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A B S T R A C T

Around the world, disease surveillance and mathematical modeling have been vital tools for government
responses to the COVID-19 pandemic. In the face of a volatile crisis, modeling efforts have had to evolve
over time in proposing policies for pandemic interventions. In this paper, we document how mathematical
modeling contributed to guiding the trajectory of pandemic policies in the Philippines. We present the
mathematical specifications of the FASSSTER COVID-19 compartmental model at the core of the FASSSTER
platform, the scenario-based disease modeling and analytics toolkit used in the Philippines. We trace how
evolving epidemiological analysis at the national, regional, and provincial levels guided government actions;
and conversely, how emergent policy questions prompted subsequent model development and analysis. At
various stages of the pandemic, simulated outputs of the FASSSTER model strongly correlated with empirically
observed case trajectories (𝑟 = 94%–99%, 𝑝 < .001). Model simulations were subsequently utilized to
predict the outcomes of proposed interventions, including the calibration of community quarantine levels
alongside improvements to healthcare system capacity. This study shows how the FASSSTER model enabled
the implementation of a phased approach toward gradually expanding economic activity while limiting the
spread of COVID-19. This work points to the importance of locally contextualized, flexible, and responsive
mathematical modeling, as applied to pandemic intelligence and for data-driven policy-making in general.
1. Introduction

The global COVID-19 pandemic represents one of the greatest public
health crises in modern history (Cattani, 2020). Major efforts to contain
outbreaks worldwide have utilized mathematical modeling to guide
researchers, epidemiologists, and public health officials in understand-
ing the nature of the disease, as well as evaluate potential measures
to curb its spread (Boccaletti et al., 2020; Currie et al., 2020; Prem
et al., 2020). Compartmental models, for instance, have been partic-
ularly popular for estimating key properties of the disease, forecasting
epidemiological outcomes across different contexts and conditions, and
evaluating the impacts of different interventions including targeted
government lockdown scenarios, travel restrictions, or collective mask-
wearing (Eikenberry et al., 2020; Lin et al., 2020b,a; Wynants et al.,
2020).
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With the explosion of mathematical modeling efforts to aid in
pandemic response around the world (Gnanvi et al., 2021; Rahimi
et al., 2021; Syeda et al., 2021), the goal of this paper is two-fold.
First, we describe the mathematical details of the compartmental model
which contributed to the pandemic response in the Philippines. As a
developing country, the Philippines faces major economic constraints
on available resources, indicating the urgent need for an enhanced
understanding of local outbreak dynamics and capacity-building for
harnessing data-driven insights (Dahab et al., 2020; Figueroa et al.,
2021; McMahon et al., 2020). In this resource-scarce context, this
paper’s second goal is thus to trace how modeling efforts were used
to directly guide local policy-making at multiple levels of governance
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and decision-making. In this process, we conversely examine how emer-
gent policy questions prompted subsequent improvements in model
development and analysis.

Through this case study, we add to the ever-growing global lit-
erature on the use of mathematical models across different national
contexts. But more specifically, we demonstrate how mathematical
models are informed by the concrete settings in which they are utilized,
and must flexibly evolve to address shifting policy needs (Bedford
et al., 2020; DebRoy et al., 2017). As we later explain in detail,
the interlocking development of mathematical modeling and policy-
making pertains both to retrospective assessments of past interven-
tions, as well as prospective scenario-based forecasts of future policy
outcomes. By showing the interrelationships between mathematical
modeling and context-specific policy-making concerns, we highlight
novel, interdisciplinary contributions to the literature with implications
for pandemic intelligence and general crisis informatics that extend
beyond the Philippine example.

In the Philippines, the FASSSTER scenario-based disease modeling
and analytics toolkit has contributed to the pandemic policy-making at
multiple levels of governance.1 The platform is a scenario-based disease

odeling and surveillance platform developed for the Department of
ealth’s Epidemiology Bureau (DOH-EB). The technologies embedded

n the FASSSTER platform have previously been tested and utilized
or localized monitoring of other infectious diseases such as dengue,
easles, and typhoid (Espina and Estuar, 2017; Uyheng et al., 2020,
018).

Coinciding with the World Health Organization’s (WHO) declara-
ion of COVID-19 as a pandemic, the Philippine Department of Health
onfirmed its first local case of COVID-19 in the first week of March
020. At this time, FASSSTER was reconfigured to aid in the pandemic
ntelligence response in the Philippines (Estuar et al., 2020). With the
evelopment and deployment of the mathematical model of FASSSTER
or the COVID-19 transmission in the Philippines, hereafter referred to
s the FASSSTER model, public health policies in the country have been
ormulated with the guidance of data-driven inputs. Over the following
ear and into the time of writing, the FASSSTER model has guided
oth national and local governments in coordinating regional levels of
obility restrictions while expanding healthcare system capacity since

he imposition of a strict enhanced community quarantine (ECQ) in
arch 2020 (Vallejo and Ong, 2020).

In the succeeding sections of this paper, we unpack the policy-driven
esign, deployment, and dynamic evolution of the FASSSTER model
n the Philippines as follows. First, we present a description of the
odel formulation, its associated parameters, and their corresponding

stimation procedures in Section 2. Second, we narrate in Section 3
ow the model was utilized for answering particular policy questions,
hile also being adapted in line with shifting pandemic conditions.
inally, we discuss implications of the Philippine experience in data-
riven pandemic response in Section 4. In sum, this work thus seeks to
nswer the following research questions:

1. How was mathematical modeling used to understand and fore-
cast the COVID-19 case trajectories in the Philippines?

2. How did localized compartmental models guide policy decisions
for the Philippine pandemic response?

3. How did mathematical models for pandemic intelligence evolve
in response to changing policy needs in the Philippines?

1 FASSSTER stands for Feasibility Analysis on Syndromic Surveillance us-
ng Spatio-Temporal Epidemiological modeleR, accessible online at https://
assster.ehealth.ph/covid19/.
2

2. The FASSSTER model of COVID-19

2.1. Model formulation

The FASSSTER model (Estadilla et al., 2021) is formulated as a
compartmental model that traces the dynamics of COVID-19 infections
throughout the Philippine population. Here, the population is divided
into six compartments: susceptible (𝑆), exposed (𝐸), infectious but
symptomatic (𝐼𝑎), infectious and symptomatic (𝐼𝑠), confirmed (𝐶), and
ecovered (𝑅).

