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Neurodegenerative diseases (NDs) are becoming a serious public health concern as
the world’s population continues to age, demanding the discovery of more effective
therapies. Excessive formation of reactive oxygen species (ROS) can result in oxidative
stress (OS), which can be regarded as one of the common causes of neurodegenerative
diseases (NDs). Thus, in this review, we focus on summarizing the consequences of ROS
NDs, while taking the four prevalent NDs as examples, including Alzheimer’s disease
(AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington’s
disease (HD), to illustrate the key signaling pathways and relevant drugs. Together,
these findings may shed new light on a field in which ROS-related pathways play a
key role; thereby setting the groundwork for the future therapeutic development of
neurodegenerative diseases.

Keywords: reactive oxygen species (ROS), oxidative stress, Alzheimer’s disease, Parkinson’s disease,
amyotrophic lateral sclerosis

INTRODUCTION

Neurodegenerative diseases (NDs) are a diverse set of illnesses characterized by the slow loss of
anatomically or physiologically relevant neural systems. They are common causes of morbidity
and cognitive impairment in the elderly, including Alzheimer’s disease (AD), Parkinson’s disease
(PD), Amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), etc. (Erkkinen et al., 2018).
Amyloidoses, tauopathies, α-synucleinopathies, and TDP-43 proteinopathies are the most frequent
conditions in which proteins exhibit aberrant structural features. Excessive production of reactive
oxygen species (ROS) has been reported to play an important role in these protein misfolds (Poprac
et al., 2017). The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs).
In most cells, the mitochondrial electron transport chain (ETC) is one of the most important
sources of reactive oxygen species (ROS), with a research reporting that mitochondria generate
45% of ROS while NOXs account for the remaining 40% (Wong et al., 2019). Under physiological
settings, the balance between the production of ROS and the clearance of ROS is extremely
tightly controlled. When the delicate equilibrium is disturbed in some pathogenic conditions,
including mitochondrial dysfunction, protein misfolding, metal ions dyshomeostasis, and glial cells
proliferation and activation (Yeung et al., 2021), ROS levels rise, resulting in OS which contributes
significantly to the degeneration of neuronal cells by interfering with the function of biomolecules
(DNA, protein, and lipid; Figure 1). As a result, ROS involved in neurodegenerative changes has
become a research hotspot.
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FIGURE 1 | ROS production in neurodegenerative diseases. Protein
misfolding, metal ions dyshomeostasis, mitochondrial dysfunction, and glial
cell proliferation and activation mainly induce the ROS production in NDs. At
the same time, the overproduction of ROS can also affect the four
pathological processes (Created with BioRender.com). ROS, reactive oxygen
species; NDs, neurodegenerative diseases.

Thus, ROS regulation has emerged as a promising strategy
in the NDs field. So far, none of the FDA-approved small
molecule drugs for NDs therapies have a clear mechanism for
targeting ROS, and there is an urgent need to figure out the
complexity of ROS in NDs and identify potential targets in
the ROS-related pathway for therapy requirements. Herein, we
focus on summarizing the ROS-regulatedmolecular mechanisms
in NDs and their relevant molecular drugs over the recent
5 years.

ROS in Neurodegenerative Diseases
Occurring as one of the primary hallmarks of a variety of
clinical conditions, oxidative stress (OS) is produced by the
unchecked generation of ROS, which promotes severe damage to
brain tissue. The functions of ROS in the development of NDs
are still unclear. In this review, we describe four categories of
common NDs and the potential impacts of ROS in these NDs
(Figure 2).

Alzheimer’s Disease
AD is one of the most common NDs, impacting 45 million
individuals worldwide. Deposition of protein aggregates,
including extracellular amyloid plaques (Aβ), intracellular tau
(forms nerve fiber tangles), and loss of synaptic connections
in specific areas of the brain characterize AD (Knopman et al.,
2021). It has been reported that in the early stage of AD, oxidative
damage occurs in the brain before significant plaque pathology
develops (Butterfield and Halliwell, 2019).

