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ABSTRACT

Summary: iMembrane is a homology-based method, which predicts
a membrane protein’s position within a lipid bilayer. It projects the
results of coarse-grained molecular dynamics simulations onto any
membrane protein structure or sequence provided by the user.
iMembrane is simple to use and is currently the only computational
method allowing the rapid prediction of a membrane protein’s lipid
bilayer insertion. Bilayer insertion data are essential in the accurate
structural modelling of membrane proteins or the design of drugs
that target them.
Availability: http://imembrane.info. iMembrane is available under a
non-commercial open-source licence, upon request.
Contact: kelm@stats.ox.ac.uk
Supplementary information: Supplementary data are available
at Bioinformatics online and at http://www.stats.ox.ac.uk/proteins/
resources.

1 INTRODUCTION
Membrane proteins constitute ∼30% of all known proteins and
are one of the largest classes of drug targets. They have roles
in a multitude of biological processes such as cell recognition
and neurotransmitter transport (Müller et al., 2008). Unfortunately,
they are extremely hard to purify and crystallize, making
experimentally determined structures rare. Current computational
structure prediction methods are also not ideal, as they are designed
to work on globular, soluble proteins.

However, even if a membrane protein’s structure is obtained,
whether experimentally or computationally, we still do not hold the
whole solution to the problem: the protein’s position within the lipid
bilayer remains unknown. Natural ligands or drugs must be able to
access the part of the protein to which they bind. Therefore, it is
important to be able to distinguish the parts of the protein that are
within the lipid bilayer from those that are solvent-accessible. This
information is not currently available from experiments. Structures
obtained by X-ray crystallography or nuclear magnetic resonance
(NMR) spectroscopy do not reflect the protein’s native lipid bilayer
environment.

There are several sequence-based methods to predict the position
of transmembrane (TM) helices (e.g. TMHMM, Krogh et al., 2001)
and β-barrels (e.g. HMM-B2TMR, Martelli et al., 2002). For
reviews see Cuthbertson et al. (2005) and Bagos et al. (2005). The
boundaries of putative TM helices or sheets tend to be predicted
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inaccurately and vary between different prediction methods. Half-
helices, which span only a part of the membrane, are also hard
to predict with existing tools. More importantly, all the above
methods use a simple two-state membrane model (in membrane/not
in membrane), occasionally with the addition of an uncertainty
margin around the prediction. None of the available tools provides a
detailed prediction of each residue’s position within the lipid bilayer,
or its contacts with the different regions of the membrane lipids.

There are some structure-based methods, which predict a protein’s
position within the membrane. These usually model the membrane as
a hydrophobic slab, delimited by parallel planes (e.g. OPM, Lomize
et al., 2006). The position of these planes is determined by using an
energy function, which takes physical and/or statistical properties of
amino acid residues as arguments.

In contrast to these largely simplified models, a recently developed
method (Scott et al., 2008) uses coarse-grained molecular dynamics
(MD) simulations in order to better account for the complexity
of the lipid bilayer. Protein X-ray structures are simulated in the
presence of membrane lipids, which self-assemble into a lipid
bilayer. Simulation results include a summary listing the fraction
of time each residue spent in contact with the different parts
of the membrane lipids (polar head groups or hydrophobic lipid
tails). A growing number of these simulation results are being
made available online, in the Coarse-Grained database (CGDB,
http://sbcb.bioch.ox.ac.uk/cgdb/). CGDB currently contains over
228 lipid bilayer self-assembly simulations for 138 PDB proteins
covering 101 SCOP families, 90 superfamilies and 58 folds.

Performing MD simulations—even coarse-grained ones—
requires large amounts of time and processing power. In this article,
we present iMembrane, a simple method allowing the projection of
the existing simulation results onto proteins of homologous structure
or sequence. We show that these projected results do not vary
greatly from those obtained in original coarse-grained simulations.
Where performing an original simulation would take days on a
compute server, our method takes mere seconds on a modern desktop
computer. In addition, we are able to apply our method to proteins
where only sequence information is available.