Following standard nomenclature (Eikenberry et al., 2020; Lin et al.,
020b,a; Wynants et al., 2020), compartment 𝑆 consists of individuals
ho have not been infected with COVID-19 and may potentially be-

ome infected. Compartment 𝐸 consists of individuals who have been
nfected but are not yet infectious. Both compartments 𝐼𝑎 and 𝐼𝑠 consist
f individuals who are infectious but not yet confirmed clinically or
ocumented. Compartment 𝐶 consists of confirmed infected individuals
ho are assumed to be undergoing treatment and isolated so as not

o infect those in the susceptible compartment. This compartment also
epresents the active cases in the community, and the goal is for the
odel output in 𝐶 to capture this local case data. Lastly, compartment
consists of individuals from compartment 𝐶 who have recovered from

he disease. Although there have been major accounts that reinfection
ould occur (Gousseff et al., 2020; Stokel-Walker, 2021), the present
odel assumes that those who have recovered from the disease have

cquired immunity and cannot infect others nor be reinfected anymore.
Fig. 1 (Estadilla et al., 2021) graphically illustrates population tran-

itions between compartments as governed by the model parameters.
arameters include: the transmission rate 𝛽; the incubation period 𝜏;
he percentage 𝜔 of infectious asymptomatic individuals who eventu-
lly exhibit symptoms of the disease; the respective detection rates 𝛿𝑎
nd 𝛿𝑠 of asymptomatic and symptomatic infectious individuals; and
he respective recovery rates 𝑟 and 𝜃 of confirmed and asymptomatic
nfectious individuals.

The transmission rate 𝛽 is a function of the baseline disease trans-
ission rate 𝛽0, which is derived from an assumed basic reproduction
umber 𝑅0, and a reduction factor (1 − 𝜆), where 𝜆 ∈ [0, 1]. In
eneral, the parameter 𝜆 reflects several factors including the effect
f community quarantine imposed by the government, as well as the
ompliance of the members of the population to minimum public health
tandards such as proper hygiene, social distancing, and the wearing
f face masks and face shields. Infectiousness of asymptomatic relative
o symptomatic cases is accounted for by the parameter 𝜓 . The re-
pective rates of transfer from exposed to infectious asymptomatic (𝛼𝑎)
nd infectious symptomatic (𝛼𝑠) compartments are derived using the
ncubation period parameter (𝜏) and the proportion of asymptomatic
nfections (𝑐), where 𝛼𝑎 =

𝑐
𝜏 and 𝛼𝑠 =

1−𝑐
𝜏 .

A constant recruitment rate 𝐴 in the susceptible population is
assumed, mainly through birth. Moreover, death due to causes other
than COVID-19 is assumed to occur in all compartments at a rate 𝜇 per
unit of time, also referred to as the natural death rate. Death due to
the disease, on the other hand, is assumed to occur at the rates 𝜖𝐼 and
𝜖𝑇 per unit of time among the infectious symptomatic and confirmed
cases, respectively.

Mathematically, the FASSSTER model is characterized by the fol-
lowing system of ordinary differential equations (Estadilla et al., 2021):

𝑆′(𝑡) = 𝐴 −
𝛽𝑆(𝑡)
𝑁(𝑡)

[

𝜓𝐼𝑎(𝑡) + 𝐼𝑠(𝑡)
]

− 𝜇𝑆(𝑡) (1)

′(𝑡) = 𝛽
𝑆(𝑡)
𝑁(𝑡)

[

𝜓𝐼𝑎(𝑡) + 𝐼𝑠(𝑡)
]

− (𝛼𝑎 + 𝛼𝑠 + 𝜇)𝐸(𝑡) (2)

𝐼 ′𝑎(𝑡) = 𝛼𝑎𝐸(𝑡) − (𝜔 + 𝛿𝑎 + 𝜃 + 𝜇)𝐼𝑎(𝑡) (3)

𝐼 ′𝑠(𝑡) = 𝛼𝑠𝐸(𝑡) + 𝜔𝐼𝑎(𝑡) − (𝛿𝑠 + 𝜖𝐼 + 𝜇)𝐼𝑠(𝑡) (4)

𝐶 ′(𝑡) = 𝛿𝑎𝐼𝑎(𝑡) + 𝛿𝑠𝐼𝑠(𝑡) − (𝑟 + 𝜖𝑇 + 𝜇)𝐶(𝑡) (5)
𝑅′(𝑡) = 𝑟𝐶(𝑡) + 𝜃𝐼 (𝑡) − 𝜇𝑅(𝑡), (6)
𝑎

https://fassster.ehealth.ph/covid19/
https://fassster.ehealth.ph/covid19/
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Fig. 1. Diagram of the FASSSTER compartmental model. Disease progression from the susceptible (𝑆) compartment through the exposed (𝐸), asymptomatic (𝐼𝑎) and symptomatic
(𝐼𝑠) infectious, confirmed (𝐶), and recovered (𝑅) compartments.
Table 1
Summary of parameter values and initial values of variables.

Variable Description Values/Source Unit References

Initial state values

𝑆(0) Initial susceptible population data individuals Philippine Statistics Authority (2020)
𝐸(0) Initial exposed fitted individuals
𝐼𝑎(0) Initial infectious asymptomatic fitted individuals
𝐼𝑠(0) Initial infectious symptomatic fitted individuals
𝐶(0) Initial confirmed cases actual data individuals Department of Health - Epidemiology Bureau (2020)
𝑅(0) Initial recovered 0 individuals assumed

