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Abstract——Metabotropic glutamate (mGlu) recep-
tors, a family of G-protein-coupled receptors, have
been identified as novel therapeutic targets based
on extensive research supporting their diverse

contributions to cell signaling and physiology through-
out
the nervous system and important roles in regulat-
ing complex behaviors, such as cognition, reward,
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and movement. Thus, targeting mGlu receptors may
be a promising strategy for the treatment of several
brain disorders. Ongoing advances in the discovery
of subtype-selective allosteric modulators for mGlu
receptors has provided an unprecedented opportunity
for highly specific modulation of signaling by individual
mGlu receptor subtypes in the brain by targeting sites
distinct from orthosteric or endogenous ligand binding
sites on mGlu receptors. These pharmacological agents
provide the unparalleled opportunity to selectively regu-
late neuronal excitability, synaptic transmission, and
subsequent behavioral output pertinent to many brain
disorders. Here, we review preclinical and clinical evi-
dence supporting the utility of mGlu receptor allosteric

modulators as novel therapeutic approaches to treat neu-
ropsychiatric diseases, such as schizophrenia, substance
use disorders, and stress-related disorders.

Significance Statement——Allosteric modulation of
metabotropic glutamate (mGlu) receptors represents a
promising therapeutic strategy tonormalize dysregulated
cellular physiology associated with neuropsychiatric dis-
ease. This review summarizes preclinical and clinical
studies using mGlu receptor allosteric modulators as
experimental tools and potential therapeutic approaches
for the treatment of neuropsychiatric diseases, including
schizophrenia, stress, and substanceuse disorders.

I. Introduction

Glutamate is the primary excitatory neurotrans-
mitter within the central nervous system (CNS).
Glutamate modulates cell excitability and synaptic
transmission through actions on glutamate recep-
tors, including ionotropic glutamate and metabo-
tropic glutamate (mGlu) receptors. Ionotropic glutamate
receptors, which include amino-3-hydroxy-5-methyl-iso-
xazolepropionic acid, N-methyl-d-aspartate (NMDA), and
kainate receptors, are ligand-gated ion channels that
mediate fast excitatory synaptic transmission (Traynelis
et al., 2010). mGlu receptors are members of the G-pro-
tein-coupled receptor superfamily and can be classified
into three distinct groups based on their sequence
homology, G-protein coupling, and ligand selectivity
(Conn and Pin, 1997). The mGlu receptor subtypes are
differentially expressed pre- and postsynaptically
throughout the CNS and are located on both neurons
and glial cells.

A. Metabotropic Glutamate Receptors: Structure and
Signal Transduction

1. Structural Components of Metabotropic Glutamate
Receptors. mGlu receptors feature a large extracellular
N-terminal domain, coined the Venus flytrap domain
(VFD), which contains the orthosteric glutamate binding
site and is critical for homo- and heterodimerization of
these receptors (Yin and Niswender, 2014). Extensive evi-
dence shows that VFDs form dimers, which can exist in
three main states: open-open, open-closed, and closed-

closed. Antagonist binding stabilizes the open-open (inac-
tive) conformation, whereas ligand binding induces open-
closed and closed-closed conformations. Distinct residues
that are associated with closure of the VFD strongly con-
tribute to functional switching of ligands from antago-
nists to agonists (Bessis et al., 2002; Jingami et al., 2003;
Niswender and Conn, 2010), highlighting the important
role of these domains and their respective orientations for
receptor activation. Importantly, a number of conserved
residues interact directly with glutamate as well as diva-
lent cations, such as calcium or magnesium, which have
the ability to activate the receptor (Kubo et al., 1998;
Kunishima et al., 2000; Francesconi and Duvoisin, 2004).
Ligand binding results in conformational changes, origi-
nating from the VFD via cysteine-rich domains (CRDs) to
the heptahelical domain (HD)–C-terminal tail. Studies
using mutagenesis and crystallization have shown that
the CRD, which consists of nine cysteine residues, are
critical to ligand-induced signal transduction, in part via
a disulfide bridge formed between a cysteine in lobe 2 of
the VFD and the ninth CRD cysteine (Rondard et al.,
2006; Muto et al., 2007). Additionally, the second intracel-
lular loop of mGlu receptors regulate selectivity of G pro-
tein coupling (Pin et al., 1994; Gomeza et al., 1996) and
acts as an important regulatory site for kinases, like
G-protein-coupled receptor kinase 2 (Dhami et al., 2005).
Importantly, allosteric modulators of mGlu receptors
that bidirectionally alter glutamate activity largely bind
within the HD (Niswender and Conn, 2010). The
C-terminus region of mGlu receptors is important for

ABBREVIATIONS: AMN082, N,N’-dibenzhydrylethane-1,2-diamine dihydrochloride; BINA, potassium 30-([(2-cyclopentyl-6-7-dimethyl-1-
o xo-2,3-dihydro-1H-inden-5-yl)oxy]methyl)biphenyl l-4-carboxylate; CA1, cornu ammonis; Ca21, calcium; CNS, central nervous system;
CRD, cysteine-rich domain; CPCCOEt, (–)-ethyl (7E)-7-hydroxyimino-1,7a-dihydrocyclopropa[b]chromene-1a-carboxylate; DHPG, (S)-3,5-
dihydroxyphenylglycine; DOI, 2,5-dimethoxy-4-iodoamphetamine; EPM, elevated plus maze; EPS, extrapyramidal side effects; EPSC, excit-
atory postsynaptic current; FST, forced swim test; Gai/o, Gi/o alpha subunit; Gbg, protein beta/gamma; GRM, Glutamate Metabotropic
Receptor gene; HD, hepatahelical domain; KO, knockout; L-AP4, L-2-amino-4-phosphonobutyric acid; LTD, long-term depression; LTP,
long-term potentiation; MAPK, mitogen-activated protein kinase; mGlu, metabotropic glutamate; MK-801, dizocilpine; MPEP, 2-methyl-6-
(phenylethynyl)pyridine; mPFC, medial prefrontal cortex; MTEP, 3-((2-methyl-4-thiazolyl)ethynyl)pyridine; NAc, nucleus accumbens;
NAM, negative allosteric modulator; NMDA, N-methyl-d-aspartate; NMDAR, N-methyl-D-aspartate; PAM, positive allosteric modulator;
PCP, phencyclidine; PFC, prefrontal cortex; PHCCC, 7-hydroxyimino-N-phenyl-1,7 adihydrocyclopropa[b]chromene-1a-carboxamide; PPI,
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thermia; SST-IN, somatostatin-expressing interneurons; SUD, substance use disorder; VFD, Venus flytrap domain; VTA, ventral tegmental
area.
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modulating G protein coupling and undergo alterna-
tive splicing, modulatory protein-protein interactions,
and regulation by phosphorylation (Niswender and
Conn, 2010; Enz, 2012). In addition to interacting with
G-proteins, the C-terminal domains of mGlu receptor
subtypes directly interact with many proteins, includ-
ing enzymes, ion channels, receptors, scaffolds, and
cytoskeletal proteins (Enz, 2012).

2. Metabotropic Glutamate Receptor Signal Transduc-
tion. As detailed in Table 1, group I mGlu receptor sub-
types (mGlu1/5) are widely expressed in CNS neurons
(Maksymetz et al., 2017). mGlu1 and mGlu5 are prima-
rily expressed postsynaptically but are also located at pre-
synaptic terminals of GABA and glutamate neurons (Hig-
ley, 2014). Group I mGlu receptor subtypes canonically
couple to the G protein Gq/11 alpha subunit (Gaq/11) and
activate phospholipase C beta (b), which in turn results
in the hydrolysis of phosphotinositides and generation of
inositol 1,4,5-trisphosphate and diacyl-glycerol. This sig-
naling pathway promotes calcium mobilization and down-
stream activation of protein kinase C. Additionally, group
I mGlu receptor subtypes can also signal through alterna-
tive pathways including the G protein Gi/o alpha subunit
(Gai/o), Gs alpha subunit (Gas), and other molecules inde-
pendent of G proteins (Hermans and Challiss, 2001).
Group I mGlu receptors activate many downstream sig-
naling effectors, including phospholipase D, protein kinase

cascades like kinase 1, cyclin-dependent protein kinase 5,
mitogen-activated protein kinase (MAPK)/extracellular
receptor kinase, Jun kinase, and the mammalian target
of rapamycin/P70 S6 kinase (p70-S6) kinase pathways
(Page et al., 2006; Li et al., 2007). These signaling cas-
cades, such as mammalian target of rapamycin/p70 S6
kinase and MAPK/extracellular receptor kinase, are criti-
cal to synaptic plasticity mediated by group I mGlu recep-
tors. Additionally, group I mGlu receptors represent
promising therapeutic targets, based on their ability to
directly couple to NMDA receptors via intracellular sig-
naling pathways and scaffolding proteins, such as SRC
Homology 3 Domain (SH3), Homer, and multiple ankyrin
repeat domains protein, and guanylate kinase-associated
protein–postsynaptic density-95 (Aniksztejn et al., 1991;
Harvey and Collingridge, 1993; Yu et al., 1997) and their
subsequent capacity to activate NMDA receptors in acute
brain slices (Fitzjohn et al., 1996).
The group II mGlu receptors, mGlu2 and mGlu3, are

expressed presynaptically (Niswender and Conn, 2010) on
axonal preterminal regions where they can be activated by
excessive synaptic or astrocytic glutamate release (Nicoletti
et al., 2011; Maksymetz et al., 2017). mGlu3 is located post-
synaptically as well as on astrocytes where it promotes
neuroprotective effects (Nicoletti et al., 2011) and facilitates
astrocytic-neuronal communication (Winder and Conn,
1996; Winder et al., 1996). Group II mGlu receptor

TABLE 1
Summary of mGlu receptor subtype expression, signaling, and interacting partners

Group Receptor CNS Expression Synaptic Localization G protein Coupling
Primary Signaling

Pathways Interacting Partners

Group I mGlu1 Widespread in
neurons

Predominantly
postsynaptic

Primarily Gaq/11
noncanocial Gai/0,

Gas

PLCb ! IP3 1
DAG hydrolysis
phospholipase D

MAPK/ERK
mTOR/p70 S6

kinase

Activates NMDA
receptors

activates Ca21

channels (e.g.,
Cav2.1) activates

CaMKIIa
mGlu5 Widespread in

neurons
Group II mGlu2 Widespread in

neurons
Presynaptic and
postsynaptic

Primarily Gai/0 Inhibition of
adenylyl cyclase
MAPK/ERK IP3-

PI3 kinase

Activation of K1

channels
inhibition of
voltage-gated
Ca21 channels
(e.g., N- type)

mGlu3 Widespread in
neurons,
astrocytes

Group III mGlu4 Widespread in
neurons, high in

cerebellum

Predominantly
presynaptic

Primarily Gai/0
noncanocial Gaq/1

Inhibition of
adenylyl cylcase
MAPK/ERK IP3

(mGlu7)
stimulation of

cGMP
phosphodiesterase

(mGlu6)

Activation of K1

channels
inhibition of Ca21

channels (P/Q
subtype)

mGlu6 Retina, select
neuron

populations,
microglia

Postsynaptic in
retinal cells

mGlu7 Widespread in
neurons

Active zone of
presynaptic
terminals

mGlu8 Lower and more
restricted

expression than
mGlu4/7

Predominantly
presynaptic

caMKII-alpha, Calcium/calmodulin-dependent kinase II; cGMP, cyclic guanosine monophosphate; DAG, diacyl-glycerol; G protein i/o alpha subunit; G protein Gs
alpha subunit; G protein Gq alpha subunit; IP3, inositol 1,4,5-trisphosphate; MAPK/ERK, mitogen-activated protein kinase/extracellular receptor kinase; mTOR, mam-
malian target of rapamycin; PI3 kinase, phosphatidyl inositol 3-kinase; PLCb, phospholipase Cb; p70-S6 kinase, P70-S6; P/Q, P/Q-type calcium channel.
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subtypes predominantly couple to Gi/o proteins, which clas-
sically inhibit adenylyl cyclases and downstream produc-
tion of 30,50-cAMP. Group II mGlu receptors also directly
regulate ion channels, including potassium (K1) and cal-
cium (Ca21) channels, and other downstream signaling
components via G protein beta/gamma (Gbc) subunits (Nis-
wender and Conn, 2010). Additionally, group II mGlu
receptors can engage in a multitude of signal transduction
pathways, including activation of phosphatidyl inositol
3-kinase and MAPK pathways (Muguruza et al., 2016),
demonstrating the great complexity by which these recep-
tors regulate neuronal signaling and synaptic plasticity.
The group III mGlu receptors consist of mGlu4

(Tanabe et al., 1992), mGlu6 (Nakajima et al., 1993),
mGlu7 (Saugstad et al., 1994), and mGlu8 (Niswender
and Conn, 2010). mGlu6 receptors are largely expressed
in the retina, however, these receptors have also been
shown to be expressed in the CNS, including cortical
areas, superior colliculus, the accessory olfactory bulb,
and axons of the corpus callosum (Vardi et al., 2011;
Palazzo et al., 2020). Alternatively, other group III
mGlu receptors are largely expressed within the
CNS (Nakajima et al., 1993). Group III mGlu recep-
tors canonically signal via the Gai/o subunits of the
heterotrimeric G protein complex, resulting in inhi-
bition of adenylyl cyclase and cAMP production
(Niswender and Conn, 2010). Activation of group III
mGlu receptors can also regulate a variety of ion
channels and inhibition of vesicular fusion via Gbc
subunits (Cartmell and Schoepp, 2000). In addition
to canonical Gai/o-mediated downstream signaling,
group III mGlu receptors engage in a multitude of
other signal transduction cascades. For instance,
mGlu7 has been shown to selectively inhibit P/Q-type
(P/Q)-type Ca21 channels through a phospholipase C-
dependent mechanism resulting in subsequent Ca21

release from intracellular stores and diacyl-glycerol–-
mediated activation of protein kinase C (Perroy et al.,
2000). Furthermore, activation of mGlu4 results in
MAPK pathway signaling via Gbc subunits (Iacovelli
et al., 2004). Evidence suggests that the mGlu6 receptor
signals through Gao to a cyclic guanosine monophos-
phate-preferring phosphodiesterase (Shiells and Falk,
1990; Thoreson and Miller, 1994; Nawy, 1999).

B. Metabotropic Glutamate Receptor Regulation of
Neurotransmission and Synaptic Plasticity

mGlu receptors are distributed widely throughout
the CNS in a vast array of major brain regions and
are localized at discrete synaptic and extrasynaptic
sites in both neurons and glia. Based on their robust
CNS expression and diverse signal transduction
pathways, activation of mGlu receptors elicits a mul-
titude of outcomes on synaptic transmission and con-
tributes to many forms of synaptic plasticity (Crupi
et al., 2019). These activity-dependent modifications
of synaptic transmission are critical to learning and

memory, for example and thus, represent important
mechanisms underlying many neuropsychiatric dis-
orders, such as schizophrenia and substance use dis-
orders (SUDs). Here, we will briefly summarize
select functional roles of mGlu receptor subtypes in
neurotransmission and synaptic plasticity. In-depth
discussion of the vast array of physiological roles of
mGlu receptors has been presented in numerous
previous reviews (Benarroch, 2008; Niswender and
Conn, 2010; Mukherjee and Manahan-Vaughan, 2013;
Maksymetz et al., 2017). mGlu receptors expressed pre-
synaptically have the ability to increase or decrease neu-
rotransmitter release at excitatory (glutamate), inhibitory
(GABA), and neuromodulatory (i.e., monoamines, acetyl-
choline, peptides) synapses (Niswender and Conn, 2010).
In most cases, mGlu receptor-mediated regulation of neu-
rotransmitter release is mediated by mGlu receptors
that are localized presynaptically; however, this can
also occur via postsynaptic mGlu receptors and
release of retrograde messengers, such as endocan-
nabinoids (Yohn et al., 2020). mGlu receptor-medi-
ated neuromodulation, in turn, has a wide array of
downstream effects on neuronal activity and firing.
For example, mGlu receptor-mediated inhibition of
GABA transmission in the cerebellum results in a
local reduction in inhibition, enhancing the efficacy
of the more active fibers and accentuating the con-
trast between inputs with differential firing rates
(Mitchell and Silver, 2000).