Several pathways connecting ROS in AD have recently been
uncovered. Nuclear factor erythroid 2-related factor 2 (Nrf2)
is a crucial redox-regulated gene in controlling ROS levels,
with intranuclear Nrf2 decreased in NDs such as AD (Cores
et al., 2020). Kelch-like ECH-associated protein 1 (Keap1)
and antioxidant response element (ARE) are important to
Nrf2 pathway. Keap1-Nrf2-ARE can be divided into two parts:
the cytoplasm and the nucleus. Under normal circumstances,
Keap1 binds with Nrf2 in the cytoplasm and stays in an inactive
state, where Nrf2 will be ubiquitinated and then degraded. When
stimulated by ROS, the binding of Keap1-Nrf2 is unstable. Nrf2 is
released and transferred to the nucleus then binds to ARE and
promotes the transcription of downstream genes, leading to the
translation of a series of related proteins to exert physiological
effects (Osama et al., 2020). These proteins include heme
oxygenase-1 (HO-1), glutathione cysteine ligase modulatory
subunits (GCLM), etc. which are antioxidant proteins that can
reduce ROS production. Nrf2 can also promote autophagy,
which helps remove Aβ aggregates and phosphorylated Tau
proteins. When Nrf2 binds ARE, the transcription of autophagy-
related genes like Atg5, p62, and Map1lc3b are also upregulated.
The inhibition of Nrf2 pathway and the dysfunction of autophagy
will in turn cause the accumulation of ROS, senescent organelles,
and misfolded proteins (Zhang W. et al., 2021).

A growing number of studies have proved that the activation
of nuclear Nrf2 is affected by phosphatidylinositol 3-kinase
(PI3K), Akt, and GSK3β. PI3K is a dimer composed of the
regulating subunit p85 and the catalytic subunit p110. When it
binds to growth factor receptors, it can alter and activate the
Akt protein structure and activate or inhibit a series of substrates
downstream by phosphorylation (Vidal et al., 2021), including
the inhibition of GSK3β via phosphorylation at Ser9. GSK3β
can phosphorylate Nrf2, causing the Nrf2 nuclear export and
degradation (Fão et al., 2019). As studies have shown elevated
GSK3β levels in AD and increased GSK3β activity are directly
involved in the degradation of Nrf2, the inhibition of GSK3β
may be a possible therapeutic strategy for the treatment of AD.
In AD mice, a GSK3β inhibitor called tideglusib can reduce
tau phosphorylation, decrease Aβ deposition, and increase
astrocyte proliferation (Lauretti et al., 2020). GLP-1 has been
shown to improve AD cognition by alleviating Aβ-induced
glycolysis declines in astrocytes to reduce ROS production via
PI3K/Akt pathway (Zheng et al., 2021). Korean black bean
anthocyanins, a natural antioxidant neuroprotective compound,
reduced synaptic and memory loss and neurodegeneration in
an AD model by inhibiting Aβ-induced ROS-mediated OS
via the PI3K/Akt/GSK3β/Nrf2 pathway in vitro and in vivo
(Ali et al., 2018). Oxyphylla A, a compound extracted from
Alpinia oxyphylla, has been also found to reduce Aβ proteins
in SAMP8 mice via the activation of the Akt/GSK3β pathway
to activate Nrf2 and reduce ROS (Bian et al., 2021). Rosmarinic
acid (RosA) shows the same effect as Oxyphylla A, and it has
been reported to attenuate Aβ-induced cellular ROS generation
in PC12 cells (Rong et al., 2018).