Model parameter values

𝑅0 Basic reproduction number 4.0, 3.0 dimensionless U.S. Centers for Disease and Control (2020)
𝐴 Constant recruitment rate population data individuals/day macrotrends (2020a), Philippine Statistics Authority (2020)
𝜇 Natural death rate 4.05 × 10−5 1/day macrotrends (2020b)
𝛽0 Baseline transmission rate 0.4343, 0.3258 1/day U.S. Centers for Disease and Control (2020)
𝜆 Transmission reduction fitted 1/day
𝜓 Relative infectiousness of asymptomatics 1.0000 dimensionless U.S. Centers for Disease and Control (2020)
𝜏 Incubation period 5.0000 day World Health Organization (2020b)
𝑐 Proportion of asymptomatic infections 0.1800 dimensionless Mizumoto et al. (2020)
𝜔 Symptomatic transition 0.3300 1/day World Health Organization (2020a), Mizumoto et al. (2020)
𝜃 Undetected, asymptomatic recovery rate 0.0714 1/day World Health Organization (2020b)
𝛿𝑎 Detection rate for asymptomatic case data 1/day Department of Health - Epidemiology Bureau (2020)
𝛿𝑠 Detection rate for symptomatic case data 1/day Department of Health - Epidemiology Bureau (2020)
𝑟 Post-detection recovery rate 0.0404 1/day Department of Health - Epidemiology Bureau (2020)
𝜖𝐼 COVID-19 death rate, undetected 0.0031 1/day Department of Health - Epidemiology Bureau (2020)
𝜖𝑇 COVID-19 death rate, detected 0.0031 1/day Department of Health - Epidemiology Bureau (2020)
where 𝛽 = 𝛽0(1 − 𝜆), 𝛼𝑎 = 𝑐
𝜏 , 𝛼𝑠 =

1−𝑐
𝜏 , and 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼𝑎(𝑡) +

𝐼𝑠(𝑡)+𝐶(𝑡)+𝑅(𝑡). The functions 𝑆, 𝐸, 𝐼𝑎, 𝐼𝑠, 𝐶, and 𝑅 are differentiable
real-valued functions on R. All parameters are nonnegative constants.

2.2. Model parameters and initial state values

Compartmental models require numerical values of parameters as
well as initial values for the state variables in order to project fu-
ture dynamics of the disease. These parameters are determined for
each locality—a city, municipality, province, or region—using three
distinct strategies. First, some parameters were calculated directly from
the case incidence data collected from the DOH-EB (Department of
Health - Epidemiology Bureau, 2020). Others were obtained from the
literature or existing databases with the exact measures needed for the
model (macrotrends, 2020a,b; Philippine Statistics Authority, 2020).
Lastly, to ensure that the output of the model was in line with the actual
data, we implemented an algorithmic fitting procedure. This procedure
was used to estimate the initial values 𝐸(0), 𝐼𝑎(0), 𝐼𝑠(0). It was also used
to calibrate 𝜆 periodically (Varadhan, 2014). Table 1 summarizes the
parameter values and initial state values for the model.
3

2.2.1. Parameters estimated from local data and related studies
The FASSSTER model was designed to help national and local gov-

ernment units (LGU) in the Philippines understand the spread of disease
in their locality and design appropriate interventions and policies.
Hence, it was important to ensure that the output of the model was
in line with their historical data of confirmed cases. This section sum-
marizes our use of historical or literature values and direct calculation
methods to obtain values of the model parameters.

To estimate the local recruitment rate 𝐴, the 2020 national birth
rate (macrotrends, 2020a) was multiplied by the population size (Philip-
pine Statistics Authority, 2020) of the locality. The natural death
rate 𝜇 was obtained by getting the inverse of the national average
life expectancy, given the absence of this statistic at the local level
(macrotrends, 2020b).

The unit of time 𝑡 is in days, with 𝑡 = 0 corresponding to the first day
after March 1 when a locality confirmed and admitted a COVID-19 case.
Thus, 𝐶(0) refers to the initial number of active cases in a given locality.
Moreover, the initial susceptible population 𝑆(0) in any locality was
estimated as 75% of the local population at that time, following similar
assumptions as in related work (Lin et al., 2020b).

Several parameters were obtained from the literature. WHO findings
in Wuhan, China (World Health Organization, 2020b) have shown that
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the average incubation period, 𝜏, for COVID-19 may be approximately
days. The relative infectiousness of asymptomatic cases, 𝜓 , remains

ighly uncertain. We conservatively assumed that 𝜓 = 1, following
the worst-case scenario considered by the US Centers for Disease and
Control (U.S. Centers for Disease and Control, 2020). The proportion
of asymptomatic infections, 𝑐, was fixed at 0.18, as found in a study
f the spread of COVID-19 in the Diamond Princess cruise ship (Mizu-
oto et al., 2020), wherein 65% of asymptomatic cases developed

ymptoms later. Thus, the rate of transfer from exposed to infectious
symptomatic was 𝛼𝑎 = 0.18

5 and the rate of transfer from exposed to
nfectious symptomatic was 𝛼𝑠 =

0.82
5 . Based on a WHO report (World

ealth Organization, 2020a) that it takes 2 days on average for an
symptomatic to develop symptoms, we estimated the rate of transfer,
, from the asymptomatic (𝐼𝑎) to the symptomatic compartment (𝐼𝑠)

o be equal to 1
2 × 0.65. Lastly, we assume that it takes an average of

4 days for infectious asymptomatic cases to recover (World Health
rganization, 2020b). Hence, the recovery rate 𝜃 of those in the 𝐼𝑎

compartment who were never clinically diagnosed was estimated as 1
14 .

Some parameters were calculated and updated monthly from the
data obtained from DOH-EB. These values were applied to all localities.
The detection rate for symptomatic individuals, 𝛿𝑠, was calculated by
getting the inverse of the average number of days from the date of onset
of symptoms to the report date. We then assumed that the detection
rate for asymptomatic individuals, 𝛿𝑎, is the same as 𝛿𝑠. Note that this
is a simplifying assumption because, in reality, symptomatic cases are
more likely to get tested than asymptomatic cases. Nevertheless, for
model output that focuses on projections of active cases or daily new
cases, the current assumption should suffice. Next, the recovery rate 𝑟
or confirmed cases was computed as the inverse of the average number
f days from report date to the date of recovery. We also estimated the
eath rate due to COVID-19, 𝜖𝑇 and 𝜖𝐼 , by getting the average of the

ratio of the reported number of deaths to the actual number of active
cases per day based on local data.