1. Group I: Metabotropic Glutamate1/5. Group I
mGlu receptors, which include mGlu1 and mGlu5, are
heterogeneously expressed throughout the brain, with
high levels in regions critical to cognition, reinforce-
ment learning, and motivation, such as the nucleus
accumbens (NAc), hippocampus, medial prefrontal cor-
tex (mPFC), and thalamus (Cleva and Olive, 2012).
Further studies have revealed that the vast majority
of mGlu1 and mGlu5 receptors are located postsynapti-
cally on dendritic spines (Olive, 2009) and on axon ter-
minals in brain regions, such as the hippocampus
(Romano et al., 1995) and cerebral cortex (Muly et al.,
2003; Paquet and Smith, 2003). Additionally, group I
mGlu receptors in globus pallidus of nonhuman pri-
mates are found in the main body of symmetric synap-
tic junctions established by striatal GABA terminals as
well as perisynaptic to asymmetric glutamatergic syn-
apses (Hanson and Smith, 1999). Their activation leads
to cell depolarization and increases in neuronal excit-
ability (Niswender and Conn, 2010). Group I mGlu
receptor-mediated modulation of neuronal excitability is
driven by regulation of numerous ion channels, which
enable fine-tuning of neuronal excitability (Conn and
Pin, 1997; Anwyl, 1999; Coutinho and Kn€opfel, 2002;
Valenti et al., 2002).
Activation of group I mGlu receptor subtypes leads

to alterations in excitability and spontaneous synaptic
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transmission in the mPFC and cornu ammonis (CA1)
region of the hippocampus, among other brain regions
(Zho et al., 2002; Yin and Niswender, 2014; Turner
et al., 2018; Maksymetz et al., 2021). For example,
activation of group I mGlu receptors by selective
orthosteric agonists, such as (S)-3,5-dihydroxyphenyl-
glycine (DHPG), results in direct excitatory effects on
CA1 pyramidal cells, including increased cell firing
and depolarization (Charpak et al., 1990; Desai and
Conn, 1991; Pedarzani and Storm, 1993; Davies et al.,
1995; Gereau and Conn, 1995; Mannaioni et al., 1999).
These downstream effects are mediated by inhibition
of K1 currents and activation of both Ca21-dependent
and independent conductance (Cr�epel et al., 1994;
Gu�erineau et al., 1995). Additionally, recent studies
have directly demonstrated for the first time that acti-
vation of mGlu1 increases inhibitory transmission in
the mPFC by excitation of somatostatin-expressing
interneurons (SST-INs) (Maksymetz et al., 2021).
Extensive evidence also supports the role of mGlu1 and
mGlu5 receptor subtypes in numerous forms of long-
term synaptic plasticity, including long-term depression
(LTD) and long-term potentiation (LTP) of transmis-
sion. At excitatory synapses in hippocampal CA1, acti-
vation of mGlu1/5 and subsequent Ca21 mobilization
has been shown to induce LTP, a modality of synaptic
plasticity thought to underlie learning and memory, at
numerous glutamatergic synapses (Bashir et al., 1993;
Frenguelli et al., 1993; Petrozzino and Connor, 1994;
Balschun et al., 1999; Chevaleyre and Castillo, 2003;
Gladding et al., 2009). However, there are mixed
reports regarding the role of mGlu5 in N-methyl-D-
aspartate receptor (NMDAR)-dependent LTP (Fitzjohn
et al., 1996, 1998; Lu et al., 1997; Francesconi and
Duvoisin, 2004; Bortolotto et al., 2005; Neyman and
Manahan-Vaughan, 2008). Several studies have also
revealed that mGlu1 and mGlu5 subtypes regulate LTP
in hippocampal SST-INs (McBain et al., 1994; Perez
et al., 2001; Le Duigou and Kullmann, 2011; Pelkey
et al., 2017). There is evidence for the role of group I
mGlu receptors in regulation of LTP extrahippocampal
brain regions. For instance, it has been reported that
application of DHPG facilitated LTP of the evoked
excitatory postsynaptic currents (EPSCs) in SST-INs of
the prefrontal cortex (PFC) (Crowley and Joffe, 2021).
Furthermore, a wealth of studies has shown that acti-
vation of group I mGlu receptors induces a LTD of syn-
aptic transmission in rat hippocampal CA1 (Palmer
et al., 1997; Chevaleyre and Castillo, 2003; Tan et al.,
2003; Gladding et al., 2009) and dentate gyrus (O’Mara
et al., 1995; Camodeca et al., 1999) among other brain
regions (Kano and Kato, 1987; Kato, 1993; Conquet
et al., 1994; Wang et al., 2015).
The development of mouse models with selective

deletion of group I mGlu receptors have corroborated
these findings. For instance, electrophysiological

recordings from mGlu1
–/– mice show that these ani-

mals display impaired hippocampal LTP, which corre-
lates with impairments in context-specific learning
and impaired LTD in the cerebellum (Aiba et al.,
1994a,b; Gil-Sanz et al., 2008). A wealth of studies
using constitutive knockout models further confirmed
the role of mGlu5 in hippocampal LTP (Bashir et al.,
1993; Lu et al., 1997). Using genetic deletion or phar-
macological inhibition, it has been demonstrated that
mGlu5 reduces LTP at Shaffer collateral (SC)-CA1
synapses of the hippocampus in freely moving rats
and ex vivo slice preparations (Lu et al., 1997; Fran-
cesconi et al., 2004; Shalin et al., 2006). In addition,
LTP induction can be primed by DHPG (Cohen et al.,
1998; Raymond et al., 2000), and multiple mGlu5 posi-
tive allosteric modulators (PAMs) can induce LTP at
SC-CA1 synapses (Ayala et al., 2009; Noetzel et al.,
2013; Rook et al., 2015). More recently, studies using
conditional knockout of Glutamate Metabotropic
Receptor 5 gene (GRM5) in hippocampal CA1 pyrami-
dal cells showed that loss of mGlu5 in this cellular
population impaired LTD of inhibitory synapses com-
pared with wild-type control mice (Xu et al., 2014),
suggesting a specific role of mGlu5 in hippocampal
CA1 pyramidal cells in metaplasticity by regulating
inhibition. These findings are of particular importance as
hippocampal LTP is known to be altered in models that
recapitulate the physiologic and behavioral phenotypes
associated with neuropsychriatic diseases, including
schizophrenia. For example, subchronic phencyclidine
(PCP) treatment in mice increases the threshold for LTP
of CA1 excitatory synapses, and this effect is directly
related to enhanced inhibitory input to CA1 pyramidal
cells through increased activity of GABAergic neurons
(Nomura et al., 2016). Therefore, the contributions of
group I mGlu receptors in regulating LTP at excitatory
synapses is critical for our understanding of the patho-
physiology of neuropsychiatric diseases and development
of novel treatments.

2. Group II: Metabotropic Glutamate2/3. The group
II mGlu receptor subtypes, mGlu2 and mGlu3, are
expressed throughout the CNS, notably in brain
regions central to motivation, learning, and memory
(Moussawi and Kalivas, 2010; Muguruza et al., 2016).
In some instances, they modulate synaptic transmis-
sion and alter neuroplasticity by acting at preterminal
regions away from the active zone of on glutamatergic
or GABAergic synapses (Nicoletti et al., 2011). mGlu2/3

receptors located on the presynaptic membrane can be
activated by substantial synaptic or astrocytic gluta-
mate release (Muguruza et al., 2016; Maksymetz et al.,
2017). Additionally, further evidence supports the exis-
tence of mGlu2 and mGlu3 expressed postsynaptically
(Muguruza et al., 2016).
At many synapses, mGlu2/3 receptor activation decreases

spontaneous excitatory transmission (Marek et al., 2000;
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Kiritoshi and Neugebauer, 2015; Bocchio et al., 2019).
Studies have shown that group II mGlu receptor agonist
LY 354740 decreases frequency, but not amplitude, of min-
iature EPSCs in the presence of tetrodotoxin, which sug-
gests that the site of action is primarily presynaptic on the
glutamatergic terminals (Han et al., 2006; Kiritoshi and
Neugebauer, 2015). In the infralimbic mPFC, electrophysi-
ology experiments in rat brain slices showed that group II
mGlu receptor subtypes decrease the output of layer V
pyramidal cells as the result of an inhibitory action on glu-
tamatergic synapses (Kiritoshi and Neugebauer, 2015;
Thompson and Neugebauer, 2017). More specifically,
LY379268, a selective group II mGlu receptor agonist,
regulates activity of pyramidal cells by modulating
glutamate-driven feedforward inhibitory transmission
(inhibitory postsynaptic currents) in addition to direct
EPSCs. In addition to regulation of neurotransmitter
release and short-term plasticity, group II mGlu recep-
tors play important roles in long-term synaptic plasticity,
which underlies many cognitive and behavioral pro-
cesses disrupted in neuropsychiatric disease. Activation
of either mGlu2 or mGlu3 receptor subtypes induces a
robust, postsynaptic LTD of evoked synaptic responses
in the PFC. Interestingly, mGlu2 and mGlu3 receptors
induce LTD by divergent presynaptic and postsynaptic
mechanisms, respectively (Walker et al., 2015; Joffe
et al., 2019a,b). At mossy fiber pyramidal cell synapses,
prolonged low-frequency stimulation results in a presyn-
aptic form of LTD that is absent in mGlu2-deficient mice
and blocked by a nonselective group II antagonist.
At this synapse, the activation of mGlu2 induces LTD
selectively when it is coupled to a synaptically-driven
increase in presynaptic Ca21. Additionally, mossy fiber
LTP is reversible by low-frequency stimulation via the
activation of group II mGlu receptors (Chen et al., 2001).
Finally, exciting recent reports have demonstrated that
activation of mGlu3 induces metaplastic changes, biasing
stimulation of afferents to induce LTP through an
mGlu5 receptor-dependent, endocannabinoid-mediated
mechanism of action (Dogra et al., 2021). In this same
study, targeted genetic deletion of mGlu3 from hippo-
campal pyramidal cells prevented the LTP-inducing
effects of mGlu3 activation, revealing a novel avenue by
which mGlu3 regulates long-term hippocampal synaptic
plasticity.

3. Group III: Metabotropic Glutamate4/6/7/8. Group
III mGlu receptors are differentially expressed in the
CNS and peripheral nervous system. mGlu4 and
mGlu8 subtypes are expressed in the brain but in a
restricted manner (Pilc et al., 2008; Julio-Pieper
et al., 2011). Although mGlu4 is primarily found in
the cerebellum (Kinoshita et al., 1996b; Shigemoto
et al., 1997), expression has also been reported in the
cerebral cortex, striatum, olfactory bulb, pontine
nuclei, lateral septum, hippocampus, thalamic nuclei,
and dorsal horn (Fotuhi et al., 1994; Azkue et al.,

2001). Within the CNS, mGlu8 is found presynapti-
cally in the hippocampus, cerebellum, olfactory bulb,
and cortical areas (Ferraguti and Shigemoto, 2006).
Although mGlu7 is expressed widely throughout the
brain, mGlu6 only exhibits limited expression in the
retina (Crupi et al., 2019). mGlu7 expression has been
reported in the amygdala, hypothalamus, hippocam-
pus, thalamus, and locus coeruleus (Ngomba et al.,
2011). Similar to group II mGlu receptors, group III
mGlu receptor subtypes are most commonly located
in or near presynaptic active zones of GABAergic and
glutamatergic neuronal cells (Shigemoto et al., 1997;
Ferraguti and Shigemoto, 2006). Activation of group
III mGlu receptors inhibits the release of neurotrans-
mitters, such as glutamate, GABA, and dopamine, via
modulation of a variety of ion channels and Gbc subu-
nit-dependent inhibition of vesicular fusion (Cartmell
and Schoepp, 2000).
Until recent advances in group III mGlu receptor

subtype-selective pharmacological compounds, most of
the research pertaining to group III mGlu receptors
used the broad-spectrum agonist, L-2-amino-4-phospho-
nobutyric acid (L-AP4). A multitude of studies have
shown that L-AP4 reduces excitatory transmission in
numerous brain regions, including the hippocampus,
amygdala, striatum, globus pallidus, thalamus, hypo-
thalamus, cerebellum, NAc, and substantia nigra (Mer-
cier and Lodge, 2014). Application of L-AP4 typically
increases paired-pulse ratio (Harris and Cotman, 1983;
Manzoni et al., 1997; Lorez et al., 2003), and its applica-
tion has also been shown to reduce the frequency, but
not the amplitude, of miniature excitatory postsynaptic
events (Harris and Cotman, 1983; Gereau and Conn,
1995; Manzoni et al., 1997; Schoppa and Westbrook,
1997; Schrader and Tasker, 1997), both of which indi-
cate the role of group III mGlu receptors as presynaptic
autoreceptors in the CNS. Group III mGlu receptors
are also involved in the regulation of GABA and mono-
amine neurotransmission (Cartmell and Schoepp, 2000;
Schoepp, 2001). In addition to its ability to regulate glu-
tamate release, L-AP4 has been found to reduce inhibi-
tory transmission in many brain regions, including the
midbrain, globus pallidus, striatum, thalamus, and
hippocampus (Mercier and Lodge, 2014). Importantly,
hippocampal electrophysiological studies bolstered evi-
dence for the localization of group III mGlu receptors
on both glutamate and GABA terminals, such that
L-AP4 has reduced both excitatory and inhibitory
transmission onto hippocampal interneurons and pyra-
midal cells (Semyanov and Kullmann, 2000; Kogo
et al., 2004; Klar et al., 2015). The critical role of group
III mGlu receptors on interneurons highlights their
utility in regulating the balance of excitation and
inhibition of these cells, thus regulating overall net-
work excitability (Ferraguti and Shigemoto, 2006; Klar
et al., 2015).
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A multitude of studies have leveraged selective
pharmacological tools and transgenic knockout lines
to determine the roles of group III mGlu receptors in
long-term synaptic plasticity. For instance, applica-
tion of a-Cyclopropyl-4-phosphonophenylglycine
(CPPG), the group III mGlu receptor antagonist, pre-
vents LTD, but not LTP, in the CA1 region of mice
(Altinbilek and Manahan-Vaughan, 2007). However,
the development of selective pharmacological and
genetic tools has provided additional insight to the
role of Group III mGlu receptor subtypes in long-term
synaptic plasticity. A recent study shows that inhibi-
tion of group III mGlu receptors elicit an NMDA
receptor-dependent LTP in SC-CA2 synapses (Das-
gupta et al., 2020). Further, disinhibition produced by
activation of mGlu7 induces LTP at SC-CA1 synapses
in the hippocampus (Klar et al., 2015). Interestingly,
one study using mGlu4 knockout mice found enhanced
LTP in hippocampal CA1 region but not in the PFC
compared with wild-type controls (Iscru et al., 2013).
Other studies have shown that mGlu receptor-depen-
dent LTD can be induced after activation of mGlu7

(Bellone et al., 2008). Together, these demonstrate crit-
ical roles of group III mGlu receptor subtypes in regu-
lating various forms of long-term synaptic plasticity in
brain regions and circuits dysregulated in neuropsychi-
atric disease.

