdorferi57. Since these drugs are 
not used clinically and exhibit minimal cross-resistance with the  
other markers, they can be exploited for the genetic manipula-
tion of B. burgdorferi57. These laboratory tools will facilitate  
further research into B. burgdorferi infection and physiology,  
which will likely contribute to novel strategies to prevent and treat 
Lyme disease.

Conclusions
Although the word limit of this review requires that we not  
include the vast majority of recent publications, it is hoped that 
some major themes, advancements, and future directions are  
clear. Controversy surrounding genus nomenclature persists 
for now but hopefully will be resolved so energy can again be  
directed toward the biology of the organisms and the diseases 
they cause. Further research into the antigenic variation system 
encoded at the vls system is now enabled by PacBio long-read  
sequencing and the VAST program to track genetic changes  
in B. burgdorferi. The mechanisms behind this unique segmental 
gene conversion system, and therefore the antigenic varia-
tion system that allows B. burgdorferi to maintain infections, 
deserve more study. We look forward to seeing how this area 
of research unfolds and its implications for the biology of the  
Lyme disease agents. Similarly, we anticipate the identifica-
tion and investigation of more genes essential to B. burgdorferi  
infectivity and virulence. In addition to increasing our  
understanding of B. burgdorferi biology, these studies may 
direct investigation of future vaccine targets. We also sought 
to highlight the protein and lipid characteristics of the  
B. burgdorferi membranes. In light of its existence as an  
extracellular pathogen, these characteristics and dynamic  
changes are significant for interactions of B. burgdorferi 
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with its environment, be it tick or vertebrate. By extension,  
general understanding of the physiology of B. burgdorferi,  
obtained through the applications of newly pioneered labora-
tory techniques, will uncover the secrets of this fascinating  
spirochete.
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