Meanwhile, p62 is an intracellular signaling protein involved
in a variety of cellular environments. Several reports have
proved that p62 can promote Nrf2 activity by triggering
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FIGURE 2 | The roles of reactive oxygen species (ROS) in neurodegenerative diseases. The presence of hallmark protein(s) for each neurodegenerative disease is a
common trait, such as Tau and Aβ in AD, α-synuclein in PD, TDP-43, and SOD1 in ALS, and mHTT in HD. (A) In AD, ROS production serves both as a stimulus and
a consequence of activated Nrf2 via PI3K/AKT/GSK3β, p62, p38 MAPK/NF-κB pathways, which is demonstrated to closely correlates with AD pathogenesis.
Besides, ROS induced AD development through the inhibition of PP2A/CIP2A and the activation of JNK/P53 pathways. Some corresponding drugs are utilized to
reverse this and exhibit some initial effects. (B) In PD, ROS also acts as both stimuli and a consequence of activated Nrf2 via PI3K/AKT/GSK3β, DJ-1, and
p38 MAPK/NF-κB pathways. Additionally, ROS can activate c/EBPβ/AEP pathway, which leads to dopaminergic neuronal loss and motor disorders. Some drugs are
found to reverse the pathology through the above-mentioned pathways. (C) In ALS, the inhibition of GSK3β is reported to activate Nrf2 via PI3K/AKT pathway.
SOD1 is an important gene that is relevant to ROS in ALS that inhibits ROS production. ROS activates IκK/p-IκB/NF-κB pathway to inactivate Nrf2. The activation of
SOD1 also regulates IGF1R/mTOR pathway to inhibit autophagy which can eliminate misfolded proteins. Rilmenidine is found to reduce autophagy to alleviate ALS
development. (D) In HD, mHTT blocks autophagy, and mHTT and the over production of ROS leads to DNA damage to produce ROS through mitochondrial
dysfunction, which results in ALS. Metabolic reprogramming can also induce ROS production which leads to ALS. Finally, pridopidine can be found to inhibit
mitochondrial dysfunction to reverse this pathology (Created with BioRender.com). AD, Alzheimers disease; PD, Parkinsons disease; HD, Huntingtons disease; ALS,
amyotrophic lateral sclerosis; SOD1, Superoxide Dismutase 1; TDP-43, TAR DNA-binding protein 43; Nrf2, Nuclear factor erythroid 2-related factor 2.
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Keap1 (Sánchez-Martín et al., 2020). The phosphorylation of
p62 at ser349 strongly enhances its interaction with Keap1,
which results in Nrf2 dissociation and activation (Ichimura and
Komatsu, 2018). Pterostilbene has been reported to activate the
Nrf2 pathway by promoting the binding of p62 and Keap1 in
SH-SY5Y cells, which results in the downregulation of ROS
(Xu et al., 2021a). It has been reported that the activation of
the Nrf2-mediated p62 signaling pathway can induce autophagy
to reduce the Aβ caused cell death in PC12 cells. Autophagy
inhibited ROS generation by facilitating mitochondrial turnover
as well (Gu et al., 2018). The p62 also plays an effective and
specific role in the clearance of microtubule-associated protein
tau (MAPT) by blocking nerve fiber tangles accumulation and
pathological diffusion (Xu et al., 2019).

Besides, the p38 mitogen-activated protein kinase (MAPK),
which was found upregulated in AD, has been proved to
reduce the nuclear transfer of Nrf2. Anthocyanin, a subfamily
of flavonoids with antioxidation, has been reported to reduce
ROS expression through increased Nrf2 and HO-1 protein
levels in SH-SY5Y cells via inhibiting p38 MAPK (Amin et al.,
2017). Astaxanthin has also been found to reduce ROS and
neuronal death through the p38 MAPK signaling pathway
(Zhang X. S. et al., 2021).

Furthermore, the transcription factor nuclear factor-κB (NF-
κB) is regulated in a complex manner. It is a master switch of
inflammation that is associated with H2O2 production and is
also related to Nrf2 regulation (Sies and Jones, 2020). Gintonin,
a glycolipoprotein fraction isolated from ginseng, has been
reported to inhibit p38 MAPK and NF-κB pathways to stabilize
Nrf2 to reduce ROS (Choi et al., 2021). Sulforaphane, another
positive modulator of Nrf2, reduces Aβ and ROS via the
inhibition of NF-κB. It also decreases pro-inflammatory cytokine
expression and p65 activation, resulting in increased protein
expression levels of HO-1 (Zhao et al., 2018).

Apart from the Nrf2 pathway, other mechanisms have
been found in the regulation of ROS in AD. For instance,
protein phosphatase 2A (PP2A), a ubiquitously expressed
serine/threonine phosphatase can be inhibited by ROS. PP2A
has been proved to inhibit CIP2A in order to phosphorylate Tau
and amyloid precursor protein (APP) in mouse brains. Synthetic
tricyclic sulfonamide PP2A activators have been proven to
decrease Tau and APP phosphorylation via this pathway (Wei
et al., 2020). Moreover, microRNAs (miRNAs) are small,
endogenous, non-coding RNAs that act as regulators in a variety
of biological processes. The expression changes in miRNAs may
cause diseases. The miR-34c has been found upregulated in AD,
with intracellular Aβ aggregation and tau hyperphosphorylation
in different regions of the brain, together contributing to
cognitive deficits (Bazrgar et al., 2021). A recent study shows that
the upregulated miR-34c participates in the pathogenesis of AD
via ROS/JNK/P53 pathway and the inhibition of miR-34c can
improve memory decline in AD models (Shi et al., 2020).