II. Targeting Metabotropic Glutamate
Receptors for the Treatment of

Neuropsychiatric Disease

A. Metabotropic Glutamate Receptor Allosteric
Modulators

The vast diversity and distribution of mGlu recep-
tors provides an unparalleled opportunity for selective
targeting of individual mGlu receptor subtypes as
novel treatment strategies for neuropsychiatric and
neurologic disorders. However, longstanding efforts to
develop ligands that target mGlu receptors have
largely focused on agonists and antagonists that
interact with the orthosteric glutamate binding sites
of these receptors to mimic or block the endogenous
actions of glutamate. Although this strategy has
proven to be somewhat fruitful, the high conservation
of orthosteric binding sites across receptor subtypes
has served as a critical barrier to the development of
subtype-selective orthosteric ligands. To address this
issue, recent efforts have been focused on developing
allosteric modulators for mGlu receptor subtypes.
Allosteric modulators act by altering the receptor con-
formational state by binding a topographically dis-
tinct nonorthosteric site, typically found within the
HD of mGlu receptors (Wu et al., 2014). Thus, alloste-
ric modulators potentiate or attenuate the response to
the endogenous orthosteric ligand (i.e., glutamate for

mGlu receptors) without activating the receptor directly.
Allosteric modulators can be categorized based on the
direction that they modulate the response to the orthos-
teric agonist. For instance, allosteric modulators that
increase the functional response to an orthosteric agonist
are referred to as “positive allosteric modulators.” In con-
trast, those that attenuate the functional response to the
orthosteric agonist are coined “negative allosteric modu-
lators” (NAMs). If a compound binds to an orthosteric
site without inducing effects on the response of the
receptor, it is called a “neutral allosteric ligand” (Conn
et al., 2009). In functional assays, such as those that
measure calcium mobilization or downstream signaling
(e.g., cAMP accumulation), the presence of a PAM often
induces a leftward shift of the agonist concentration–
response curve, whereas a NAM decreases the maximal
effect of the response. In addition to this modulatory
activity, a subset of allosteric modulators possesses intrin-
sic activity and can both potentiate agonist responses and
directly activate the receptor (ago-PAMs). In sum, alloste-
ric modulators display a number of the following pharma-
cological properties: 1) efficacy modulation, the signaling
capacity (or “intrinsic efficacy”) of an orthosteric agent can
be modified via alterations in intracellular responses; 2)
affinity modulation, the conformational change induced
by binding of the allosteric ligand alters the binding
pocket and association/dissociation rates of orthosteric
ligands; and 3) agonism/inverse agonism, receptor signal-
ing is altered either positively (agonism) or negatively
(inverse agonism) by the allosteric modulator, irrespective
of the presence or absence of an orthosteric ligand.

B. Advantages of Metabotropic Glutamate Allosteric
Modulators

Allosteric modulators provide several advantages
as potential pharmacotherapies and experimental
tools in comparison with orthosteric ligands. For
example, orthosteric ligand binding sites often pos-
sess a high degree of sequence homology, which pre-
sents a challenge for the development of receptor
subtype-specific ligands. In contrast, allosteric ligand
binding sites are often less highly conserved than
orthosteric sites, allowing for the development of
highly selective allosteric modulators for receptor sub-
types that, formerly, have been intractable using tra-
ditional approaches (Conn et al., 2009; Nussinov
et al., 2011). Additionally, differential receptor cooper-
ativity serves as a means of subtype selectivity. The
cooperativity between orthosteric and allosteric sites
is not correlated with the affinity of allosteric modula-
tors for their binding sites, and, thus, allows some
allosteric modulators to bind to more than one recep-
tor subtype with similar affinities but elicit effects
through distinct cooperativity between receptor sub-
types (Boehr et al., 2009; Tsai et al., 2009).
One shortcoming of orthosteric agonists targeting

mGlu receptors is the risk of receptor overactivation,
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which can disrupt brain circuit modulation and result
in adverse side effects (Sendt et al., 2012; Rook et al.,
2013). This challenge is more effectively circumvented
by allosteric modulators with their ability to fine-tune
active synapses versus nonphysiological activation of
synapses that display low glutamatergic tone. This
allows for regulation of receptor responses in brain
areas where the endogenous agonist exerts its physio-
logic effect, reducing the risk for off target or over-
activation. For instance, mGlu5 agonists can induce
epileptic seizure activity (Tizzano et al., 1995) This
effect is also observed with allosteric agonists but is
mitigated by administration of mGlu5 PAMs that lack
agonist activity (Rook et al., 2015; Gould et al., 2016).
This requirement for the presence of the endogenous
agonist provides spatial and temporal control of allo-
steric modulators and provide a sizable therapeutic
edge by allowing for physiologically appropriate mod-
ulation of synaptic signaling and transmission.
In addition to serving as novel treatment strategies,

these ligands are essential to driving fundamental
investigation into the roles of specific signaling path-
ways and distinct receptors in modulating identified
neural circuits and behavior under physiologic and
pathologic conditions. Allosteric modulators of mGlu
receptor subtypes are now being pursued as potential
drug candidates for numerous neuropsychiatric dis-
eases, including Alzheimer’s disease, Parkinson’s dis-
ease, dystonia, schizophrenia, SUDs, and other brain
diseases (Conn et al., 2009; O’Brien and Conn, 2016;
Foster and Conn, 2017; Maksymetz et al., 2017; Joffe
and Conn, 2019; Stansley and Conn, 2019). The pre-
sent review will summarize the current findings on
the efficacy of mGlu receptor subtype PAMs/NAMs for
the treatment of neuropsychiatric diseases, with par-
ticular focus on schizophrenia and SUDs.

III. Potential of Allosteric Modulators of
Metabotropic Glutamate Receptors for Treating

Neuropsychiatric Disease

A. Schizophrenia

Schizophrenia is a chronic neuropsychiatric disorder
that affects approximately 1% of the world population
(GBD 2019 Diseases and Injuries Collaborators, 2020).
The disease is characterized by three primary clusters
of symptoms: positive (auditory/visual hallucinations),
negative (amotivation, anhedonia, social withdrawal),
and cognitive deficits (working memory, executive
function, attention). Current antipsychotic medications
effectively treat the positive symptoms of the disease,
such as auditory and visual hallucinations, disorga-
nized thoughts, and delusions; however, they do not
improve the negative or cognitive symptoms. Negative
symptoms (e.g., flattened affect, social withdrawal) and
cognitive symptoms (e.g., deficits in attention, working

memory, and cognitive flexibility) are believed to be
the best predictors of long-term treatment outcome
(Green, 1996; Bobes et al., 2007; McEvoy, 2007). Fur-
thermore, many patients discontinue treatment due to
adverse effects, such as extrapyramidal side effects
(EPS) (i.e., tardive dyskinesia, tremor, dystonia, and
bradykinesia) induced by typical antipsychotics as well
as a host of metabolic side effects (i.e., weight gain,
hyperlipidosis, and type II diabetes) elicited most com-
monly by atypical antipsychotics (Lieberman et al.,
2005; Meltzer, 2013; Lally and MacCabe, 2015). There-
fore, development of improved therapeutic options that
mitigate a broader range of symptoms of schizophrenia
and are devoid of EPS is of great need.
Our current understanding of the neurochemical

alterations driving the symptoms associated with
schizophrenia is largely attributed to two major lines
of research that are driven by the dopamine and glu-
tamate hypotheses of schizophrenia-related dysfunc-
tion (Howes et al., 2015; McCutcheon et al., 2019).
The dopamine hypothesis posits that the positive
symptoms of the disease are largely driven by aber-
rant dopamine signaling. This notion is supported by
evidence that amphetamine and other dopamine-releas-
ing agents induce symptoms that resemble those of the
positive symptoms of schizophrenia (Steeds et al., 2015;
Kesby et al., 2018). Further, currently available antipsy-
chotic medications largely target the dopamine system
and act, in part, by inhibiting dopamine D2 subtype of
dopamine receptors (Meltzer, 2013). In support of this
model, in vivo neuroimaging studies show increased
subcortical dopamine release after amphetamine chal-
lenge in individuals with schizophrenia (Laruelle et al.,
1996; Breier et al., 1997; Abi-Dargham et al., 1998).
However, since amphetamine exposure exacerbates only
the positive symptoms of schizophrenia and dopamine-
targeting antipsychotic medications only alleviate posi-
tive symptoms, dopaminergic hyperactivity alone can-
not account for the negative symptoms or cognitive
disturbances observed in patients with schizophrenia
(Carlsson, 1988).
Another prominent line of research suggests that

disruption of glutamate signaling underlies num-
erous symptoms of schizophrenia. This notion is
derived from extensive evidence that NMDA antago-
nists, such as PCP, ketamine and dizocilpine (MK-
801), induce symptoms closely resembling those of
schizophrenia (Javitt and Zukin, 1991). In addition,
administration of NMDAR antagonists exacerbates or
induces controlled symptoms when administered to
schizophrenia patients (Krystal et al., 1994). These
findings, in addition to a wealth of preclinical evi-
dence, support the hypothesis that NMDAR hypofunc-
tion contributes to the pathophysiology underlying
schizophrenia. Thus, pharmacological agents that
enhance NMDAR function represent a potential
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strategy that could provide therapeutic benefits to
patients with schizophrenia. However, a primary
obstacle is that overactivation of NMDARs using tra-
ditional orthosteric agonists induces adverse effects,
such as excitotoxicity and seizures (Zeron et al., 2002;
Kaufman et al., 2012; Monaghan et al., 2012; Puddi-
foot et al., 2012). Importantly, mGlu receptors are
critical modulators of NMDAR function and regulate
glutamate and GABA neurotransmission throughout
the CNS (Niswender and Conn, 2010; Maksymetz
et al., 2017). Therefore, pharmacological modulation
of mGlu receptors holds the potential to alter
NMDAR function and restore excitatory and inhibi-
tory neurotransmission to provide therapeutic benefit
in patients with schizophrenia. To this end, allosteric
modulators targeting all three groups of mGlu recep-
tors have been pursued as putative targets for novel
antipsychotics (Tables 2–4).

I. Group I: Metabotropic Glutamate1/5. The mGlu1

receptor subtype shows promise as a potential thera-
peutic target for treating schizophrenia. Genetic stud-
ies in humans reveal an association of the human
gene encoding mGlu1 (GRM1) and, specifically, loss of
function single nucleotide polymorphisms in GRM1

with schizophrenia, raising the possibility that mGlu1

signaling is critical to the function of brain circuits
underlying symptoms associated with this disorder
(Ayalew et al., 2012; Ayoub et al., 2012; Cho et al.,
2014). Numerous studies have characterized the piv-
otal role of mGlu1 in regulating GABA and glutamate
signaling in the PFC as well as striatal dopamine
dynamics. The development of mGlu1 PAMs and
transgenic mouse lines have allowed for these discov-
eries. Potent first-generation mGlu1 PAMs were
developed in the early 2000s; however, they displayed
poor pharmacokinetic and metabolic profiles, limiting
their use in preclinical studies (Knoflach et al., 2001;
Vieira et al., 2005). More recent efforts yielded mGlu1
PAMs, such as VU 6000799, VU6000790, and
VU6004909 as potent, highly selective mGlu1 PAMs with
improved drug metabolism and pharmacokinetic
(DMPK) properties and brain penetrance and are there-
fore better suited for in vivo studies (Garcia-Barrantes
et al., 2015, 2016a,b,c). Recent studies have leveraged
these improved mGlu1 PAMs and have yielded promising
results. For instance, Yohn et al., showed that activation
of mGlu1 negatively regulates striatal dopamine release
through an intricate mechanism involving coactivation of

TABLE 2
Summary of preclinical efficacy of group I mGlu receptor allosteric modulators in schizophrenia-related deficits

Receptor Type Compound
Positive Symptom

Models
Negative Symptoms

Models Cognitive Models References

mGlu1 PAM VU0483605 No effect on AHL Cho et al., 2014
VU6004909 Attenuates AMPH-

induced
hyperlocomotion and
disruptions in PPI

No effect on PR Yohn et al., 2020

NAM FTIDC Attenuates MHL and
PPI deficits

Satow et al., 2009

CFMTI Reduced MHL and
NMDAR antagonist-

induced
hyperlocomotion
(NMDAR-HL)

Ameliorated METH
and ketamine-
disrupted PPI

Reversal of MK-801-
disrupted social

interaction

No effect on object
location memory

Satow et al., 2008

mGlu5 PAM CDPPB Attenuated AMPH-
induced

hyperlocomotion and
deficits in PPIa,b

Attenuated MK-801-
induced decrease in
sucrose preferencec

"Morris water maze
learningd

#MK-801 deficits in
cognitive flexibilitye
#PCP deficits in

NORf

(See footnotes.)

5PAM523 Reduced AHLg,h and
NMDAR-HLh

"Contextual CF2

"NORh
(See footnotes.)

VU0409551 Reverses MK-801-
induced

hyperlocomotion

"Working memory/
executive function in
the DNMTP task
"contextual CF

deficits in SR�/� mice

Rook et al., 2015

AHL, amphetamine-induced hyperlocomotion; AMPH, amphetamine; CF, fear conditioning; DNMTP, delayed nonmatching to position; HL, hyperlocomotion; METH,
methamphetamine; MHL, METH-induced hyperlocomotion; NOR, novel object recognition; SR, serine racemase-deficient.

aKinney et al., 2003.
bLindsley et al., 2005.
cVardigan et al., 2010.
dAyala et al., 2009.
eStefani and Moghaddam, 2010.
fHorio et al., 2013.
gParmentier-Batteur et al., 2014.
hRook et al., 2015.
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muscarinic acetylcholine subtype 4 (M4) receptors and
retrograde endocannabinoid signaling (Yohn et al., 2020).
Additionally, a recent study has characterized the critical
role of mGlu1 receptors located on SST-INs of the prelim-
bic PFC in regulating inhibitory output onto glutamater-
gic pyramidal cells, highlighting mGlu1 as a critical
determinant of inhibitory/excitatory balance in the PFC
(Maksymetz et al., 2021). The ability to normalize both
dopamine and GABA dysfunction highlights mGlu1 as a
promising target to comprehensively treat symptomol-
ogy associated with schizophrenia. Importantly, mGlu1

PAMs show robust antipsychotic-like efficacy in rodent
models. Specifically, the mGlu1 PAM VU6004909 reverses
amphetamine-induced hyperlocomotion and deficits in
prepulse inhibition (PPI) induced by amphetamine treat-
ment (Yohn et al., 2020). Furthermore, mGu1 PAMs show
promising cognitive-restoring effects in rodent models. A
recent study demonstrates that mGlu1 PAM VU6004909

reverses deficits in spatial working memory induced by
NMDAR antagonist, MK-801 (Maksymetz et al., 2021).
In addition to the potential of mGlu1 PAMs in treating
schizophrenia, mGlu1 NAMs 4-[1-(2-fluoropyridin-3-yl)-5-
methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-
3,6-dihydropyridine-1(2H)-carboxamide (FTIDC) and
2-cyclopropyl-5-[1-(2-fluoro-3-pyridinyl)-5-methyl-1H-1,2,3-
triazol-4-yl]-2,3-dihydro-1H-isoindol-1-one (CFMTI) have
displayed efficacy in animal models of antipsychotic activ-
ity (Table 2), such as decreasing NMDAR antagonist and
psychostimulant-induced hyperlocomotion and deficits in
PPI as well as reversing social interaction deficits elicited
by MK-801, an NMDAR antagonist, in rats (Satow et al.,
2008, 2009). The contrasting findings of mGlu1 PAMs and
NAMs illustrate the potential complexity of mGlu1-target-
ing ligands and suggest that mGlu1 PAMs may primarily
be effective in patients carrying GRM1 mutations. Consid-
ering these exciting findings, continued interrogation is

TABLE 3
Summary of preclinical efficacy of group II mGlu receptor allosteric modulators in schizophrenia-related deficits

Receptor Type Compound
Positive Symptom

Models
Negative Symptoms

Models Cognitive Models References

mGlu2 PAM LY487379 Reduced NMDAR-HL
and AHL;a

attenuated AMPH
but not PCP-
disrupted PPIa

Reduced PCP-
induced deficits in
social interactionb

Promoted cognitive
flexibility in ASSTc

(See footnotes.)