Here we use CGDB as our dataset. However, our method could
theoretically be applied to any database of MD simulation results.
Additional datasets will be included in future releases of iMembrane.

2 ALGORITHM
iMembrane accepts either a sequence, in FASTA format (Pearson,
1990), or a structure, in PDB format (Berman et al., 2000), as input.
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In the case of a structure, its sequence is first extracted from
the ATOM coordinates of the structure file. Typically, a BLAST
(Altschul et al., 1990) sequence search is now carried out against
the CGDB of membrane proteins. Matches are then re-aligned to
the query using either MUSCLE (Edgar, 2004) sequence alignment
or MAMMOTH (Ortiz et al., 2002) structure superposition. These
alignments are then annotated using the CGDB protein’s simulation
results. A flow diagram of the iMembrane algorithm, including
alternative search methods, is available in the Supplementary
Material.

A residue’s annotation is provided as a single letter per residue:
N (not in contact with the membrane), H (in contact with the polar
head groups of the membrane lipids) or T (in contact with the lipid
hydrophobic tails). In the first instance, these letters simply represent
an interpretation of the raw simulation results, as provided in the
CGDB.

We also provide a simplified model, which abstracts the
membrane as a three-layered slab, with an inner region around
the membrane lipids’ hydrophobic tails, and two peripheral regions
surrounding the membrane lipids’polar head groups. The boundaries
of these layers are calculated by fitting parallel planes onto the
membrane contact data.

This model allows us to then use each residue’s 3D coordinates
to determine in which layer of the membrane it resides, or whether
it is outside the membrane. iMembrane does this automatically for
the CGDB proteins and then uses this information to annotate any
homologous proteins aligned to them.

In the case where the input to our method is a structure, we
can use the same procedure to assign every residue in the query
protein to one of the membrane (or non-membrane) layers defined
by the aligned CGDB protein. This step is performed in a Pymol
environment (DeLano, 2002).

In the case of a sequence-only input, the query’s 3D information
is missing. Therefore, we can only annotate those residues that are
aligned to a CGDB protein’s residue. In the future, an additional
structure prediction step will be implemented, such that we will be
able to annotate every residue of a sequence-only input, as well as
give back its proposed structure.

3 VISUALIZATION
We visualize the predicted membrane insertion of the input protein
using (i) a colour-annotated sequence alignment and/or (ii) a
coloured 3D structure as shown in Figure 1. The sequence-based
visualization is always provided, whereas the coloured structure
output is currently restricted to the case where the input itself was a
structure.

4 ACCURACY
iMembrane’s accuracy was tested using a leave-one-out cross-
validation on the CGDB data. The prediction results for each hit
were compared to the original annotation generated directly from the
corresponding MD simulation result in the CGDB. A Q3 score was
calculated, representing the fraction of annotated residues assigned
to the correct annotation (T, H or N; see Fig. 1). In addition, a Q2
score was calculated by merging the two types of membrane layers
(T and H).

Fig. 1. The structure of PDB entry 2JAF before (left) and after (right)
annotation with iMembrane. Shades show the membrane layers. Top to
bottom: non-membrane (dark blue), polar head group layer (white), lipid
tail layer (dark red), polar head group layer (white) and non-membrane
(dark blue).

Independent of the input type (structure or sequence), a sequence
identity of >35% tends to result in a Q3 accuracy >70% and a Q2
accuracy of ∼90% and above in the membrane layer prediction.
A slight upwards trend can be observed with increasing sequence
identity. Below 35% sequence identity, homolog detection and
sequence alignment quality is known to decline (Rost, 1999). As our
method depends entirely on the alignment between the query and
database proteins, its accuracy varies greatly below ∼35% sequence
identity, in the case where the input is a sequence. For structure input,
this boundary is pushed down to 20% sequence identity. The use of
improved alignment methods more suitable for distant homologs
will benefit the accuracy of iMembrane in future releases.

A range of accuracy plots can be found in the Supplementary
Material.
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