Parkinson’s Disease
PD is the second most common ND, with a prevalence of
more than 6 million worldwide. Neuronal loss in the substantia
nigra (SN) is a neuropathological characteristic of PD, which

leads to striatal dopaminergic insufficiency and the buildup of
α-synuclein in neuronal inclusions. The α-synuclein binds to
ubiquitin and forms proteinaceous cytoplasmic inclusions of
proteins called Lewy bodies (Zhang K. et al., 2021). Disturbance
of physical process and pathway dysfunction, including OS,
defective mitochondria, and cellular calcium imbalances, plays a
part in ROS imbalance, which is consequently involved in PD
etiology all play a part in the etiology of PD (Aarsland et al.,
2021). Furthermore, due to lower glutathione (GSH) levels, the
inherent antioxidant defenses in dopaminergic neurons in SN
pars compacta are more vulnerable to ROS than in other parts
of the brain (Bjørklund et al., 2021).

Nrf2 is also the main protein involved in the development of
ROS-caused PD, while the Akt/GSK3β/Nrf2 axis is extensively
targeted by drugs. Protocatechuic aldehyde (PCA) has been
found to perform an effective neuroprotective role in MPTP
or MPP+ generated PD mice (Guo et al., 2019) by correcting
mitochondrial dysfunction and relieving ROS damage via the
GSK3β/Nrf2 pathway. In addition, schisandra chinensis (Sch)
was reported to reduce GSK3β activity and upregulate Nrf2 in the
striatum and hippocampus, block NF-κB nuclear translocation,
and ameliorate excessive ROS levels in a 6-OHDA-induced
PD model (Yan et al., 2021). Polydatin has also been reported
to prevent dopaminergic neurodegeneration by inhibiting
microglia activation through AKT/GSK3β/Nrf2 signaling
pathway in lipopolysaccharide (LPS)-induced PD models
(Huang et al., 2018). Moreover, dapagliflozin reduces ROS
production in the rotenone-induced PD model via the
activation of the PI3K/AKT/GSK3β pathway, which results
in the attenuation of neuronal injury (Arab et al., 2021).
The p38 MAPK and NF-κB have also been researched in
PD. Overproduction of ROS results in the activation of
MAPK and NF-κB pathways, providing links between OS and
neuroinflammation. A novel synthetic styryl sulfone and a
novel chalcone compound have been published to prove this
statement. These compounds activate Nrf2 to produce HO-1,
which inhibits the production of ROS and the p38 MAPK and
NF-κB mediated neuroinflammation and in PD models, rescues
the dopamine neurotoxicity (Lee et al., 2019; Guo et al., 2021).

Besides those similar pathways in AD pathology, some extra
pathways to affect ROS are found in PD. For example, excessive
ROS production can diminish mitochondrial membrane
potential (MMP), causing the accumulation of PTEN induced
putative kinase 1 (PINK1) and E3 ubiquitin ligase Park
2 (Parkin), which activates mitophagy to reduce ROS by
combining sequestosome 1 (p62) and microtubule-associated
protein 1 light-chain 3 (LC3; Cui et al., 2021). The mutation
of PINK1 and Parkin may block mitophagy, leading to the
accumulation of defective mitochondria, ROS increases, and
ultimately to neurodegeneration (Wen et al., 2013). In the
rotenone-induced PD model, the rotenone treatment has been
found to activate p38 MAPK which disrupts mitophagy and
results in ROS increase. And the ROS inhibitor NAC provided
protection by restoring cell death and mitochondrial function
in this model (Chen et al., 2021). In addition to functional
interactions with PARKIN, PINK1 can also fight ROS by
interacting with DJ-1 as a neuroprotective protein. DJ-1 is
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a small 20 kDa protein that is highly conserved in different
species. It can be oxidized at its cysteine residue under OS, thus
acting as a ROS scavenger. DJ-1 also stabilizes Nrf2 to enhance
antioxidant response (Zhao et al., 2021). Interestingly, another
study has reported that MEHP upregulated ROS production to
activate mitophagy, which increases cytotoxicity as a mechanism
of cell death (Xu et al., 2021b). Therefore, ROS should be
further studied in the mitophagy-related pathogenesis PD
pathogenesis.

Recently, scientists identified TTFA (a complex II inhibitor)
and Atovaquone (a complex III inhibitor), which are effective
in blocking oxidative phosphorylation, strongly elevating ROS,
and activating dopaminergic neuronal cell death through the
C/EBPβ/AEP pathway, leading to PD (Ahn et al., 2021).