BINA Reduced NMDAR-
HL;d,f no effect on

AHL;d reduced PCP-
disrupted PPI;d
reduced DOB-
induced head
twitchese

Reduced MK-801-
induced increased
immobility in the

FSTf

(See footnotes.)

TASP0443294 Reduced MHLg and
NMDAR-HLh

Rescued MK-801-
induced social

memory deficitsg

(See footnotes.)

JNJ-40411813/
ADX71149

Reduced NMDAR-
HL; no effect on
AHL; inhibited

DOM-induced head
twitches

Lavreysen et al.,
2015

SAR 218645 No effect on
NMDAR-HL or AHL;

no effect on
hyperactivity in

DAT�/� and NR1neo
�/� mice; reduced
DOI-induced head

twitches

Reversed MK-801-
induced deficits in
NOR; attenuated
working memory
deficits in Y-maze
test in NR1neo�/�

mice

Griebel et al.,
2016

mGlu3 NAM VU0477950 Dose-dependent
impairment in

extinction learning

Walker et al.,
2015

VU0650786 Blocked the ability of
mGlu2/3 agonists to
restore trace fear
conditioning after

PCP administration

Dogra et al., 2021

AHL, amphetamine-induced hyperlocomotion; AMPH, amphetamine; ASST, attentional set-shift task; DAT, dopamine transporter; DOB, dimethoxy-bromoamphet-
amine; HL, hyperlocomotion; METH, methamphetamine; MHL, METH-induced hyperlocomotion; NOR, novel object recognition; NR1neo, NR1 subunit reduced
expression.

aGalici et al., 2005.
bHarich et al., 2007.
cNikiforuk et al., 2010.
dGalici et al., 2006.
eBenneyworth et al., 2007.
fKawaura et al., 2016.
gHikichi et al., 2015.
hLavreysen et al., 2015.
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required to determine the efficacy of mGlu1 PAMs and
NAMs in nonhuman primate and clinical studies.
mGlu5 also represents an exciting target for the

treatment of schizophrenia and improving cognitive
function in multiple brain disorders (Foster and Conn,
2017; Nicoletti et al., 2019). Extensive research sup-
ports a bidirectional interaction between mGlu5 and
NMDARs, such that activation of mGlu5 receptors
facilitates NMDAR function (Doherty et al., 1997; Ugo-
lini et al., 1999; Awad et al., 2000; Attucci et al., 2001;
Mannaioni et al., 2001; Pisani et al., 2001), whereas
activation of NMDARs amplifies mGlu5 receptor activ-
ity by restraining receptor desensitization (Alagarsamy
et al., 2005). These observations serve as a foundation
for the development of mGlu5 PAMs for the treatment
of schizophrenia. A number of mGlu5 PAMs have dem-
onstrated efficacy in rodent models used to predict
antipsychotic efficacy and the treatment of cognitive
disturbances (Kinney et al., 2003; Lecourtier et al.,
2007; Liu et al., 2008; Conn et al., 2009; Stefani and
Moghaddam, 2010; Vardigan et al., 2010; Gastambide
et al., 2013; Horio et al., 2013; Nicoletti et al., 2019).
However, one caveat of mGlu5 PAMs includes excito-
toxicity mediated by the enhanced NMDAR activity,
as high doses of mGlu5 receptor PAMs have been
shown to induce seizures and neurotoxicity in rodents
(Parmentier-Batteur et al., 2014; Rook et al., 2015;
Conde-Ceide et al., 2016). To circumvent these adverse
side effects, biased mGlu5 receptor PAMs have been

developed to amplify receptor function without recruit-
ing NMDA receptors (Rook et al., 2013, 2015). Interest-
ingly, these biased mGlu5 PAMs have robust efficacy in
animal models without potentiating NMDA receptor
signaling (Rook et al., 2015; Gould et al., 2016), sug-
gesting that efficacy of these compounds is not medi-
ated by potentiation of NMDA receptor currents. Thus,
leveraging this biased mGlu5 PAM, VU0409551, Rook
et al. have shown antipsychotic-like activity and pre-
cognitive efficacy without activating NMDA receptors
and without inducing the adverse effects of nonbiased
mGlu5 PAMs (Rook et al., 2015).

II. Group II: Metabotropic Glutamate2/3. Based on
evidence that activation of group II mGlu receptor
subtypes, mGlu2 and mGlu3, produce robust antipsy-
chotic-like effects in preclinical models (Chaki et al.,
2004; Pilc et al., 2008; Conn et al., 2009; Dhanya
et al., 2014; Muguruza et al., 2016), longstanding
efforts have been aimed at optimizing mGlu2 and
mGlu3 agonists for the treatment of schizophrenia.
Despite group II mGlu receptor agonists showing effi-
cacy in improving positive and negative symptoms in
an initial phase II trial (Patil et al., 2007), larger clinical
studies did not demonstrate significant efficacy of these
compounds compared with placebo (Kinon et al., 2011).
The development of highly selective allosteric modulators
of mGlu2 and mGlu3 have allowed for delineation of the
role of these receptor subtypes in the physiologic and
behavioral deficits associated with schizophrenia (Table 3)

TABLE 4
Summary of preclinical efficacy of group III mGlu receptor allosteric modulators in schizophrenia-related deficits

Receptor Type Compound
Positive Symptom

Models
Negative Symptoms

Models Cognitive Models References

mGlu4 PAM ADX88178 Reduced NMDAR-
HL; reduced DOI-

induced head
twitches

Reduced immobility
in FST

Kalinichev et al.,
2014

Lu AF21934 Reduced NMDAR-HL
and AHL;a reduced
DOI-induced head

twitchesa

Reduced MK-801-
induced deficits in
social interactiona

Rescued MK-801-
induced deficits in
the delayed spatial
alternation task;a

reduced MK-801-
induced deficits in

NOR

(See footnotes.)

Lu AF32615 Reduced NMDAR-HL
and AHL; reduced
DOI-induced head

twitches

Reversed MK-801-
induced deficits in
social interaction

Reversed MK-801-
induced deficits in
the delayed spatial
alternation task

Sławi�nska et al.,
2013

mGlu7 Ago-PAM AMN082 No effect on AHL;
exacerbated
NMDAR-HL;b

exacerbated DOI-
induced head
twitchesc

(See footnotes.)

NAM MMPIP ADX71743 Inhibited MK-801-
induced

hyperactivity and
reversed deficits in

PPI

Reversed MK-801-
induced deficits in
NOR and spatial

delayed alternation

Cie�slik et al.,
2018

AHL, amphetamine-induced hyperlocomotion; HL, hyperlocomotion; NOR, novel object recognition.
aSławi�nska et al., 2013.
bMitsukawa et al., 2005.
cWiero�nska et al., 2012a.
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with hopes of developing improved treatments for schizo-
phrenia. Interestingly, preclinical studies have alluded to
mGlu2 activation being sufficient to provide therapeutic
benefit, such that the antipsychotic-like activity of group II
mGlu receptor agonists are absent in mGlu2, but not
mGlu3, receptor knockout mice (Spooren et al., 2000).
These observations have been bolstered by the discovery of
mGlu2-selective PAMs, which allowed for direct interroga-
tion of this hypothesis. Several mGlu2 PAMs demonstrated
antipsychotic-like efficacy as well as precognitive and social
effects in multiple preclinical models (Galici et al., 2005,
2006; Harich et al., 2007; Nikiforuk et al., 2010; Griebel
et al., 2016). For example, administration of the mGlu2
PAM, potassium 30-([(2-cyclopentyl-6-7-dimethyl-1-oxo-2,3-
dihydro-1H-inden-5-yl)oxy]methyl)biphenyl l-4-carboxylate
(BINA), reduced dimethoxy-bromoamphetamine–induced
head twitches and reversed MK-801-induced immobility in
the forced swim test (FST) (Benneyworth et al., 2007;
Kawaura et al., 2016). Additionally, (2S)-5-methyl-2-f[4-
(1,1,1-trifluoro-2-methylpropan-2-yl)phenoxy]methylg-2,
3-dihydroimidazo[2,1-b][1,3]oxazole-6-carboxamid (TASP0-
443294), another mGlu2 PAM, showed efficacy in reducing
methamphetamine and NMDAR antagonist-induced
hyperlocomotion as well as reversed social memory defi-
cits induced by MK-801 administration in mice (Hikichi
et al., 2015; Lavreysen et al., 2015). Two primary
mGlu2 PAMs moved forward to clinical testing; how-
ever, the mGlu2 PAM AZD 8529 did not significantly
improve positive or negative symptoms in patients
with schizophrenia when administered as a monother-
apy (Litman et al., 2016). Alternatively, another mGlu2

PAM, JNJ-40411813/ADX71149, showed beneficial
effects in patients with residual negative symptoms
(Hopkins, 2013) and potential efficacy in reversing
select cognitive deficits and negative symptoms after
administration of ketamine in healthy volunteers
(Salih et al., 2015). However, negative phase 2 schizo-
phrenia clinical trials with JNJ-40411813/AZD8529
has tempered expectations on the utility of mGlu2

PAMs for the treatment of schizophrenia. The ongoing
efficacy of this compound in large-scale clinical trials
remains to be seen.
In addition to the wealth of research on mGlu2-selec-

tive PAMs, numerous studies have indicated a relation-
ship between decreased performance PFC-dependent
cognitive tasks and single nucleotide polymorphisms in
the human gene encoding mGlu3 (GRM3) (Egan et al.,
2004; Tan et al., 2007; Harrison et al., 2008), identifying
GRM3 as a risk locus for schizophrenia in genome-wide
association studies (Schizophrenia Working Group of
the Psychiatric Genomics Consortium, 2014). After the
discovery of highly selective mGlu3 NAMs, studies in
mice revealed that mGlu3 mediates distinct aspects of
PFC synaptic plasticity and procognitive effects in
rodents (Walker et al., 2015; Dogra et al., 2021). In
agreement with these findings, studies in nonhuman

primates have demonstrated that mGlu2/3 agonists
elicit postsynaptic effects in the dorsolateral PFC that
improve cognitive function (Jin et al., 2017). Together,
these studies highlight mGlu3 as a novel regulator of
PFC-mediated cognitive processes. Additional investiga-
tion using current and next-generation group II mGlu
receptor PAMs/NAMs is essential for expanding our
understanding of these receptors and their potential
utility in treating schizophrenia.

III. Group III: Metabotropic Glutamate4/6/7/8. Like
group II mGlu receptors, the therapeutic promise of
group III mGlu receptors arose from evidence of their
ability to improve the hyperglutamatergic state
believed to take place in schizophrenia and modulate
behavioral processes dysregulated in the disease,
including cognition and motivation. For instance,
mice lacking mGlu4 display impairments in spatial
reversal and long-term memory (Gerlai et al., 1998), sug-
gesting a critical role of mGlu4 in cognitive flexibility and
associative learning, both of which are known to be
impaired in patients with schizophrenia. Previous stud-
ies also suggest that mGlu4 activation may elicit antipsy-
chotic-like effects in rodent models. In one study, the
group III agonist (1S,3R,4S)-1-aminocyclopentane-1,3,
4-tricarboxylic acid (ACPT-I) reduced PCP- and amphet-
amine-induced hyperlocomotion in addition to head
twitching in response to 2,5-Dimethoxy-4-iodoamphet-
amine (DOI) (Pałucha-Poniewiera et al., 2008). Similar
actions of ACPT-I administration are also observed with
mGlu4-selective orthosteric agonists, LSP 1-2111 (Wier-
o�nska et al., 2012a) and LSP4-2022 (Wo�zniak et al.,
2016). Activation of mGlu4 receptors with these com-
pounds also improves behavioral deficits associated with
negative and cognitive symptoms of schizophrenia (Wier-
o�nska et al., 2012a; Wo�zniak et al., 2016). More recently,
mGlu4 PAMs Lu AF 21934 (Bennouar et al., 2013), Lu
AF32615 (East et al., 2010), and ADX88178 (Le Poul
et al., 2012) have also displayed similar outcomes in
models of representing all three symptom clusters of
schizophrenia (Table 4). For example, ADX88178, an
mGlu4 PAM, was shown to reduce NMDAR antagonist-
induced hyperlocomotion and DOI-induced head twitches
while also reducing immobility time in FST (Kalinichev
et al., 2014). Alternatively, the mGlu4 PAMs, Lu
AF21934 and Lu AF32615, showed efficacy in restoring
social interaction, reducing hyperlocomotion induced by
amphetamine and NMDAR antagonists, and rescuing
MK-801-induced deficits in spatial working memory and
novel object recognition (Wiero�nska et al., 2012a;
Sławi�nska et al., 2013a). Together, these studies high-
light the potential therapeutic utility of selective mGlu4
activators for schizophrenia.
Despite limited studies focusing on the mGlu7 receptor

subtype as a potential therapeutic target for schizophre-
nia, a polymorphism in the GRM7 gene encoding mGlu7
that decreased transcription in vitro was positively
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correlated with schizophrenia in a large Japanese cohort
(Ohtsuki et al., 2008). These findings suggest that hypo-
function of mGlu7 may contribute to the pathophysiology
of schizophrenia. Because activation of mGlu7 reduces
glutamatergic neurotransmission (Baskys and Malenka,
1991; Ayala et al., 2008) and acts as a heteroreceptor to
modulate GABA release and the induction of LTP in
brain regions, such as the hippocampus (Klar et al.,
2015), it is plausible that selective activators of mGlu7
may enhance aspects of hippocampal-dependent cogni-
tive function. However, some preclinical studies refute
this hypothesis such that the mGlu7 allosteric agonist
N,N’-dibenzhydrylethane-1,2-diamine dihydrochloride
(AMN082) exacerbates MK-801-induced hyperlocomotion
(Mitsukawa et al., 2005) and DOI-induced head twitches
(Wiero�nska et al., 2012a). Although these findings may
be driven by off-target effects of AMN082 in vivo (Sukoff
Rizzo et al., 2011), it has been shown that the psychotic-
enhancing effects were occluded in mGlu7 knockout
(KO) mice (Wiero�nska et al., 2012a), implying that they
may be mGlu7 receptor-dependent. At this time, future
studies must further confirm if the use of selective PAMs
may show more promise of mGlu7 activation in schizo-
phrenia-related models.
Although expressed at fairly low levels in the brain,

the mGlu8 receptor subtype is expressed in the pre-
synaptic active zone of mainly glutamatergic synapses
(Kinoshita et al., 1996a; Shigemoto et al., 1997) where
it functions to modulate neurotransmitter release and
gates glutamatergic transmission into the hippocam-
pus (Zhai et al., 2002). In line with this function,
mGlu8 KO mice display deficits in hippocampal-
dependent learning (Gerlai et al., 2002), suggesting
that activating mGlu8 with selective ligands could
treat the cognitive impairments in patients with
schizophrenia. In studies determining the antipsy-
chotic efficacy of mGlu8-targeting ligands, two studies
have found that the relatively selective orthosteric
mGlu8 agonist (S)-3,4-dichlorophenyl glycine ((S)-3,
4-DCPG) was unable to reverse amphetamine or
PCP-induced hyperactivity in Sprague-Dawley rats
(Thomas et al., 2001; Robbins et al., 2007). Addition-
ally, mGlu8 KO mice do not display significant deficits
in PPI of acoustic startle; thus, it appears to be
unlikely that mGlu8 is a promising target for a novel
antipsychotic (Robbins et al., 2007). Despite lacking
evidence for antipsychotic efficacy, continued studies
are required to determine the utility of mGlu8-target-
ing compounds as cognitive enhancers.