Finally, the baseline disease transmission rate 𝛽0 was obtained from
the value of the basic reproduction number 𝑅0. We assumed that 𝑅0 = 4
for the National Capital Region (NCR), the Calabarzon Region, and
Central Visayas Region, and 𝑅0 = 3 for other regions. Using the next
eneration matrix approach, it can be shown that

0 =
𝛽[(𝜇 + 𝜔 + 𝛿𝑎 + 𝜃)𝛼𝑠 + (𝜇 + 𝜖𝐼 + 𝛿𝑠)𝜓𝛼𝑎 + 𝜔𝛼𝑎]

(𝜇 + 𝜔 + 𝛿𝑎 + 𝜃)(𝜇 + 𝜖𝐼 + 𝛿𝑠)(𝜇 + 𝛼𝑎 + 𝛼𝑠)
.

By assigning the value 0 to 𝜆 at 𝑡 = 0 so that 𝛽 = 𝛽0, then 𝛽0 can
be obtained from the above formula using the values of the other
parameters.

2.2.2. Parameters obtained using a fitting process
The remaining parameter, 𝜆, and initial state values 𝐸(0), 𝐼𝑎(0) and

𝐼𝑠(0) were estimated for each locality using a curve fitting procedure to
ensure that the local case data in any given jurisdiction were as close as
possible to the output of the model. The fitting was done with respect
to daily reports on active and cumulative cases separately, resulting
in two sets of estimates for these remaining model inputs. Fitting to
active cases involved comparing local active case data with the model
output on 𝐶(𝑡), while fitting to cumulative cases involved comparing
cumulative case numbers with the sum of all detected infections from
the model, represented by the sum ∑

(𝛿𝑎𝐼𝑎 + 𝛿𝑠𝐼𝑠).
A constrained L-BFGS optimization procedure (Varadhan, 2014)

was used to fit model projections to the empirical time series. We specif-
ically minimized a squared error fitness function. Model projections
𝐶(𝑡) were produced using a Runge–Kutta numerical method (Soetaert
et al., 2010). As Table 1 indicates, values of 𝐸(0), 𝐼𝑎(0), 𝐼𝑠(0), and 𝜆
were derived in this manner. Our search space for 𝜆 was limited to
the interval from 0 to 0.95. While 𝑆(0) and 𝐶(0) are based on data
particular to each locality, we chose a consistent range of 0 to 1000 for
𝐸(0), 𝐼𝑎(0), 𝐼𝑠(0) across all areas given that this is estimating exposures
near the approximate start of local transmission. At this time period,
we assume it is reasonable that these compartments will reflect low
4

absolute numbers regardless of how large the local population is.
2.3. Operational localization procedures

In view of the real-time, dynamic deployment of the FASSSTER
model, we performed the parameter fitting process in a multi-scale
and iterative process. We produced estimates for all 17 regions in
the Philippines. We also generated projections for each region’s corre-
sponding provinces, cities, and municipalities. We updated our model
outputs twice a week. We also treated values of 𝜆 and 𝛿𝑠 as piece-wise
constant functions with different values assigned for each month to
reflect the changing state of the pandemic in the Philippines as well
as the improvements in the local health systems’ capacity to test, treat,
and isolate confirmed cases.

3. Results

Utilization of the FASSSTER model of COVID-19 in the Philippines
enabled an accurate reconstruction of local outbreak dynamics and
adaptive forecasting procedures to answer shifting policy questions.
In this section, we highlight two core contributions of the FASSSTER
model, which we synthesize as: (a) assessing past interventions, or
using the model to look back; and (b) forecasting policy outcomes, or
using the model to look forward.

In the results we present below, we consider findings on different
scales to illustrate the flexible uses of the FASSSTER model to suit
different policy needs across time and space. These include more gen-
eral, national-level questions for broader interventions; as well as more
targeted policies for smaller regions and provinces.

3.1. Using the model to look back: Assessing past interventions

3.1.1. Evaluation of model performance
A prerequisite for a reliable mathematical model is its ability to

accurately reconstruct previously observed case trajectories. Thus, for
each locality, the parameters of the FASSSTER model for COVID-19
must be calibrated so that its output, particularly the graphs corre-
sponding to the active cases (𝐶) and cumulative cases, is as close as
possible to the actual data.

As an illustration, Fig. 2 depicts the correspondence between model
outputs and recorded trends in COVID-19 cases at national and regional
levels, using data updated up to the end of August 2020. We show
model fit in both active and cumulative numbers of COVID-19 cases up
to end of August. Note that these are not out-of-sample projections, but
all directly tuned to the data with varying 𝜆 and 𝛿𝑆 values per month.

The sample model outputs exhibit particularly high correlation and
low error relative to empirical data. Fig. 3 indicates that across all
regions, model-data correlations were generally high, ranging from
0.94 to 0.99, with a mean of 0.98 and a standard deviation of 0.01
across regions. Normalized errors were likewise low, with an average
discrepancy of 0.35 cases per 1000 people in the regional population,
and an overall range of mean error between 0.01 to 1.65 for active
cases, and up to 2.5 for cumulative cases.

3.1.2. Quantifying policy impacts
Taken together, these findings indicate the reliability of the FASS-

STER model in capturing the past case trajectories when the parame-
ters are properly calibrated. In addition, these fitted parameter values
reveal insights into the dynamics of disease transmission relative to
evolving public health responses at different levels of jurisdiction.

The parameter 𝜆, in particular, which corresponds to a transmission
reduction factor, may be heuristically understood as a measure of
the effectiveness of targeted community quarantine policies over time.
From this standpoint, one question that may be asked is thus: How
effectively did community quarantine policies lower the transmission
of COVID-19? While certainly, transmission reduction in any given
locality depends on a complex combination of numerous factors, the

parameter 𝜆 in our model numerically captures a data-driven signal
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Fig. 2. Comparison of model outputs with national and regional data on active and cumulative cases. Optimized model fitting is performed iteratively on a daily basis. We present
a visualization of cases normalized to the maximum incidence observed in the five-month period between the start of April to the end of August 2020.
of how disease dynamics are changing (Uyheng et al., 2018, 2020).
Hence, although causal claims cannot be made solely on the basis of
this parameter, it may nonetheless offer a practically useful measure
that can be compared over time and space.