Amyotrophic Lateral Sclerosis
ALS is a progressive, fatal neuromuscular disorder characterized
by the degeneration of upper and lower motor neurons
leading to somatic muscle dysfunction in the body (Grad
et al., 2017). According to the ALS Association, ALS affects
roughly 1 in 50,000 people worldwide each year. ALS is
implicated in a range of pathogenesis, such as excitatory
toxicity, mitochondrial dysfunction/dysregulation, endoplasmic
reticulum stress, neuroinflammation, and OS (D’Ambrosi et al.,
2018). The loss of nuclear TAR DNA-binding protein 43
(TDP-43) function may contribute to the progression of ALS
(Tziortzouda et al., 2021). Importantly, increased ROS has been
implicated in the etiology of ALS in a number of studies. ROS
markers rise in the postmortem brains of people with ALS, as
well as in transgenic animal models (D’Ambrosi et al., 2018).

In the majority of ALS cases, which are defined as sporadic
(SALS), the etiology of the disease is unknown, while 5%–10%
of cases are hereditary and categorized as familial (FALS).
Chromosome 9 Open Reading Frame 72 (c9orf72), Superoxide
Dismutase 1 (SOD1), TDP-43, Fused in Sarcoma (FUS),
Optineurin (OPTN), and TANK-binding kinase 1 (TBK1) are
among the FALS-related genes. SOD1, is the first recognized
gene linked to ALS, whose mutations account for roughly 20%
of familial forms of ALS (McCampbell et al., 2018). Functional
SOD1 encodes a Cu2+/Zn2+-binding SOD, and converse O2

•−

to H2O2 and O2 to protect cells from toxic ROS, while in
SODG93A mice, a classic ALS model, ROS levels increase due to
the SOD1 mutation (Xiao et al., 2018).

Similarly, the Keap1/Nrf2 complex is important in controlling
ROS levels in ALS, much as it is in AD and PD. Kirby
and colleagues found the first indication of a link between
SOD1 and Nrf2 when mut-SOD1 (G93A) reduced Nrf2 mRNA
expression in the mouse motor neuron-like hybrid cell line
NSC34. The mutant SOD1 models also demonstrate ARE
dysfunction which leads to ROS overproduction (Kirby et al.,
2005). As written above, GSK3β and NF-κB are also key
factors in ALS. Urate has been proved to decrease ROS via
Akt/GSK3β/Nrf2/GCLC pathway to protect motor neurons in
the ALS model (Zhang et al., 2019). Neuronal-specific inhibition
of IκB lowers motor neuron loss and reactive glial cells in
SOD1G93A mice and TDP-43 mice by reducing misfolded
SOD1 levels and TDP-43 translocation into the nucleus. These

findings improved the cognitive impairment of ALS transgenic
mice, allowing longer lifespans (Dutta et al., 2020). In addition,
inhibiting NF-κB in microglia and astrocytes can reduce brain
and peripheral inflammation, as well as extend mouse survival
(Ibarburu et al., 2021). Under ROS, Nrf2/ARE signaling is
a critical protective strategy for cell survival. ROS stimulates
IκB kinase (IκK) activation and then mediates IB (NF-κB
inhibitor) phosphorylation, increasing proteasome degradation
and NF-κB release. However, at the transcriptional level, the two
opposing pathways can interfere with each other. Nrf2 reduces
ROS-mediated NF-κB activation by boosting ROS-neutralizing
antioxidant defenses, which decreases NF-κB pathway activation
(Sivandzade et al., 2019).

Additionally, autophagy is the principal intracellular catabolic
route for removing misfolded proteins, aggregates, and damaged
organelles that cause aging and neurodegeneration like ALS, in
which autophagy is frequently disrupted, leading to cytoplasmic
separation of the readily aggregated and toxic proteins in
neurons, especially dysfunctional SOD1 to produce ROS.
Since autophagy is regulated through mTOR-dependent and
-independent mechanisms, mTOR is considered as a key target
to rescue the impaired autophagy. Accordingly, increasing levels
of ROS were found to cause the reduction of mTOR in
the larval brain (Chaplot et al., 2019). And the stimulation
of the mTOR system in mutant SOD1 astrocytes is caused
by post-transcriptional overexpression of IGF1R (insulin-like
growth factor 1 receptor), an upstream positive modulator of
the mTOR pathway, according to a recent study. Astrocytes
with mutant SOD1 are less toxic to motor neurons when
the IGF1R-mTOR pathway is inhibited (Granatiero et al.,
2021). Rilmenidine has been reported to induce autophagy in
mutant SOD1G93A mice, which results in the downregulation of
SOD1 and ROS reduction (Perera et al., 2018).