B. Substance Use Disorders

SUD is a multifaceted chronically relapsing disorder
characterized by excessive drug intake, repeated unsuc-
cessful attempts to reduce or stop drug use, enhanced
drug-seeking and self-administration, the emergence of
drug tolerance and withdrawal, and continued drug
intake despite negative consequences (Koob and Volkow,

2010). SUD represents a serious public health prob-
lem with devastating consequences to society. How-
ever, there is a lack of pharmacological agents
approved to treat the disease. Drugs of abuse exert
their effects by altering the signaling of numerous
neurotransmitter systems and brain circuits, which
serves as a challenge for developing efficacious treat-
ments. Ongoing research highlights detrimental
adaptations in GABA and glutamate neurotransmis-
sion in SUD (Tzschentke and Schmidt, 2003; Cruz
et al., 2008). Drugs of abuse alter glutamate trans-
mission through a diverse array of mechanisms. For
example, cocaine increases glutamate transmission
indirectly through dopamine transporter-mediated
dopamine release (Ritz et al., 1987). Alternatively, it
has been reported that alcohol inhibits postsynaptic
NMDAR- and non-NMDAR-mediated glutamate trans-
mission and release, possibly via inhibition of GABA
interneurons (Lovinger et al., 1989, 1990; Carta et al.,
2003; Hendricson et al., 2003, 2004). Notably, imbal-
ance of glutamate and GABA systems in brain regions,
such as the PFC, is associated with physiologic and
behavioral aspects of SUDs, including impulsivity,
reinforcement learning, and executive function. For
instance, a recent clinical study using hydrogen (1H)-
magnetic resonance spectroscopy revealed significantly
higher glutamate levels and lower GABA levels in
patients with opioid use disorder compared with
healthy controls (Li et al., 2020). Additionally, this
study showed that higher impulsivity and cognitive
impairment were associated with lower GABA and
higher glutamate levels. Furthermore, exposure to
pharmacological agents that block glutamate transmis-
sion attenuate the reinforcing effects of drugs of abuse.
For instance, systemic administration of NMDAR
antagonists attenuates self-administration of alcohol
(Shelton and Balster, 1997), cocaine (Pierce et al.,
1997; Pulvirenti et al., 1997; Hyyti€a et al., 1999; Blo-
khina et al., 2005), and nicotine (Kenny et al., 2009).
Therefore, restoring GABA and glutamate balance in
PFC, among other brain regions, represents a promis-
ing therapeutic strategy for treating SUD.
Numerous medications targeting GABA and/or glu-

tamate receptors have been under longstanding inves-
tigation for the treatment of SUD, including baclofen,
topiramate, and gabapentin. However, to date, there
has been mixed evidence for their efficacy in clinical
trials for various types of SUDs, including alcohol,
nicotine, cocaine, and methamphetamine (Addolorato
et al., 2012). One of the well-studied candidates, baclo-
fen, a GABAB agonist, has yielded findings in preclini-
cal and clinical studies suggesting its potential utility
in treating alcohol use disorder. Baclofen acts presyn-
aptically to hyperpolarize synaptic terminals, inhibits
calcium influx, and prevents the release of the excit-
atory neurotransmitters glutamate and aspartate
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(Davidoff, 1985). Preclinical studies show that baclofen
effectively mitigates the reinforcing properties of alco-
hol in addition to suppressing acquisition and mainte-
nance of alcohol drinking behavior and relapse-like
drinking in rats and mice (Cousins et al., 2002; Mac-
cioni and Colombo, 2009). Alternatively, baclofen has
also been tested as a treatment of cocaine use disorder.
A human brain imaging study found that baclofen
reduces the activation of limbic brain regions that
occurs in response to cocaine-related cues (Brebner
et al., 2002). Baclofen has undergone numerous clinical
trials for the treatment of cocaine use disorder; how-
ever, these studies have yielded mixed results with the
first human open-label study showing a trend toward
reduced cocaine craving and self-reported cocaine con-
sumption (Ling et al., 1998), but subsequent, larger
studies have not identified statistically significant effects
of baclofen on craving or cocaine intake (Shoptaw et al.,
2003). In addition to the studies detailed here, baclofen
and other GABA-targeting drugs, such as gabapentin,
have been tested for efficacy in treating nicotine and
methamphetamine use disorders. Together, these studies
shed light on the potential utility of activating GABA
systems for the treatment of SUDs; however, more effec-
tive compounds are required to better achieve this goal.
A wealth of studies using ligands targeting mGlu

receptors has demonstrated the utility of targeting
these receptors as an alternative approach to mitigate
SUD-induced imbalances in glutamate and GABA
signaling. For example, systemic administration of
LY379268, an mGlu2/3 orthosteric agonist, decreases
self-administration of cocaine (Baptista et al., 2004;
Adewale et al., 2006; Xi et al., 2010), nicotine (Liechti
et al., 2007), and alcohol (B€ackstr€om and Hyyti€a,
2005; Sidhpura et al., 2010). However, excessive glu-
tamate release, a potential consequence direct activa-
tion of mGlu receptors, including mGlu5, elicits
excitotoxicity via NMDAR-mediated mechanisms, lim-
iting the utility of orthosteric mGlu-targeting com-
pounds (Reiner and Levitz, 2018). Thus, allosteric
modulators of mGlu receptors represent a novel ave-
nue for restoring homeostasis of GABA and glutamate
systems while exerting receptor subtype selects
effects and circumventing EPS.

I. Group I: Metabotropic Glutamate1/5. Group I
mGlu receptor subtypes, mGlu1 and mGlu5, have
been extensively studied in terms of behavioral effects
in animal models of SUD. Both mGlu1 and mGlu5 are
robustly expressed in brain regions known to be criti-
cal to SUD pathophysiology, including the NAc, dorsal
striatum, ventral midbrain and PFC (Niswender and
Conn, 2010). Repeated exposure to drugs of abuse can
dysregulate mGlu1 and mGlu5 expression and func-
tion. For example, chronic alcohol consumption in
rodents reduces mGlu1/5 mRNA levels in various sub-
regions of the hippocampus and increases mGlu1/5

expression in the NAc core and central nucleus of the
amygdala (Simonyi et al., 2004; Obara et al., 2009).
Nicotine exposure increases expression of mGlu1

mRNA in the ventral tegmental area (VTA) and
amygdala (Kane et al., 2005). Further, repeated
cocaine exposure disrupts mGlu1 receptor-mediated
signaling in the NAc (Swanson et al., 2001). Finally,
prolonged withdrawal from extended-access cocaine
self-administration decreases total protein and sur-
face expression levels of mGlu1 in the NAc compared
with drug-naıve rats (Loweth et al., 2014). Alterna-
tively, the total and surface levels of mGlu1 is
unchanged in the NAc following shorter abstinence
periods or during cocaine administration (Ary and
Szumlinski, 2007; Loweth et al., 2014). Withdrawal
time-dependent reductions in mGlu1/5 expression within
ventromedial PFC have also been reported for following
extended-access cocaine self-administration following
extinction testing compared with drug-naıve animals
(Ben-Shahar et al., 2013). Additionally, extinction of
cocaine-seeking decreases the surface expression of
mGlu5 receptors in the NAc (Knackstedt et al., 2010).
Thus, there is extensive evidence that mGlu1 and
mGlu5 receptor subtypes may be involved in drug-
related behaviors and the pathophysiology of SUDs.
Notably, mGlu1 and mGlu5 have both also been

implicated as regulators of drug self-administration
behavior. Early studies reported that mice carrying a
null mutation for the gene encoding the mGlu5 receptor
lack cocaine-induced hyperlocomotion and did not acquire
intravenous self-administration of cocaine (Chiamulera
et al., 2001). Furthermore, genetic inactivation or phar-
macological inhibition of mGlu5 receptors decreases self-
administration of alcohol, cocaine, heroin, nicotine, meth-
amphetamine and ketamine and reduces breakpoints for
reinforcement for various drugs of abuse in a progressive
ratio (PR) paradigm (Cleva and Olive, 2012). mGlu1
antagonist JNJ16259685 reduces alcohol self-administra-
tion and breakpoints for alcohol reinforcement under a
PR schedule (Besheer et al., 2008a,b). However, other
studies have shown that acquisition and fixed ratio oper-
ant responding for psychostimulants, such as cocaine and
methamphetamine, is intact in mice lacking mGlu5�/�;
however, deletion of mGlu5 enhanced responding on a
progressive ratio schedule and impaired extinction of
drug-seeking behaviors (Chesworth et al., 2013; Bird
et al., 2014). These findings suggest that mGlu5 may play
distinct roles in drug reinforcement and instrumental
extinction learning. Furthermore, mGlu1 and mGlu5 play
an important role in reinstatement of drug seeking.
Numerous studies have reported that pharmacological
blockade of mGlu5 attenuates the reinstatement of drug-
seeking behavior induced by drug-associated cues, stress
and drug priming (Bespalov et al., 2005; B€ackstr€om and
Hyyti€a, 2007; Platt et al., 2008; Schroeder et al., 2008;
Kumaresan et al., 2009; Martin-Fardon et al., 2009).
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Additionally, mGlu1 antagonism attenuates the reinstate-
ment of nicotine and cocaine-seeking behavior elicited by
drug-associated cues (Dravolina et al., 2007). A wealth of
additional research supports the roles of mGlu1 and
mGlu5 in various other drug-related behaviors, including
conditioned place preference and interoceptive drug
effects. These findings have been elegantly detailed in
reviews elsewhere (Olive, 2009; Cleva and Olive, 2012;
Caprioli et al., 2018; Niedzielska-Andres et al., 2021).
The extensive evidence that mGlu1 and mGlu5 play

critical roles in behavioral deficits associated with
SUD raises the question of whether targeting group I
mGlu receptors is a promising therapeutic approach
for the treatment of SUD. The development of mGlu1

and mGlu5 allosteric modulators have allowed resear-
chers to directly test this question. Studies have inves-
tigated the efficacy of mGlu1 allosteric modulators
within the context of SUD (Caprioli et al., 2018). These
studies have been summarized in Table 5. Specifically,
repeated administration of selective mGlu1 PAMs,
SYN119 or Ro0711401, blocks incubation of cue-induced
cocaine craving following extended-access cocaine self-
administration and prolonged withdrawal in rats
(Loweth et al., 2014). Interestingly, administration of
mGlu1 PAMs during withdrawal from methamphet-
amine self-administration did not block incubation
of methamphetamine craving. The efficacy of mGlu1

PAMs in reducing incubation of cocaine craving may be
driven by mGlu1-mediated blockade of calcium perme-
able amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor accumulation and synaptic transmis-
sion, which is known to be a critical mechanism driv-
ing cue-induced drug craving and cocaine seeking
(McCutcheon et al., 2011; Loweth et al., 2014; Ruan
and Yao, 2021). However, there is evidence that
mGlu1 does not regulate calcium permeable amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptor
accumulation during methamphetamine withdrawal
(Murray et al., 2019), further supporting divergent
mechanisms underlying incubation of craving for psy-
chostimulants and selective roles of mGlu1. These
studies leveraging mGlu1 PAMs provide further sup-
port that selective activation of mGlu1 is able to
reduce the impact of drug-induced adaptation in
mGlu1 function, which drives cocaine-seeking behav-
ior (Halbout et al., 2014) and modulates a number of
critical forms of synaptic plasticity, such as cocaine-
induced plasticity in the VTA (Mameli et al., 2009)
and mGlu1-LTD and synaptic potentiation in the PFC
(Ruan and Yao, 2021).
mGlu1 NAMs have been shown to decrease alcohol

self-administration in some studies but not others. In
alcohol self-administration studies in alcohol-preferring
P rats, JNJ16259685, an mGlu1 NAM, decreased
responding under fixed ratio and PR schedules (Besheer
et al., 2008a; b), but also decreased locomotor activity

and lever-pressing for sucrose, suggesting nonspecific
motor effects. Similar observations were reported in
additional studies looking at the effect of (�)-ethyl (7E)-
7-hydroxyimino-1,7a-dihydrocyclopropa[b]chromene-1a-
carboxylate (CPCCOEt), another mGlu1 NAM, on alco-
hol self-administration in alcohol-preferring (P)-rats or
C57BL/6J mice (Casabona et al., 1997; Schroeder et al.,
2005; Hodge et al., 2006). In another study, CPCCOEt
reduced ethanol reinforcement, consumption, and
expression of ethanol conditioned place preference while
facilitating the motor-impairing effects of ethanol (Casa-
bona et al., 1997; Lominac et al., 2006). Importantly,
CPCCOEt was able to block the acute effects of ethanol
on extracellular levels of dopamine and glutamate in
the NAc, while potentiating the effects of acute ethanol
on extracellular GABA in this region. Leveraging
another mGlu1 NAM, JNJ16259685, one study reported
decreased psychostimulant (cocaine and methamphet-
amine) administration under a second-order reinforce-
ment schedule of reinforcement fixed interval 5-10 (FI5-
FR10) (Achat-Mendes et al., 2012). In this same study,
JNJ16259685 had no effect on food-reinforced respond-
ing but exerted motoric effects. The efficacy of mGlu1

NAMs in nicotine use has also been studied. The selec-
tive mGlu1 NAM EMQMCM (5 mg/kg) inhibited cue
and nicotine-induced reinstatement of nicotine-seeking
behavior, albeit when administered at higher doses
EMQMCM reduced cue-induced reinstatement of food-
seeking, indicating that high doses of this compound may
have general inhibitory effects on appetitive responding
(Dravolina et al., 2007). Furthermore, EMQMCM has
been shown to inhibit the expression of locomotor sensiti-
zation to both morphine and cocaine (Dravolina et al.,
2006; Kotlinska and Bochenski, 2007). Another study
showed that intra-NAc injections of mGlu1 NAM, 6-
amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimid-
azole-2-carboxamide (YM298198), decreases reinstate-
ment of cocaine seeking in rats following cocaine priming
(Schmidt et al., 2015). Together, these studies highlight
the potential utility of mGlu1 allosteric modulators for
the treatment of various SUDs but also highlight the
need for continued studies with improved formulations.
mGlu5 allosteric modulators have been of particular

interest as therapeutic options for the treatment of
SUDs. A summary of these studies has been included
in Table 5. Due to the abundance of reports, we have
focused on summarizing the effects of mGlu5 allosteric
modulators on drug self-administration and reinstate-
ment. Details on the efficacy of mGlu5 PAM/NAMs in
other drug-related behaviors have been reviewed pre-
viously (Olive, 2009; Cleva and Olive, 2012; Caprioli
et al., 2018). A subset of classically studied mGlu5

NAMs include the compounds 2-Methyl-6-(phenylethy-
nyl)pyridine (MPEP) and 3-((2-Methyl-4-thiazolyl)ethy-
nyl)pyridine (MTEP). MPEP and MTEP have been
shown to attenuate intravenous self-administration of
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TABLE 5.
Summary of preclinical efficacy of group I mGlu receptor allosteric modulators in substance use disorder models

Receptor Type Compound Drug of Abuse Behavioral Effect References

mGlu1 PAM SYN119/Ro0711401 Cocaine Blocks incubation of cue-
induced cocaine craving

after extended-access self-
administration

Loweth et al., 2014

Methamphetamine No effect on incubation of
methamphetamine craving
after extended-access self-

administration and
withdrawal

Murray et al., 2019

NAM JNJ-16259685 Alcohol Decreased responding
under FR/PR schedules

Besheer et al., 2008a,b

Cocaine and
methamphetamine

Decreased self-
administration under a

second-order
reinforcement schedule of
reinforcement (FI5-FR10)

Achat-Mendes et al., 2012

CPCCOEt Alcohol Decreased self-
administration under FR

and PR schedules of
reinforcement in alcohol-

preferring P-rats or
C57BL/6J mice;a,b,c

reduced ethanol
reinforcement,

consumption, and
expression of ethanol

CPPd

1

(See footnotes.)