Fig. 4 depicts the estimated monthly values of the parameter 𝜆 in
2020 for the entire country, as well as for representative regions in
the three major island groups in the Philippines: Luzon (National Cap-
ital Region), Visayas (Central Visayas Region) and Mindanao (Davao
Region). National estimates of disease transmission reduction suggest
the effectiveness of strict lockdown procedures implemented near the
start of the pandemic, with 𝜆 values starting around values of 0.75.
This corresponds to a 75% reduction in disease transmission relative
to the assumed natural levels of COVID-19 transmission prior to the
lockdown. However, with the easing of lockdown policies in the later
months, we see that 𝜆 dips to around 0.5 in July, and rises back to
around 0.6 in August.
5

Monthly values of 𝜆 in the National Capital Region (NCR) further
appear to mirror national trends. This is understandable given that
national case counts are largely driven by the infections accumulated
in the capital. We observe more variability in 𝜆 in the Central Visayas
Region, where an initial value close to 1 is seen in April 2020, but
in alternating months, values fluctuate to as low as 0.25 in May,
back to 0.75 in June, around 0.5 in July, then back above 0.75
by August. This corresponds to the similarly variable local lockdown
policies, particularly in the province of Cebu, which drives most of
the case counts in the region. The high variability of 𝜆 values in
the Central Visayas Region suggests possibly greater region-specific
sensitivity to changing lockdown policies, seeing a stronger reduction
in disease transmission under restrictive policies, but also faster disease
spread when restrictions are eased. These may potentially be attributed
to differences in demographic distribution across populated areas, or
differences in implementation and enforcement.



Epidemics 40 (2022) 100599E. de Lara-Tuprio et al.
Fig. 3. Performance of models across regions for both active (top) and cumulative cases (bottom). High correlation indicates good correspondence between model output and
actual data. Low root mean square error (RMSE) indicates low levels of error between model output and actual data.
Fig. 4. Changes in monthly estimated transmission reduction 𝜆 for the year 2020. Higher values indicate more successful reduction in local spread of COVID-19. Representative
regions are selected across major island groups and compared with national estimates.
Finally, we see that 𝜆 values in Davao are the most stable in the
figure. Although they are initially weaker than the other regions shown,
transmission reduction levels in Davao hold steady between 0.4 and
0.5, indicating relatively consistent implementation of control measures
to slow local outbreak trajectories.

Taken together, these results thus illustrate the utility of the FASS-
STER model for quantitative assessments of past interventions. Al-
though different regions of the Philippines may feature different ge-
ographic and demographic contexts, parameter estimates on the model
enable meaningful comparisons of policy effectiveness based on in-
terpretable changes to disease transmission dynamics. Although not
strictly defined to be the effect of lockdown policies per se, the es-
timated 𝜆 values nonetheless quantify concurrent changes in the rate
of disease transmission, which may help policy-makers design future
targeted interventions in different regions.
6

3.2. Using the model to look forward: Forecasting policy outcomes

Alongside assessing past interventions, the FASSSTER model has
also been used to prospectively forecast future numbers of cases de-
pending on various policy decisions. This section tackles different
policy questions raised at various national and regional levels during
different junctures of the Philippines’ experience with the COVID-19
pandemic. We show how different answers to these policy questions
could be weighed and influenced through analyzing different scenarios
with the FASSSTER model, and in turn, how the FASSSTER model was
adapted to meet evolving policy needs.

3.2.1. Case 1: What are the potential consequences of exiting the enhanced
community quarantine?

In March 2020, the Philippine government implemented what was
known as an ‘‘enhanced community quarantine’’ or ECQ in major
regions shortly after detecting the first local transmission of COVID-19.
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Table 2
Scenarios for the partial lifting of ECQ in NCR. Dates are all for the year 2020.
Factors Scenario 1 Scenario 2 Scenario 3 Scenario 4

Start of GCQ May 16 May 31 May 16 May 31
End of GCQ Dec. 31 Dec. 31 Dec. 31 Dec. 31
People allowed to go out 50% 50% 50% 50%
Health system capacity (𝛿𝑆 ) from May 16 20% 20% 50% 50%
Estimated peak infection 170,166 159,238 22,325 18,405
Estimated peak date Jul 20, 2020 Aug 14, 2020 May 29, 2020 May 23, 2020
Critical cases at peak date 10,210 9,554 1,339 1,104
Population mobility was severely restricted in these areas and economic
activity was limited to essential services.2

During this ECQ, a national data analytics advisory group was
ormed and convened to discuss possible scenarios and generate cor-
esponding projections that would serve as a guide in crafting policy
uidelines. One of the first major policy questions was: How can the
ountry exit the ECQ? In response, the FASSSTER model was used to
nalyze the effect of lifting the ECQ at different estimated levels of
ealth system capacity. The underlying rationale behind this approach
as that severe restrictions could not be sustained indefinitely, yet at

he same time, public health measures needed to be in place to ensure
imely detection and isolation of cases to control the spread of the
isease should restrictions be gradually lifted.

From a modeling standpoint, a new parameter 𝛾 was introduced in
the model to account for the percentage of the population allowed to
resume pre-quarantine levels of activity, as a general proxy for easing
ECQ restrictions. This resulted in an effective transmission rate of 𝛽 =
𝛽0(1−𝜆(1− 𝛾)). In generating forecasts, 𝜆 is presumed to be the level of
transmission reduction achieved during the ECQ period, and gamma, in
turn, reduces that factor—this represents an easing in ECQ restrictions
which may re-introduce higher rates of disease transmission. At the
same time, the parameter 𝛿𝑆 was likewise varied to consider different
improvements in national capacities to test, isolate, and treat COVID-19
patients.

To consider the outcomes of different levels of eased community
quarantine measures, the FASSSTER model was used to generate output
for different scenarios adjusting 𝛾 and 𝛿𝑆 . Table 2 shows a sample
output of the model presenting four scenarios transitioning from ECQ to
what became known as a ‘‘generalized community quarantine’’ (GCQ)
with specific assumptions on the percentage of population resuming
pre-quarantine mobility and varying health system capacity for NCR.
During this time, the cases in NCR accounted for more than 70% of all
the cases in the country.