Huntington’s Disease
A genetic ailment characterized by movement abnormalities
and cognitive deterioration, Huntington’s disease (HD) is
inherited in an autosomal dominant manner. Symptoms of
HD include a general shrinking of the brain and degeneration
of the striatum (caudate nucleus and putamen), as well as
the loss of efferent medium spiny neurons in the striatum
(caudate nucleus and putamen; MSNs). These symptoms may
be related to the widespread expression of mutant huntingtin
(the toxic protein that causes HD) in HD patients’ bodies
(Jimenez-Sanchez et al., 2017).

ROS and mitochondrial dysfunction have a role in the
neuronal degeneration of HD. A genome-wide association
study (GWAS) containing 6,000–9,000 patients identifies DNA
repair related genes as major modulators of age at onset
and disease severity, with some pathways connected to redox
signaling and mitochondrial function. In the presence of ROS,
huntingtin works as a scaffold that can localize to DNA
damage and modifies its associated complex (Maiuri et al.,
2019). Other research demonstrates that huntingtin is engaged
in a variety of mitophagy processes. The existence of the
polyglutamine tract in mutant huntingtin alters the formation
of these protein complexes and determines mutant huntingtin’s
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deleterious effects on mitophagy, which result in a buildup
of damaged mitochondria and an increase in ROS. In HD,
these alterations lead to overall mitochondrial dysfunction and
neurodegeneration (Franco-Iborra et al., 2021). Pridopidine
has been reported to increase mitochondrial respiration and
reduce ROS in HD models (Naia et al., 2021). ROS has also
been linked to Huntington’s disease-associated region-specific
cell death. Studies have demonstrated that mitochondria can
undergo metabolic reprogramming by utilizing fatty acids as a
source of energy, causing ROS-induced damage in the vulnerable
striatum (Polyzos et al., 2019).

CONCLUSIONS

In this review, we provided an illustration of the responsibilities
of ROS in NDs and summarized some related drugs for
potential therapeutic purposes. ROS is primarily produced
by mitochondria and NOXs, which can cause OS. Some of
the intricate mechanisms in which ROS can contribute to
the development of NDs have been elucidated, with Nrf2 as
the central regulator of ROS in NDs, while other cellular
processes such as mitophagy, and neuroinflammation play their
crucial roles in controlling ROS in NDs. For instance, in
AD, Nrf2 and its related pathways are widely reported. In
PD, the influence on mitophagy PINK1/PARKIN pathway has
also been further discussed. In ALS, the relationship between
SOD1 and ROS has been illustrated, and in HD, ROS has been
suggested to affect metabolic reprogramming. However, most
of these studies, especially those related to HD, lack in-depth
investigations on the specific role of ROS in NDs, when only

covering the measurement of the alterations of ROS, which can
be a consequence or concomitant phenotype in response to
NDs. Thus, more detailed relationships between ROS and the
occurrences of NDs should be further exploited.

Moreover, in the concept of alleviating OS caused by
ROS, some nutritional factors (e.g., resveratrol and curcumin)
that act as antioxidants have been guided to treat NDs.
But the use of these antioxidants to control and prevent
NDs remains unsatisfactory. The reason for this is that most
antioxidants have osmotic limitations due to their inability
to pass the blood-brain barrier. Nanoparticles may prove
to be an effective vehicle for delivering these medications
to the central nervous system with the advancement of
nanotechnology. We propose that, rather than using scavengers,
direct regulation of ROS production from specific sources with
targeted drugs should be used to avoid or limit oxidative
damage in neurodegeneration. It has been proven that several
ND-related genes/proteins like Nrf2, GSK3β, p38MAPK, etc., are
involved in the regulation of the ROS pathway. By focusing on
specific ROS-mediated signaling pathways, we can anticipate the
development of more refined redox drugs. Direct inhibition of an
enzyme, increased endogenous antioxidants, or increased energy
production, will be a promising direction for future therapeutic
purposes in NDs.
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