EMQMCM Nicotine Inhibited cue and nicotine-
induced reinstatement of
nicotine-seeking behavior

Dravolina et al., 2007

Morphine and cocaine Inhibited the expression of
locomotor sensitization

Dravolina et al., 2006;
Kotlinska and Bochenski,

2007
YM298198 Cocaine Decreased cocaine-primed

reinstatement of cocaine
seeking

Schmidt et al., 2015

mGlu5 NAM MPEP/MTEP Cocaine, nicotine,
heroin, and alcohol

Attenuates self-
administration

(intravenous or oral)

Ombelet et al., 1994;
Kenny et al., 2003, 2005;
Paterson et al., 2003;
B€ackstr€om et al., 2004;
Tessari et al., 2004;
Bespalov et al., 2005;

Cowen et al., 2005, 2007;
Lee et al., 2005; McMillen
et al., 2005; Olive et al.,
2005; Hodge et al., 2006;
Lominac et al., 2006;
Liechti and Markou,
2007; Besheer et al.,

2008b; Palmatier et al.,
2008;

Cocaine Attenuated cue-induced
reinstatement of cocaine

seeking

B€ackstr€om and Hyyti€a,
2007; Knackstedt et al.,
2014; Knackstedt and

Schwendt, 2016
Alcohol, cocaine, and

nicotine
Reduced breakpoints

under PR reinforcement
schedule

Paterson et al., 2003;
Besheer et al., 2008b

Methamphetamine Reduced incubated
methamphetamine

seeking; decreased self-
administration under FR

and PR schedules of
reinforcement

Gass et al., 2009; Murray
et al., 2021

Partial NAM M-5MPEP/Br-5MPEPy Cocaine Decreased self-
administration and

attenuated the
discriminative stimulus

effects of cocaine

Gould et al., 2016

CPP, conditioned place preference; FI, fixed interval ;FR, fixed ratio; P, preferring; SYN119, mGlu1 PAM.
aCasabona et al., 1997.
bHodge et al., 2006.
cSchroeder et al., 2005.
dLominac et al., 2006.
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numerous drugs of abuse, including cocaine, nicotine,
methamphetamine, and heroin (Ombelet et al., 1994;
Kenny et al., 2003, 2005; Paterson et al., 2003; Tessari
et al., 2004; Bespalov et al., 2005; Lee et al., 2005;
Liechti and Markou, 2007; Palmatier et al., 2008; Gass
et al., 2009) and ethanol in a variety of rodent strains
(B€ackstr€om et al., 2004; Cowen et al., 2005; McMillen
et al., 2005; Olive et al., 2005; Hodge et al., 2006;
Lominac et al., 2006; Cowen et al., 2007; Besheer
et al., 2008b ) without altering the reinforcing proper-
ties of natural reward or food (Paterson et al., 2003;
Tessari et al., 2004; Bespalov et al., 2005; Liechti and
Markou, 2007; Gass et al., 2009). These compounds
have also demonstrated the ability to modulate the
motivational properties of many drugs. For instance,
MPEP reduces breakpoints for ethanol, cocaine, and
nicotine under PR schedules of reinforcement (Paterson
et al., 2003; Besheer et al., 2008b). Furthermore, admin-
istration of MTEP has been shown to reduce the rein-
forcing efficacy of methamphetamine as reflected by
reduced breakpoints under a PR schedule off reinforce-
ment (Gass et al., 2009). In addition to modulating the
rewarding and motivational properties of drugs, MPEP
and MTEP have also been shown to prevent cue and
drug-induced priming of reinstatement of cocaine, nico-
tine or ethanol-seeking behavior (B€ackstr€om et al.,
2004; Tessari et al., 2004; Lee et al., 2005; B€ackstr€om
and Hyyti€a, 2006; Iso et al., 2006; Murray et al., 2021).
For instance, a recent study showed that systemic
administration of MTEP reduces incubated metham-
phetamine seeking following self-administration and
prolonged withdrawal (Murray et al., 2021), elucidating
the role of mGlu5 in the incubation of methamphet-
amine craving and delineating distinct mechanisms
from that of incubation of cocaine craving. Interestingly,
cue-induced reinstatement of cocaine-seeking behavior
is attenuated in response to local infusion of MPEP or
MTEP into the NAc (B€ackstr€om and Hyyti€a, 2007;
Knackstedt et al., 2014), while local infusion of MTEP
into the dorsolateral striatum at time of context-
induced relapse testing attenuated extinction learning
(Knackstedt et al., 2014; Knackstedt and Schwendt,
2016). This finding was paralleled by reduced mGlu5

surface expression and LTD in brain slices of animals
during prolonged abstinence from cocaine which could
be reversed by bath application of the mGlu5 PAM
VU-29, suggesting brain-region specific subpopulations
of mGlu5 receptors may play distinct roles in regulating
extinction learning and reinstatement of cocaine-seeking.
Despite the promising results of these studies, it

has also been reported that MPEP and MTEP can
attenuate breakpoints for food (Paterson et al., 2003),
enhance the sedative properties of ethanol (Sharko
and Hodge, 2008) and elicit general behavioral reduc-
tion, including decreases in inactive lever responding
(Murray et al., 2021). To this end, partial mGlu5

NAMs have been developed, which feature submaxi-
mal but saturable levels of blockade and may repre-
sent an additional avenue to broaden the therapeutic
window of mGlu5 NAMs. One study evaluated the effi-
cacy of partial mGlu5 NAMs, 2-[2-(3-methoxyphenyl)
ethynyl]-5-methylpyridine (M-5MPEP) and bromo-2-[2-(3-
methoxyphenyl)ethynyl]-5-methylpyridine (Br-5MPEPy),
in comparison with the full mGlu5 NAM MTEP in models
of SUD. Gould et al., found that M-5MPEP, Br-5MPEPy,
and MTEP dose-dependently decreased cocaine self-
administration and attenuated the discriminative stimu-
lus effects of cocaine, suggesting that partial mGlu5 NAM
activity is sufficient to elicit therapeutic effects compara-
ble to full mGlu5 NAMs (Gould et al., 2016). In sum, full
and partial mGlu5 NAMs may represent a promising
therapeutic option for the treatment of numerous
SUDs; however, continued exploration of novel mGlu5

NAMs with improved therapeutic window and reduced
side effects is required.

II. Group II: Metabotropic Glutamate2/3. Decades
of research support a critical role of group II mGlu
receptors in SUDs. mGlu2 and mGlu3 regulate neuro-
transmission in brain regions implicated in SUDs,
including the PFC and NAc. In the PFC, mGlu2/3

receptors are tonically activated by endogenous gluta-
mate and infusion of a selective mGlu2/3 receptor
antagonist, LY341495, increases glutamate levels
(Melendez et al., 2005; Xie and Steketee, 2008).
Within the NAc, numerous studies suggest that
endogenous glutamatergic tone on group II mGlu
receptors regulating both glutamate and dopamine
levels. In vivo microdialysis studies have demonstrated
increased glutamate release after perfusion of selective
antagonist LY143495 into the NAc and decreased extracel-
lular glutamate levels in response to agonist (2R,4R)-4-
aminopyrrolidine-2,4-dicarboxylate (APDC) (Xi et al.,
2002). Further, electrophysiological recordings from NAc
slices reveal that mGlu2/3 receptors can act as presynaptic
autoreceptors to control glutamate release. Specifically,
increased paired pulse ratios and reduced miniature
EPSC frequency were observed after bath application
of selective agonists (S)-4-carboxy-3-hydroxyphenylglycine
((1S,3S)-ACPD) and (2S,1’S,2’S)-2-(2’-carboxycyclopropyl)-
glycine (L-CCG1) (Manzoni et al., 1997). Evidence also
supports that mGlu2/3 receptors regulate glutamate release
in VTA (Manzoni and Williams, 1999), bed nucleus of stria
terminalis (Grueter and Winder, 2005), and hippocampus
(Capogna, 2004), among other brain regions within the
motivational circuit (Poisik et al., 2005).
The expression and function of mGlu2/3 receptor

subtypes are also altered by chronic use of drugs,
such as alcohol, cocaine, opioids, and nicotine. The
effects of drugs of abuse on mGlu2/3 receptor function
have been detailed in greater detail previously (Mous-
sawi and Kalivas, 2010). In brief, it has been reported
that ethanol-dependent rats have decreased PFC
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GRM2 mRNA levels and mGlu2/3 autoreceptor func-
tion in the NAc shell compared with control rats
(Meinhardt et al., 2013). In addition, drinking-
induced decreases in mGlu2/3 autoreceptor function
have also been observed in the VTA (Ding et al.,
2017). Alternatively, enhanced physiologic and behav-
ioral sensitivity to mGlu2/3 agonists is observed in the
central nucleus of the amygdala and bed nucleus of
stria terminalis of ethanol-dependent rats (Kufahl
et al., 2011). In addition to sensitivity to the effects of
ethanol, mGlu2/3 receptors are altered by chronic
exposure to other drugs of abuse. A recent study
revealed that 12 days cocaine self-administration fol-
lowed by 6 to 10 days of extinction training resulted
in a decreased in mGlu2 expression in the NAc core of
male and female rats (Logan et al., 2020). Further,
the inhibitory effects of mGlu2/3 receptors on excit-
atory transmission in the VTA and NAc are enhanced
in rodents during early withdrawal from chronic mor-
phine (Manzoni and Williams, 1999; Martin et al.,
1999). Interestingly, genetic variation in the mGlu2

gene, Grm2, has also been associated with alcohol
preference and consumption in rodents, such that the
presence of an abnormal stop codon preventing
expression of the Grm2 results in increased alcohol
preference and intake as measured by a two-bottle
choice paradigm (Zhou et al., 2013; Wood et al., 2017).
Notably, mGlu2/3 receptor-dependent plasticity is

impaired after exposure to drugs of abuse. For exam-
ple, chronic morphine impairs mGlu2/3 receptor
induced LTD at excitatory synapses in NAc medium
spiny neurons (Robbe et al., 2002) and chronic cocaine
exposure impairs mGlu2/3 receptor-dependent LTD in
PFC pyramidal cells (Huang et al., 2007). More
recently, it was shown that NAc LTP induced by high
frequency stimulation of the PFC was abolished after
withdrawal from self-administered cocaine via reduced
mGlu2/3 receptor stimulation (Moussawi et al., 2009).
Given the importance of neuroplasticity in cognition,
reinforcement learning, and updating behaviors after
changes in environmental contingencies (Malenka and
Bear, 2004; Whitlock et al., 2006; De Roo et al., 2008)
and evidence of drug-induced plasticity impairments,
mGlu2/3 receptors may be a critical target underlying
drug-induced deficits in synaptic plasticity. Thus,
potentiating the function of mGlu2/3 may represent a
promising approach to mitigate drug intake and cogni-
tive deficits in individuals with SUD by restoring neu-
rotransmitter homeostasis and neuroplasticity.
Early studies using the prototypical group II mGlu

agonist LY379268 demonstrate decreased reinstate-
ment of alcohol, cocaine, methamphetamine, and her-
oin seeking induced by cues previously associated
with drug self-administration (Acri et al., 2017).
Administration of LY379268 has also been shown to
decrease cue- and drug priming-induced

reinstatement of cocaine self-administration in non-
human primates (Adewale et al., 2006; Justinova
et al., 2016) and incubation of cocaine, methamphet-
amine, or nicotine self-administration in rats (Liechti
et al., 2007; Crawford et al., 2013). Although less
abundant than studies on group I mGlu receptor
PAM/NAMs, a few studies have looked at the efficacy
of mGlu2/3 allosteric modulators in behavioral models
of SUD (Table 6). One study used the selective and
brain penetrant mGlu2 PAM BINA in a model of
intravenous cocaine self-administration and cocaine-
seeking behavior in rats that had short (1 h, ShA) or
long (6 h, LgA) access to cocaine. In this study, BINA
decreased cocaine self-administration in both ShA
and LgA rats, with no effect on food self-administra-
tion (Jin et al., 2010). Additionally, this study showed
that BINA decreased cue-induced reinstatement of
cocaine seeking without altering food seeking, sug-
gesting that mGlu2 allosteric modulators may have
potential as treatments for cocaine use disorder and
possibly other drugs of abuse.
mGlu2 PAMs, AZD8418 and AZD8529, underwent

preclinical and clinical evaluation for their efficacy in
nicotine use disorder. Acute treatment with AZD8418
(0.37, 1.12, 3.73, 7.46, and 14.92 mg/kg) and AZD8529
(1.75, 5.83, 17.5, and 58.3 mg/kg) deceased nicotine
self-administration and blocked cue-induced rein-
statement of nicotine- and food-seeking behavior but
did not significantly affect food-maintained respond-
ing in rats (Li et al., 2016). Chronic treatment with
AZD8418 attenuated nicotine self-administration but
resulted in tolerance to this effect. The inhibitory
effects of chronic AZD8529 administration on nicotine
self-administration persisted throughout the 14 days
of treatment; however, chronic treatment with these
PAMs inhibited food self-administration. The mGlu2

PAM AZD8529 has since been tested in clinical trials
including a 19-week, multicenter, randomized, phase
2 clinical study comparing the efficacy of two different
doses of AZD8529 (1.5 and 40 mg) in smoking cessa-
tion in female smokers. However, this trial was com-
pleted in 2017 and reported only �10% of either the
low- or high-dose AZD8529 groups meeting the pri-
mary outcome of abstinence during the course of the
13-week study (Lassi et al., 2016).