Considering several factors including case projections, the Philip-
pine government announced an initial transitional lockdown policy
referred to as modified ECQ (MECQ) in NCR and selected areas. This
was temporarily implemented from May 16 to 31, 2020,3 which was
then relaxed to GCQ beginning June 1, 2020.

3.2.2. Case 2: What are the potential implications of phased easing of
community quarantine policies?

From this point, while the easing of ECQ allowed for economic
activity to resume, a subsequent rise in COVID-19 cases and deaths
began to place increasing strain on the overall health system. Beginning
August 4, 2020, the quarantine status of NCR, along with neighboring
provinces, was re-escalated to a modified ECQ (MECQ) for a period of
two weeks. Thereafter, the government considered either extending the
MECQ or reverting to GCQ in those areas. The FASSSTER model was
again used to forecast the number of cases until the end of September
under different scenarios.

2 https://www.doh.gov.ph/sites/default/files/health-update/IATF-RESO-
3.pdf.

3 https://doh.gov.ph/sites/default/files/health-update/IATF-Resolution-
o.-37.pdf.
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Table 3 shows a sample output of active case projections for NCR.
The value of 𝜆 used for GCQ was based on the June estimate since
NCR was under GCQ for that particular month; for MECQ, the value
of 𝜆 was the one fitted to August data. In this case, 𝜆 quantified the
level of transmission reduction achieved by the most recent community
quarantine policy. Three values of parameter 𝛿𝑆 , representing the
health system capacity, were also considered. The results showed that
returning to GCQ would be possible, provided that the health system
capacity was at a sufficient level.

As in the first case, the FASSSTER model was employed to harness
the optimal level of health system capacity and mobility for easing
restrictions. But instead of a one-time exit from a severe ECQ, the
FASSSTER model was used to consider finer-grained variations that
would allow for different gradations of economic activity given differ-
ent targets for improved health system capacity. This became a primary
and sustained use case for the FASSSTER model in the first year of the
COVID-19 pandemic.

3.2.3. Case 3: How can minimum public health standards be introduced
for adequate protection while returning to sustainable levels of economic
activity?

By late September in 2020, the Philippines had been under various
levels of lockdown due to the pandemic for over six months. At this
point, the government considered a potential scenario for fully lift-
ing quarantine measures under a ‘‘New Normal’’ (NN) arrangement.
Here, the primary consideration was returning to sustainable levels
of activity in view of a medium-term to a long-term continuation of
the pandemic while access to vaccinations remained uncertain at the
time. The proposed New Normal policy would target areas where the
number of new cases over the last 2 weeks was either zero or below a
specified threshold. Another option for these areas was modified GCQ
(MGCQ), under which almost 80% of the population could resume
pre-quarantine mobility.

In considering these policies, the government considered the stricter
enforcement of minimum public health standards (MPHS) such as
physical distancing of at least 1 meter, wearing face masks and face
shields, and proper hand hygiene, as a viable alternative to community
quarantine. For instance, wearing of face masks and face shields in
public places became mandatory in mid-August 2020 for NCR. Post-
implementation showed that the disease transmission rate significantly
declined, as seen in the high value of 𝜆 obtained when the August data
were fitted to the model.

Table 4 shows sample projections for the province of Albay in the
Bicol Region, considered as a low-risk area, under two community
quarantine policies, New Normal and MGCQ, for the months of October
and November 2020. Note that Albay had been under MGCQ since
June 2020. Because multiple values for 𝜆 were now available to use,
simulations used both the smallest and largest values of 𝜆 in previous
months. This produced a range of projected cases for each date.

Under the New Normal scenario, we obtained the corresponding
values of 𝜆 by taking 25% of the MGCQ values. This was based on
the assumption that if, on average, MGCQ represented restrictions
on activity for 20% of the population, the New Normal would only
restrict activities for about 5% of the population (hence, 25% of the
MGCQ value). Compliance with the MPHS, especially in public places,
was assumed to reduce the transmission rate by 85% (Chu et al.,

https://www.doh.gov.ph/sites/default/files/health-update/IATF-RESO-13.pdf
https://www.doh.gov.ph/sites/default/files/health-update/IATF-RESO-13.pdf
https://doh.gov.ph/sites/default/files/health-update/IATF-Resolution-No.-37.pdf
https://doh.gov.ph/sites/default/files/health-update/IATF-Resolution-No.-37.pdf
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Table 3
Projections of the cumulative cases in NCR under GCQ and MECQ. Dates are all for the year 2020.
Date GCQ after Aug 18 MECQ to Aug 31, GCQ from Sep 1

𝛿𝑆 = 25% 𝛿𝑆 = 35% 𝛿𝑆 = 50% 𝛿𝑆 = 25% 𝛿𝑆 = 35% 𝛿𝑆 = 50%

Aug 31 129,383 130,116 129,826 127,468 128,489 128,596
Sep 15 168,766 154,180 143,382 146,296 140,512 135,964
Sep 30 218,547 172,367 149,278 166,531 148,065 138,641
Table 4
Projected cumulative cases in the province of Albay under MGCQ and New Normal. Dates are all for the year 2020.

MGCQ New Normal

Date 0% Comp. 30% Comp. 50% Comp. 0% Comp. 30% Comp. 50% Comp.

Oct 15 932–953 926–941 923–934 958–964 945–949 937–940
Oct 31 1001–1136 974–1046 959–1004 1179–1239 1067–1095 1017–1033
Nov 15 1047–1403 995–1141 971–1048 1551–1782 1193–1269 1073–1107
Nov 30 1080–1810 1006–1232 976–1078 2205–2895 1330–1485 1115–1170
Table 5
Community quarantine scenarios in NCR+ from March 29 to May 15. Dates are all for
the year 2021.