III. Group III: Metabotropic Glutamate4/6/7/8. The
group III mGlu receptor subtypes have also garnered
attention as potential targets for the treatment of
SUD. A multitude of studies have reported group III
mGlu receptor subtypes are sensitive to the effects of
drugs of abuse, including psychostimulants and alco-
hol. For instance, repeated amphetamine exposure
increases mGlu8 mRNA levels in the dorsal striatum
and NAc (Parelkar and Wang, 2008). Chronic alcohol
consumption has been shown to reduce mGlu7 mRNA
levels in numerous hippocampal subregions, whereas
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mGlu8 mRNA levels were unchanged (Simonyi et al.,
2004). Additionally, expression levels of the gene
encoding the mGlu7 receptor is associated with higher
levels of alcohol consumption (Vadasz et al., 2007).
The development of selective compounds targeting
group III mGlu receptor subtypes have allowed for
delineation of the distinct roles of these receptors in
the physiologic and behavioral effects of drugs of
abuse. For example, treatment with AMN082, a selec-
tive mGlu7 allosteric agonist, attenuates cocaine-
induced decreases of ventral pallidum GABA release
in both naıve rats and cocaine self-administering rats
(Li et al., 2009). These findings suggest a novel role of
mGlu7 receptors in regulating the effects of cocaine
on NAc-ventral pallidum GABA transmission, which
is one mechanism proposed to underlie the rewarding
and motivational effects of cocaine. Furthermore,
microinjection of L-AP4, a nonselective agonist of
group III mGlu receptors, into the dorsal striatum
reduced amphetamine or cocaine-induced hyperloco-
motion in rats (Mao and Wang, 2000). Importantly,
L-AP4 attenuated amphetamine-stimulated dopamine
release in the dorsal striatum (Mao et al., 2000), sug-
gesting that group III mGlu receptors may be
involved in the acute effects of psychostimulant expo-
sure by inhibiting dopamine release. Striatal gluta-
mate has long been recognized to facilitate dopamine
release (Mao et al., 2000). Thus, inhibition of gluta-
mate release by group III autoreceptors may result in
this inhibition of dopamine release. A study by Xi
et al., showed that L-AP4 decreased extracellular
glutamate levels, whereas the group III receptor
antagonist (R, S)-a-methylserine-O-phosphate increased
extracellular glutamate levels in the NAc of rats, respec-
tively (Xi et al., 2003). In addition to the presynaptic
roles of group III mGlu receptors in regulating drug-
associated neurotransmission, mGlu7 is expressed post-
synaptically on both striatopallidal and striatonigral
medium spiny neurons (Kosinski et al., 1999). To this
end, L-AP4 inhibits evoked synaptic responses in the

NAc, in part, through a postsynaptic mechanism (Martin
et al., 1997). This putative postsynaptic mechanism
likely works in concert with group III mGlu receptor sub-
type-mediated presynaptic modulation to control synap-
tic responses to drugs of abuse like cocaine.
Importantly, group III mGlu receptors have been

shown to be important in drug self-administration in pre-
clinical studies in rodents. For instance, Blednov and
Harris demonstrated that mGlu4 knockout mice showed
normal levels of ethanol consumption but are devoid of a
locomotor stimulant effect of low doses of alcohol (Blednov
and Harris, 2008). Furthermore, administration of the
mGlu8 agonist (S)-3,4-DCPG suppressed alcohol self-
administration and cue-induced reinstatement of alcohol-
seeking behavior (B€ackstr€om and Hyyti€a, 2005). The
mGlu7 subtype has also been established to be critical
to drug self-administration and reinstatement of drug-
seeking. The development of group III mGlu selective
ligands and allosteric modulators has allowed for rigorous
characterization of their roles in various SUDs (Table 6).
Stimulation of presynaptic mGlu7 receptors with AMN082
significantly reduced cocaine self-administration under a
fixed ratio 2 (FR2) schedule of reinforcement and lowered
PR breakpoints for cocaine self-administration in rats (Li
et al., 2009, 2013). These effects were replicable when
AMN082 was directly infused the NAc or ventral pal-
lidum. Additionally, systemic administration of AMN082
has been shown to attenuate cocaine-primed reinstate-
ment of cocaine-seeking behavior (Li et al., 2010). Consis-
tent with the literature on cocaine self-administration,
AMN082 administration has also been shown to signifi-
cantly inhibit heroin and ethanol self-administration and
preference in rodents (Salling et al., 2008; Bahi et al.,
2012). Together, these findings provide evidence that the
mGlu7 receptor is a promising target for the treatment of
SUD. Continued studies leveraging using AMN082 or
mGlu7 PAMs are required to further evaluate their effi-
cacy novel pharmacotherapies in nonhuman primates
and clinical studies.

TABLE 6
Summary of preclinical efficacy of group II/III mGlu receptor allosteric modulators in substance use disorder models

Group Receptor Type Compound Drug of Abuse Behavioral Effect References

II mGlu2 PAM BINA Cocaine Decreased cocaine self-administration in
both short-access (1 h) and long-access
(6 h) in rats; decreased cue-induced

reinstatement of cocaine seeking without
altering food seeking

Jin et al., 2010

AZD8418/AZD8529 Nicotine Deceased nicotine self-administration and
blocked cue-induced reinstatement of
nicotine- and food-seeking behavior

Li et al., 2016

III mGlu7 Ago-PAM AMN082 Cocaine Reduced self-administration under an FR2
schedule of reinforcement; lowered PR

breakpoints in rats

Li et al., 2009, 2013

Cocaine Attenuates cocaine-primed reinstatement
of cocaine-seeking behavior

Li et al., 2010

Alcohol and heroin Inhibited self-administration and
preference

Salling et al., 2008;
Bahi et al., 2012

FR, fixed ratio; PR, progressive ratio
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C. Stress-Related Disorders

Stress-related disorders, including anxiety, are
incredibly pervasive psychiatric conditions and repre-
sent an enormous worldwide health concern. Chronic
psychosocial stressors have been implicated as some
of the most common risk factors for the development
of stress-related disorders, which also have high
comorbidity with other neuropsychiatric diseases,
including depression and SUDs (Risch et al., 2009;
Duric et al., 2016). However, our understanding of the
mechanisms driving the development and persistence
of stress-related disorders is still unclear. Stress-
related disorders have been associated with aberrant
brain excitability within critical neural circuits and
disruption of excitatory and inhibitory transmission
has been increasingly implicated as a crucial determi-
nant of the pathophysiology of these diseases (Nuss,
2015; Jie et al., 2018). Mood and stress-related disor-
ders involve both bottom-up and top-down control,
primarily by limbic regions of the brain. As such,
exposure to various stressors is known to dysregulate
transmission of both glutamatergic and GABAergic

systems (Nemeroff, 2003; Popoli et al., 2011; Jie et al.,
2018). For example, clinical studies using proton mag-
netic resonance spectroscopy to measure endogenous
brain metabolites, such as glutamate, in the brain
have demonstrated a positive correlation between
frontal cortex glutamate levels and state anxiety lev-
els in healthy subjects (Grachev and Apkarian, 2000).
Additionally, patients with social anxiety show higher
glutamate levels in brain regions, such as the anterior
cingulate cortex, compared with healthy control sub-
jects who positively correlated with the severity of
their social anxiety symptoms (Phan et al., 2005).
These findings, among many others, suggest that
restoring the balance between glutamatergic and
GABAergic transmission represents a promising ther-
apeutic strategy for alleviating symptoms of stress-
related disorders.
A wide variety of pharmacotherapeutics targeting

glutamate and/or GABA systems have been under
ongoing investigation for their efficacy in treating
stress-related disorders, including ketamine, meman-
tine, gabapentinoids, tiagabine, valproic acid, and

TABLE 7
Summary of preclinical efficacy of group I/II mGlu receptor allosteric modulators in stress-related deficits

Group Receptor Type Compound Behavioral Effect References

I mGlu5 PAM CDPPB Facilitated the extinction of
contextual fear memory;
enhanced the initial fear

memory formation and had
no effect on memory

retrieval

Sethna and Wang,
2014

NAM MPEP/MTEP Antidepressant-like activity
in the tail TST and FSTa,b

(See footnotes.)

DSR-98776 Produces antidepressant-
like actions in rats

Kato et al., 2015

Partial NAM M-5MPEP/Br-5MPEPy Demonstrate
antidepressant- and

anxiolytic-like activity in
FST, TST, SIH and marble

burying tests

Gould et al., 2016

VU0477573 Dose-dependent efficacy in
marble-burying test

Nickols et al., 2016

II mGlu2 PAM BINA Anxiolytic-like effects on
SIH and EPM tests in mice

Galici et al., 2006

THIIC Anxiolytic-like efficacy in
SIH assay in rats and
stress-induced marble-
burying assay in mice

Fell et al., 2011

LY487379/LY379268 Anxiolytic-like efficacy in
SIH assay in mice

Wiero�nska et al.,
2012b

mGlu2 NAM VU6001966 Reverse passive coping
behavior in the FST

Joffe et al., 2020

mGlu3 NAM VU0650786 Antidepressant-like and
anxiolytic-like effects as
measured by FST and
marble-burying tests

Engers et al., 2015

Reverse passive coping
behavior in the FST; reduce
stress-induced deficits in

motivation

Joffe et al., 2020

Blocked LY379268-induced
trace fear conditioning
enhancement in mice

Dogra et al., 2021

BR-5MPEPy, bromo-2-[2-(3 methoxyphenyl)ethynyl]-5-methylpyridine; M-5MPEP, 2-[2-(3 methoxyphenyl)ethynyl]-5-methylpyridine; THIIC, (trifluoromethyl)-3-
hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methyl-1H-imidazole-4-carboxamide; TST, tail suspension test.

aLi et al., 2006.
bBelozertseva et al., 2007.
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topiramate (Nasir et al., 2020). For example, the
NMDA antagonist ketamine, which first showed effi-
cacy in treating symptoms of depression in 2000 (Ber-
man et al., 2000), has shown some efficacy in the
treatment of post-traumatic stress disorder and anxi-
ety disorders (Feder et al., 2014; Liriano et al., 2019;
Banov et al., 2020). In addition, benzodiazepines,
which act on GABAA receptors, have historically been
used for the treatment of anxiety and other stress-
related disorders. However, their utility has been lim-
ited by adverse side effects and high abuse liability
(Tan et al., 2011). Therefore, particular interest has
been focused on the development of subtype-selective
drugs that will achieve specific therapeutic benefits
by balancing glutamate and GABA transmission
while limiting undesirable side effects. To this end,
the mGlu receptors are in prime locations within
these brain regions and neural circuits to normalize
excitatory/inhibitory transmission, thus modulating
stress responses and serving as a promising thera-
peutic approach for the treatment of stress-related
disorders.

I. Group I: Metabotropic Glutamate1/5. Group I
mGlu receptors subtypes have been strongly impli-
cated in the pathophysiology of stress-related disor-
ders. For example, clinical studies leveraging positron
emission tomography (PET) imaging have demon-
strated a strong association between the mGlu5 recep-
tor subtype and anxiety, obsessive compulsive
disorder, and depression (Terbeck et al., 2015). Posi-
tive correlations have been reported between mGlu5

binding in regions of the amygdala, anterior cingulate
cortex, and medial orbitofrontal cortex and obsessive

compulsive disorder severity as assessed by the Yale-
Brown Obsessive-Compulsive Scale (Akkus et al.,
2014). Furthermore, mice exposed to social isolation
stress exhibited selectively reduced mGlu1 levels in
the PFC (Ieraci et al., 2016). Prenatal stress models
have also shown robust changes in mRNA and protein
levels as well as gene methylation levels of mGlu1

and mGlu5 receptor subtypes expressed in the hippo-
campus of offspring rats that exhibit depression-like
behavior (Lin et al., 2018). Several studies leveraging
genetic deletion or pharmacological manipulation of
group I mGlu receptors subtypes have further sub-
stantiated the notion that these receptors may be via-
ble targets for treating stress-related disorders (Li
et al., 2006; Shin et al., 2015; Zangrandi et al., 2021).
For instance, mGlu5 knockout mice or mice that
received the mGlu5 NAM, MTEP, displayed detri-
ments in stress coping mechanisms (Li et al., 2006;
Shin et al., 2015; Zangrandi et al., 2021). A recent
study showed that mice with conditional knockout of
mGlu5 in dopamine receptor D1 neurons demon-
strated divergent coping mechanisms in response to
acute escapable or inescapable stress compared with
littermate controls, such that mGlu5 conditional
knockout mice showed enhanced active stress coping
upon exposure to escapable stress task and higher
levels of passive strategy in response to inescapable
stress (Zangrandi et al., 2021). Numerous studies also
implicate the mGlu1 receptor subtype in the mecha-
nisms underlying stress and anxiety. One study
demonstrated that administration of the mGlu1 anta-
gonist, JNJ16259685, produced an anxiolytic pheno-
type in mice (Steckler et al., 2005). These findings

TABLE 8
Summary of preclinical efficacy of group III mGlu receptor allosteric modulators in stress-related deficits

Receptor Type Compound Behavioral Effect References

mGlu4 PAM PHCCC Antidepressant-like effects
in rats;a intra-BLA

administration elicits
anticonflict effects in rats
subjected to the Vogel

conflict testb

(See footnotes.)

ADX88178 Reduced duration of
immobility in the FST;
attenuated conditioned

freezing in the acquisition
phase of the fear

conditioning

Kalinichev et al., 2014

Lu AF21934 Anxiolytic, but not
antidepressant-like, effects
as measured by SIH, four-
plate, marble-burying, and

Vogel’s conflict tests

Sławi�nska et al., 2013b

mGlu7 NAM ADX71743 Dose-dependent reduction
in the number of buried
marbles and increasing
open arm exploration in
EPM and marble-burying

assays

Kalinichev et al., 2013

aKłak et al., 2007.
bStachowicz et al., 2004.
BLA, basolateral amygdala
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provide strong support for the potential utility of
group I mGlu receptor allosteric modulators for the
treatment of stress-related disorders.
The development of mGlu1 and mGlu5 allosteric

modulators have greatly advanced our understanding
of the physiologic and behavioral role of these recep-
tor subtypes in stress and anxiety disorders. For
example, intrahippocampal injection of MTEP impairs
fear extinction by blocking hippocampal metaplastic-
ity mechanisms that lead to enhanced LTP (Stansley
et al., 2018), suggesting a potential utility of mGlu5

PAMs for the treatment of stress-related disorders. As
such, preclinical work has demonstrated efficacy of
mGlu5 PAM enhancement of fear extinction (Sethna
and Wang, 2014). Additionally, MTEP displays antide-
pressant-like activity in the tail suspension test and
FST (Palucha et al., 2005, 2007; Belozertseva et al.,
2007). Furthermore, the mGlu5 receptor NAM, DSR-
98776, was shown to produce rapid antidepressant-like
actions in rats (Kato et al., 2015). Leveraging partial
mGlu5 receptor NAMs, studies have also demonstrated
antidepressant- and anxiolytic-like effects without
inducing sedation (Gould et al., 2016; Nickols et al.,
2016). Together, these studies support the possibility
that mGlu5 receptor NAMs may provide fast-acting
antidepressant activity. Based on extensive preclinical
evidence and clinical imaging studies, mGlu5 receptor
NAMs were tested in clinical trials for their efficacy
to treat depressive symptoms. However, two mGlu5

receptor NAMs, AZD2066 and Basimglurant (RG7090,
RO4917523) have been tested in Phase II clinical trials
and failed to show any efficacy over the placebo control
(ClinicalTrials.gov Identifier: NCT01145755) (Quiroz
et al., 2016). Nonetheless, higher doses significantly
improved secondary outcomes (Quiroz et al., 2016).
In combination with an improved tolerability profile,
these findings warrant need for further investigation
of mGlu5 receptor NAMs for the treatment of depres-
sive disorders. In contrast to the wealth of literature
supporting the utility of mGlu5 receptor allosteric mod-
ulators for the treatment of stress-related disorders,
little is known about the utility of mGlu1 receptor sub-
type-targeting allosteric modulators for mitigating
stress and anxiety phenotypes. However, several stud-
ies using mGlu1 receptor antagonists provide a strong
foundation for future studies characterizing mGlu1 allo-
steric modulators in stress-related disorder. For exam-
ple, mGlu1 receptor antagonists LY456236, 1-
Aminoindan-1,5-dicarboxylic acid (AIDA), and JNJ-
16259685 elicit anxiolytic-like effects in rodents (Tatarc-
zy�nska et al., 2001; Kłodzi�nska et al., 2004; Varty et al.,
2005; Lima et al., 2008; Lavreysen et al., 2015). In addi-
tion to reported anxiolytic-like effects, one study showed
antidepressant potential of mGlu1 receptor antagoni,sts
such that administration of JNJ-16567083 decreased
immobility time in the tail suspension test

(Belozertseva et al., 2007). However, further studies are
needed to evaluate the potential anxiolytic activity of
mGlu1 receptor allosteric modulators in the context of
stress physiology.

II. Group II: Metabotropic Glutamate2/3. Substan-
tial preclinical and clinical evidence supports the role
of group II mGlu receptor subtypes in the etiology
and maintenance of stress-related disorders (Dogra
and Conn, 2021). For example, expression changes in
mGlu2 and mGlu3 receptor subtypes are observed in
numerous models of anxiety and depression. Eleva-
tion in group II mGlu receptor expression in the hip-
pocampus and PFC has been observed in the mice
reared under isolated conditions (Kawasaki et al.,
2011). Further, increased levels of mGlu2/3 receptors
have been observed in the postmortem PFC tissue
from patients with depression (Feyissa et al., 2010),
providing evidence that increased mGlu2/3 receptor
function may contribute to the etiology of depression.
To this end, several studies have reported anxiolytic
effects with mGlu2/3 agonists (Helton et al., 1998;
Shekhar and Keim, 2000; Schoepp et al., 2003; Lin-
den et al., 2005, 2018). A multitude of studies have
also leveraged transgenic mouse lines featuring dele-
tion of mGlu2 and/or mGlu3 to parse out the individ-
ual contributions of these receptor subtypes in stress-
related disorders. However, these studies have yielded
mixed results. One study reported that the anxiolytic
efficacy of mGlu2/3 agonists is reduced or absent in
single GRM2�/� and GRM3�/� mice compared with
littermate controls (Linden et al., 2005). Alternatively,
several studies have reported that mice lacking either
mGlu2 or mGlu3 alone did not display altered anxiety
phenotypes (Morishima et al., 2005; Fujioka et al.,
2014; De Filippis et al., 2015). Nonetheless, because
the anxiolytic efficacy of mGlu2/3 agonists has been
observed across a variety of species, including humans
and rodents, the lack of an anxiety phenotype in the
transgenic mice may be due to species differences or
compensatory changes.
As such, selective mGlu2 and mGlu3 receptor allosteric

modulators have been investigated for their efficacy
in treating symptomology of stress-related disorders
(Table 7). mGlu3 receptor NAMs have been shown to
elicit antidepressant-like and anxiolytic-like effects as
measured by FST and marble-burying tests, respectively
(Engers et al., 2015). Further, recent studies show that
mGlu2 and mGlu3 receptor NAMs reverse passive coping
behavior in the FST (Joffe et al., 2020) and mGlu3 recep-
tor NAMs reverse motivational deficits and changes in
the amygdalo-cortical plasticity induced by acute stress
(Joffe et al., 2019a). Other studies using mGlu2 receptor
PAMs, BINA, N-(4-((2-(trifluoromethyl)-3-hydroxy-4-(iso-
butyryl)phenoxy)methyl)benzyl)-1-methyl-1H-imidazole-
4-carboxamide, and LY487379, have demonstrated anxio-
lytic-like efficacy in multiple assays of rodent stress
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response and also displayed antidepressive-like efficacy
(Galici et al., 2006; Fell et al., 2011; Wiero�nska et al.,
2012b). A recent study also reported that administration
of the selective mGlu3 NAM VU0650786 blocked the
LY379268-induced trace fear conditioning enhancement
in mice (Dogra et al., 2021). Together, these studies pro-
vide strong evidence that mGlu2 and mGlu3 allosteric
modulators may also be a promising novel treatment
strategy for stress-related disorders.

III. Group III: Metabotropic Glutamate4/6/7/8.
Group III mGlu receptor subtypes have garnered atten-
tion as potential therapeutic targets for the treatment of
stress-related disorders. Initial studies using nonselective
group III mGlu receptor agonists have aimed to deter-
mine the role of these receptors in stress-related pheno-
types. For instance, Tatarczynska et al. showed that
intrahippocampal administration of the group III mGlu
receptor agonist ACPT-I elicits anxiolytic- and antidepres-
sant-like effects in mice (Tatarczy�nska et al., 2001). Other
studies also found anxiolytic-like effects of ACPT-I as
measured by stress-induced hypothermia (SIH), elevated
plus-maze (EPM) tests in mice, and the Vogel test in rats
(Pałucha et al., 2004; Stachowicz et al., 2009). However,
until recently, a lack of selective compounds has largely
limited our current understanding of the specific contribu-
tion of each group III mGlu receptor subtype in the patho-
physiology of stress-related disorders. The development of
transgenic rodent models and selective pharmacological
agents has allowed us to gain insights on the role of group
III mGlu receptor subtypes in stress-related phenotypes.
For example, mGlu7-selective antagonist 7-hydroxy-3-(4-
iodophenoxy)-4H-chromen-4-one, which inhibits lateral
amygdala LTP, reduces innate anxiety and freezing dur-
ing acquisition of Pavlovian fear in mice (Gee et al.,
2014). Additionally, mGluR7

�/� mice displayed anxiolytic
efficacy in a battery of behavioral tasks, including the
staircase test, EPM, light-dark box, and SIH (Cryan
et al., 2003). Interestingly, mGluR7

�/� mice also show an
increase in glucocorticoid-dependent feedback suppression
of the hypothalamic–pituitary–adrenal axis and increases
hippocampal brain-derived neurotrophic factor (BDNF)
levels compared with wild-type littermate controls (Mitsu-
kawa et al., 2006), further bolstering the hypothesis that
mGlu7 receptors are critical in stress physiology. In sup-
port of this notion, a wealth of literature reports anxio-
lytic- and antidepressant-like efficacy of the mGlu7
agonist, AMN082 (Palucha et al., 2007; Palazzo et al.,
2008; Pałucha-Poniewiera et al., 2010, 2014; Bradley
et al., 2012; O’Connor and Cryan, 2013; Pałucha-Ponie-
wiera and Pilc, 2013). Alternatively, mice lacking the
mGlu4 receptor subtype exhibited increased anxiety in
the open-field and EPM test as well as improvements in
cued-fear conditioning (Davis et al., 2013). Studies using
the orthosteric mGlu8 agonist, DCPG, showed that mGlu8
stimulation reduced anxiety-like behavior in open field
and EPM tests while also attenuating the expression of

contextual fear (Fendt et al., 2013). Together, these stud-
ies have begun to elucidate the role of each receptor sub-
type in the pathophysiology of stress-related disorders.
Based on this evidence, studies have focused on the

potential utility of allosteric modulators of group III mGlu
receptor subtypes for the treatment of stress-related disor-
ders (Table 8). Studies have leveraged mGlu4 PAMs and
shown anxiolytic- and antidepressant-like activity in
rodents. For example, a study by Klak et al. reported that
administration of the mGlu4-selective PAM 7-hydroxyi-
mino-N-phenyl-1,7 adihydrocyclopropa[b]chromene-1a-
carboxamide (PHCCC) in combination with a subeffec-
tive dose of (1S,3R,4S)-1-aminocyclopentane-1,3,4-tri-
carboxylic acid produced antidepressant-like effects in
rats (Kłak et al., 2007). Intra-basolateral amygdala
(BLA) administration of PHCCC was reported to elicit
anticonflict effects in rats subjected to the Vogel conflict
test (Stachowicz et al., 2004). Another mGlu4 PAM,
ADX88178, dose-dependently reduced duration of
immobility in the forced swim test and attenuated con-
ditioned freezing in the acquisition phase of the fear
conditioning test without altering freezing propensity
in the expression phase of the task (Kalinichev et al.,
2014). Furthermore, Sławi�nska et al. also showed that
administration of the mGlu4 PAM, Lu AF21934, pro-
duced anxiolytic- but not antidepressant-like effects as
measured by SIH, four-plate, marble-burying, and
Vogel’s conflict tests (Sławi�nska et al., 2013b). In addi-
tion to promising evidence of the anxiolytic efficacy of
mGlu4 allosteric modulators, another study reported an
anxiolytic-like profile of mGlu7 NAMs. Specifically, the
mGlu7 NAM, ADX71743, produced a robust anxiolytic-
like phenotype as evidenced by dose-dependent reduc-
tion in the number of buried marbles and increasing
open arm exploration in EPM and marble burying
assays, respectively (Kalinichev et al., 2013).

IV. Future Directions/Concluding Remarks

A wealth of preclinical literature over the past
decade supports the potential utility of allosteric mod-
ulators of mGlu receptors as promising therapeutic
options to treat multiple neuropsychiatric diseases,
including schizophrenia, SUDs, and stress-related
disorders, which currently have limited or no effective
treatments. Thus far, investigation of mGlu receptor
allosteric modulators has yielded important insights
into the neuropharmacology of these diseases, and
surely more discoveries are yet to be discovered. How-
ever, many outstanding questions remain that the
field is primed to address and that will propel
research on allosteric modulators forward. One impor-
tant outstanding question involves the utility of mGlu
allosteric modulators as novel cognitive enhancers.
Neuropsychiatric conditions, such as schizophrenia,
SUDs, and stress-related disorders, are known to pro-
duce marked deficits in cognitive behavior (Gould
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et al., 2012; Robinson et al., 2013; Tripathi et al., 2018;
Lukasik et al., 2019). Extensive literature supports the
notion that many cognitive deficits associated with
neuropsychiatric diseases (working memory, attention,
executive function, etc.), such as schizophrenia and
SUD, are driven by aberrant glutamate and GABA sig-
naling and associated detriments in synaptic plasticity
(Logue and Gould, 2014; Guidi et al., 2015). Based on
the well-established and critical role of mGlu receptor
subtypes in regulating glutamate/GABA transmission
and synaptic plasticity (see Metabotropic Glutamate
Receptor Regulation of Neurotransmission and Synap-
tic Plasticity), allosteric modulators of mGlu receptors
are promising targets to reverse disease-related cogni-
tive deficits, a major unmet need of numerous neuro-
psychiatric diseases. For example, by leveraging
mGlu5-mediated regulation of cortical and hippocam-
pal plasticity, mGlu5 PAMs show excellent potential as
cognitive enhancers. Recent work demonstrates that
mGlu1 PAMs regulate spatial working memory via reg-
ulation of PFC SST-IN function in mice (Maksymetz
et al., 2021). Furthermore, mGlu5 PAM VU0092273
enhances trace fear conditioning in wild-type mice but
not in mGlu5-CA1-KO mice (Xiang et al., 2019). Fur-
ther supporting this notion, the biased mGlu5 PAM
VU0409551 demonstrated robust cognition enhance-
ment as measured by enhancement of contextual fear
conditioning acquisition and an increase in recognition
memory in the novel object recognition task in rats,
both commonly used rodent learning and memory
assays dependent upon hippocampal function (Rook
et al., 2015). In the same study, VU0409551 also
enhanced working memory performance in rats, such
that systemic administration increased accuracy in a
delayed non-match-to-sample task.
Several studies have also provided evidence for the

cognitive-enhancing abilities of group II mGlu receptor
subtype allosteric modulators. For example, mGlu2 PAM
SAR 218645 improved learning and memory in rodent
models of schizophrenia (Griebel et al., 2016). In line
with their ability to enhance hippocampal LTP, selective
activation of mGlu3 has been shown to improve cognition
in hippocampal dependent temporal associative tasks in
rodents (Stansley and Conn, 2019). Interestingly, the
functional interplay between mGlu3 and mGlu5 receptor
subtypes and the involvement of mGlu3 in cortical plastic-
ity further suggests that mGlu3 PAMs may also exert cog-
nition-enhancing effects. Lastly, group III mGlu receptors
may be a promising cognition-enhancing approach to
mitigate neuropsychiatric-related deficits. This notion is
further evidenced by preclinical cognition-enhancement
observed with mGlu7 NAMs. Specifically, the mGlu7
NAM, ADX71743, reverses MK-801-induced deficits in
novel object recognition and delayed spatial alternation in
mice (Cie�slik et al., 2018). Ongoing studies are required
to evaluate the procognitive utility of mGlu receptor

allosteric modulators for other cognitive processes and
neuropsychiatric disease models.
Lastly, questions remain about pharmacological refine-

ment of next-generation allosteric modulators of mGlu
receptor subtypes. Allosteric-related factors, such as heter-
odimer engagement and signal bias, are essential to the
translation of these compounds into the clinical setting.
Expanding our understanding of allosteric modulator sig-
nal biases and interaction with heterodimer complexes,
for example, will allow us to optimize treatments to
restore normal physiology within the circuits underlying
specific disease states. Several compounds targeting
mGlu receptor subtypes display biased allosteric modula-
tion or “functional selectivity” (Zhang et al., 2005; Sheffler
and Conn, 2008; Rook et al., 2015). For example, the gad-
olinium ion, an allosteric modulator of the mGlu1a recep-
tor subtype, inhibits Gaq/11-linked Ca21 mobilization but
also stimulates Gas-mediated cAMP production when
administered with glutamate (Tateyama and Kubo,
2006). Recent reports have also shown that signal bias
can have crucial implications for therapeutic efficacy, as
evidenced by b-arrestin-biased mGlu5 NAMs in models of
Fragile X (Stoppel et al., 2017) or mGlu5 PAMs biased
away from NMDAR modulation for schizophrenia (Rook
et al., 2015; Gould et al., 2016). Moving forward, efforts
will determine how to translate these pharmacological
properties to emerging drug candidates through different
systems and species to avoid context-dependent pharma-
cology that has the potential to hinder efficacy. Account-
ing for these pharmacological factors, among others,
throughout model systems will likely increase the compet-
itiveness and effectiveness of future drug candidates for
the treatment of neuropsychiatric disease.
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