Scenario March 29–April 4 April 5–11 April 12–18 April 19–May 15

Scenario 1 ECQ MECQ MECQ GCQ
Scenario 2 ECQ GCQ GCQ GCQ
Scenario 3 ECQ ECQ MECQ MECQ
Scenario 4 ECQ ECQ MECQ GCQ
Scenario 5 ECQ ECQ GCQ GCQ
Scenario 6 ECQ ECQ ECQ MECQ
Scenario 7 ECQ ECQ ECQ GCQ
Scenario 8 ECQ ECQ ECQ ECQ

2020). Compliance rate represents the percentage of the population
who practice MPHS. We revised the transmission rate in the model as
𝛽 = 𝛽0(1−𝜆)(1−𝜅𝜂), where 𝜅 = 0.85, 𝜂 represents the MPHS compliance
rate and 𝜅𝜂 ∈ [0, 1). Lastly, the value of 𝛿𝑠 in all scenarios was set at
9%, based on the September case data.

.2.4. Case 4: How can reimplementation of community quarantine policies
itigate surges in new cases?

In the months that followed, the pandemic seemed to have remained
ithin manageable levels in most parts of the country, even during

he holiday season from December 2020 to early January 2021. As
uch, travel restrictions to and from different regions and provinces
ere relaxed.4 However, in mid-March 2021, the number of cases was
bserved to have started to rise especially in NCR and some cities and
rovinces in the neighboring Calabarzon region. This prompted the
ational government to declare these parts of the country, referred to
s NCR+, under a bubble beginning March 22.

This policy meant that NCR+ would remain under GCQ but resi-
ents were restricted from exiting the bubble and non-residents would
ot be allowed in. This measure, however, did not stop the surge in
he number of cases, resulting in a huge burden on the health system
apacity. It was also at this time that results of the genome sequencing
tudies confirmed the presence of new variants in the country.5 The
ew variants were now added to the list of possible causes of increase
n cases, alongside relaxation of movement in the population. Hence,
he national government imposed the strictest community quarantine
olicy, ECQ, in NCR+ from March 29 to April 11. The policy shifted to
less stringent MECQ beginning April 12 taking into account economic

osses, then to GCQ beginning May 15 when the number of cases
eemed to have become manageable.

4 https://doh.gov.ph/sites/default/files/health-update/IATFResolution101.
df.

5 https://doh.gov.ph/sites/default/files/health-update/IATFResolution106.
df.
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Fig. 5 shows a sample output of the FASSSTER model generated on
March 31, 2021 based on different scenarios of varying community
quarantine policies (CQ) in NCR+ from March 29 to May 15, as
described in Table 5. The projections per CQ policy were obtained
by specifying the transmission rate 𝛽 whose components were derived
according to the scenario being considered. This time, we reformulated
𝛽 to capture both varying mobility and MPHS compliance and used the
formula 𝛽 = 𝛽0(1 − 𝜆), where (1 − 𝜆) = (1 − 𝛬(1 − 𝛾))(1 − 𝜅𝜂). The
parameter 𝛾 ∈ [0, 1] represents the population mobility as estimated
from Google mobility data, 𝜂 is the level of compliance of the general
population to MPHS, 𝜅 = 0.85, 𝜅𝜂 ∈ [0, 1), and 𝛬 is a constant (per
locality) calculated from the April 2020 values of 𝜆 and 𝛾 with the
assumption that the MPHS compliance rate 𝜂 = 0 up to that month
(since this is the early stage of the pandemic). The monthly values of
𝜆 up to March 31, 2021 were those fitted to the historical case data.
For the projections, the value of 𝜆 was calculated per week using the
preceding formula with 𝛾 equal to the average mobility level when a
specified CQ was previously in place and the MPHS compliance rate 𝜂
was assumed to have a proportionate improvement from the previous
month’s computed value. Ultimately, the decision was to impose ECQ
in NCR+ up to April 11. For the succeeding weeks, projections were
updated using the most recent data and these, together with economic
considerations, provided guidance for the CQ policies imposed.

4. Discussion

In conjunction with relevant socio-economic and security indicators,
the FASSSTER model served as a useful tool in evaluating policy options
to address regional needs for pandemic response. Conversely, the model
has adapted to changing policies by introducing new parameters that
would capture new questions raised in the evolving policy context of
controlling the spread of the disease. Table 6 summarizes the time-
line of how and why the model was used at different policy-making
junctures.

From March to April 2020, when local cases were below 4,000,
the model was used mainly to understand the spread of the disease,
including its forecasted peak, and eventual total cases and mortalities.
From May to June, economic costs precipitated new guidance on easing
mobility restrictions in accordance with the current and target health
system capacity, prompting model adjustments to account for such
changes in policy. From July 2020 until the first half of March 2021,
scenario analysis determined how stricter enforcement of MPHS and
enhanced health system capacity to test, isolate, and treat patients
in both hospitals and community care facilities could serve as viable
alternatives to community-wide lockdowns. Finally, when the number
of cases surged in the second half of March 2021, the model was once
again employed to guide policy-makers in determining interventions

that would control further spread of the disease.

https://doh.gov.ph/sites/default/files/health-update/IATFResolution101.pdf
https://doh.gov.ph/sites/default/files/health-update/IATFResolution101.pdf
https://doh.gov.ph/sites/default/files/health-update/IATFResolution106.pdf
https://doh.gov.ph/sites/default/files/health-update/IATFResolution106.pdf
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Fig. 5. Projections of daily new cases and cumulative cases in NCR+ for March 29 to May 15, 2021 corresponding to each scenario. The daily case projections is derived from
the projections on cumulative cases.
Table 6
Timeline of model applications in policy-making.

Phase Purpose Use of the Model Policy Implication

Phase 1
(March–April 2020)

Understanding the local spread of
COVID-19 in NCR and other
regions

Projection of the peak of the
epidemic curve

Projection of the total numbers of
cases and disease-related deaths

Effectiveness of community
quarantine, augmentation of
resourcesa

Phase 2
(May–June 2020)

Easing of lockdown restrictions Introducing a transmission rate
multiplier to account for targeted
gradual increase in population
mobility

Scenario analysis using different
values of the parameter 𝛿𝑠 which
represents the health system
capacity

More relaxed community
quarantine policies depending on
the health and economic risk
status of a locality; partial
opening of business
establishments; workers in certain
sectors allowed to go back to
work

Improvements to health system
capacity, particularly the increase
in testingb

Phase 3
(July 2020 to mid-March 2021)

Finding alternatives to community
quarantine

Continuous monitoring of case
trajectories

Scenario analysis using
adjustments in the past monthly
values of disease transmission
rates combined with different
values of 𝛿𝑠

Opening up of the economy by
relaxing community quarantine
policies

Stricter enforcement of health
protocols, higher targets for
testing and isolation, intensified
contact tracing effortsc

Phase 4
(mid-March to June 2021)

Determining the appropriate
community quarantine policies
brought about by the surge in
case numbers

Transmission rate corresponding
to each community quarantine
policy adjusted to account for
three factors: the presence of new
variants, mobility, and
compliance to health protocols

Changing community quarantine
policies, from strict to more
relaxed policies, in response to
changing case trajectories

ahttps://doh.gov.ph/sites/default/files/health-update/IATF-RESO-15.pdf.
bhttps://doh.gov.ph/sites/default/files/health-update/IATF-Resolution-No.-50.pdf.

chttps://doh.gov.ph/sites/default/files/health-update/IATFResolution60A.pdf.
A vast literature tackles the general design and calibration of math-
ematical models for understanding the outbreak dynamics of COVID-19
in general, or to answer specific policy questions in an abstract setting
of inquiry (Eikenberry et al., 2020; Gnanvi et al., 2021; Lin et al.,
2020b,a; Rahimi et al., 2021; Syeda et al., 2021; Wynants et al.,
2020). In this paper, we detail both the mathematical framework for
understanding COVID-19 in the Philippines, as well as how it was
used to answer multiple, concrete, and shifting policy questions over
time (Estuar et al., 2020; Vallejo and Ong, 2020). Moreover, we demon-
strate the reciprocal relationship between substantive policy concerns
with the design, deployment, and dynamic evolution of mathematical
modeling techniques. An effective COVID-19 model requires constant
9

adjustments because of the volatile knowledge base around the novel
pathogen. Such information asymmetries compound existing resource
constraints of a developing country like the Philippines, and further
highlight the utility and necessity of data-driven bases for controlling
disease spread and crisis analytics in general (Cattani, 2020; Dahab
et al., 2020; Figueroa et al., 2021; McMahon et al., 2020). Tight
and responsive coupling between emergent pandemic challenges and
computational modeling efforts likewise facilitates the formalization
of policy questions into more precise evaluations of simulated out-
comes, timely what-if analyses of counterfactual scenarios, as well as
innovation of new policy measures based on model insights.

https://doh.gov.ph/sites/default/files/health-update/IATF-RESO-15.pdf
https://doh.gov.ph/sites/default/files/health-update/IATF-Resolution-No.-50.pdf
https://doh.gov.ph/sites/default/files/health-update/IATFResolution60A.pdf
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However, limitations of the FASSSTER model – in terms of both
its mathematical and policy-interface dimensions – are also important
to take into consideration. From the standpoint of the model, we did
not account for reinfections nor new variants of the pathogen that
may potentially explain the high number of daily new cases that have
emerged to date (Gousseff et al., 2020). Seasonal changes were also not
incorporated into the model, which may affect the early identification
of suspect COVID-19 cases (Liu et al., 2021). As noted in international
experiences, data quality issues and fluctuating capacity limits on
public testing also suggest caution in extrapolating the true number
of cases outside formal detection mechanisms in the country (Sáez
et al., 2021). Key considerations also nuance the interpretation of
parameter estimates, such as 𝜆, which may heuristically capture data-
driven changes in disease transmission associated with policy measures,
but may not be exclusively explained by such interventions. Similarly,
assuming the detection rate for asymptomatic individuals (𝛿𝑎) to be
equal to the detection rate for symptomatic individuals (𝛿𝑠) may likely
be an overestimation due to the different testing approaches for the two
groups. For example, some government-initiated programs prioritize
testing symptomatic individuals (Kabagani, 2022; Magsambol, 2022).
This consequently may lead to a partitioning of confirmed cases into
symptomatic and asymptomatic different from the actual data although
the totality will be the same because the model is fitted primarily to
the number of confirmed cases regardless of their clinical status. Other
factors are always at play in complex systems like pandemics, which the
FASSSTER model does not comprehensively incorporate into its design.

On the policy side, we also affirm the importance of other science-
policy interfaces that differ from those detailed by the FASSSTER case
in the Philippines (Estuar et al., 2020). For instance, the organizational
structure and composition of other pandemic advisory bodies like SAGE
in the United Kingdom may feature their own set of advantages and
disadvantages relative to the local context (Freedman, 2020; Vallejo
and Ong, 2020). This work does not aim to normatively prescribe a
universal model of policy-driven mathematical modeling, but rather
descriptively document the singular experience of FASSSTER in the
Philippines. To this end, we observe that at the time of writing, sig-
nificant challenges remain with respect to quelling the ravages of the
pandemic in the Philippines, and recognize that model forecasts and
simulations represent merely one component of a larger public health
system embedded in complex issues of resource allocation, policy im-
plementation, collective behavior, and multiple levels of local and
global leadership (Chiriboga et al., 2020; Mendenhall, 2020; Montiel
et al., 2021; Van Bavel et al., 2020).

5. Conclusion

In conclusion, the FASSSTER compartmental model was reliable in
projecting local COVID-19 case trajectories and trends in the Philip-
pines. For this reason, it provided an effective tool in policy design for
pandemic response in the Philippines. Central to the sustained value
of the FASSSTER model to evolving policies and pandemic conditions
were efforts to adapt to new policy needs and the shifting availability
of data.

Although initial control measures in the form of widespread commu-
nity quarantines were effective in the short term, their pervasive effects
on the economy posed new questions for policy-makers. Over time, the
FASSSTER model provided data-driven support for the implementation
of policies related to the rigorous enforcement of MPHS, continuous
increases in health system capacity, and improvements in early case
detection and isolation efforts. These factors continue to be measured
and compared with scenario analysis outputs in the FASSSTER model.

At the time of writing, the Philippines has entered a new phase of
the pandemic where the detection of variants of concern (VOC) is in-
creasing. At the same time, the country has also started its vaccination
program. The FASSSTER model continues to consider and incorporate
these developments into its design, highlighting the ongoing impor-
tance of policy-driven mathematical modeling in response to imminent
10

and unforeseen crises.
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