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Abstract:Liver transplantation is themost effective treatment for selected patients with hepatocellular carcinoma. However, can-
cer recurrence, posttransplantation, remains to be the critical issue that affects the long-term outcome of hepatocellular carcinoma
recipients. In addition to tumor biology itself, increasing evidence demonstrates that acute-phase liver graft injury is a result of he-
patic ischemia reperfusion injury (which is an inevitable consequence during liver transplantation) and may promote cancer recur-
rence at late phase posttransplantation. The liver grafts from living donors, donors after cardiac death, and steatotic donors have
been considered as promising sources of organs for liver transplantation and are associated with high incidence of liver graft injury.
The acute-phase liver graft injury will trigger a series of inflammatory cascades, which may not only activate the cell signaling path-
ways regulating the tumor cell invasion and migration but also mobilize the circulating progenitor and immune cells to facilitate tu-
mor recurrence and metastasis. The injured liver graft may also provide the favorable microenvironment for tumor cell growth,
migration, and invasion through the disturbance of microcirculatory barrier function, induction of hypoxia and angiogenesis. This
review aims to summarize the latest findings about the role and mechanisms of liver graft injury resulted from hepatic ischemia re-
perfusion injury on tumor recurrence posttransplantation, both in clinical and animal cohorts.

(Transplantation 2017;101: 2665–2670)
L iver transplantation is the first curative treatment for
the selected recipients with hepatocellular carcinoma

(HCC). It offers significant higher long-term survival prospects
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compared with other surgical treatments, such as liver resec-
tion or local ablation.1,2 With the accumulation of liver
transplantation for HCC patients, tumor recurrence post-
transplantation has become a critical issue affecting the
long-term outcome of liver transplantation.3 Because of the
different selection criteria, the posttransplant tumor recur-
rent rates are varied from center to center.4 In general, the
posttransplant cancer recurrence and metastasis are signifi-
cantly correlated with vascular invasion, tumor differentia-
tion, tumor size, and stage.5,6 In addition to liver tumor
biology itself, both clinical and animal studies have shown
that hepatic ischemia reperfusion (I/R) injury promotes tu-
mor recurrence after liver transplantation.7,8 Hepatic I/R in-
jury, an inevitable consequence during liver transplantation,
usually occurs during cold preservation of liver graft and sub-
sequent warm reperfusion after implantation into the recipi-
ent.9 Hepatic I/R injury can contribute to primary liver graft
dysfunction or nonfunction and lead to a higher incidence of
acute and chronic rejection.10-13 This review aims to provide
the latest updates regarding the role andmechanism of hepatic
I/R injury on tumor recurrence after liver transplantation.

Liver Graft I/R Injury Promotes Tumor Recurrence
Posttransplantation: Clinical Evidences

Increasing clinical evidence shows that graft I/R injury pro-
motes tumor recurrence after liver transplantation. The de-
gree of liver graft injury was reported to be determined by
the time duration of cold and warm ischemia during liver
transplantation, which was significantly correlatedwith peak
www.transplantjournal.com 2665
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transaminase levels within 1 week after liver transplanta-
tion.8 Patients with warm ischemia time (WIT) of more than
50 minutes showed significantly higher aspartate amino-
transferase level compared with those with WIT of
30 minutes or less. Furthermore, ALT and aspartate amino-
transferase levels were significantly higher in the patients
with cold ischemia times (CITs) of more than 10 hours than
the patients with CIT of less than 4 hours. Prolonged CIT
and WIT were significantly associated with increased HCC
recurrent rates and considered as independent risk factors
for HCC recurrence postliver transplantation.8,14 Nagai
et al8 showed that 1- and 3-year recurrent rates posttrans-
plantation were 3.5% and 8% for CIT of less than 4 hours,
respectively, and 15.5% and 25.9% for CIT of more than
10 hours, respectively. Consistently, 1- and 3-year recurrent
rates were 7.4% and 13% for WIT of 30 minutes or less, re-
spectively, and 17.2% and 23.5% for WIT of more than
50 minutes, respectively.8 Kornberg et al14 also confirmed
that extended ischemia time duration increased the risk of
HCC recurrence after liver transplantation. In this study, a
total of 103 liver transplant patients with HCC were in-
cluded, and 24 patients (23.3%) developed tumor recurrence
after liver transplantation. Mean durations of CIT (468.0 vs
375.5 minutes) and WIT (58.4 vs 45.7 minutes) were signifi-
cantly longer in patients with tumor recurrence compared
with those without recurrence. Recurrence-free survival rates
at 1- and 3-year postliver transplantation were 97.2% and
92.8%, respectively, in WIT of 50 minutes or less, whereas
it significantly decreased to 61.4% and 42 %, respectively,
in WIT of more than 50 minutes. On the other hand, the
therapy targeting hepatic I/R injury effectively reduced the
risk of early HCC recurrence after liver transplantation.15

Kornberg et al14 reported that treating hepatic I/R injury
with prostaglandin E1 significantly increased the 3- and
5-year recurrence-free survival rates from 65.3% and
63.1% to 87.9% and 85.7%, respectively. Furthermore,
Orci et al16 showed that donor WIT (>19 minutes) was as-
sociated with HCC recurrence both in a univariable analy-
sis and multivariable analysis.

The Effect of Graft Type on Tumor Recurrence After
Liver Transplantation

The success of liver transplantation has significantly in-
creased the demand for the liver graft. However, donor organ
shortage has become the biggest challenge of liver transplan-
tation.17 To decrease the gap between the demand and avail-
ability of donors, the use of marginal grafts has becomemore
liberal. Living donors, donation after cardiac death (DCD),
and steatotic donors have been considered as promising
sources of organs for liver transplantation.18,19 However, in-
creasing evidences showed that these grafts are associated
with higher incidence of acute-phase liver graft injury.

Living Donor Liver Transplantation
Living donor liver transplantation (LDLT) has been devel-

oped as an alternative choice to overcome the critical short-
age of liver grafts from deceased donors and decreased the
drop-off of cancer patients.2 However, the liver graft from
living donors are usually small for size for the recipient and
are associated with a higher incidence of acute-phase liver
graft injury.20 The effect of LDLT on tumor recurrence post-
transplantation remains controversial.21 Compared with
deceased donor liver transplants (DDLTs), HCC patients
who received LDLT had higher tumor recurrence and infe-
rior survival rate posttransplantation.22-25 In the Adult to
Adult Living Donor Liver Transplantation Cohort Study
of United States, the researchers reported that the unad-
justed 5-year tumor recurrence rate in LDLT patients was
higher than that in DDLT patients (38% vs 11%). After ad-
justment for tumor characteristics, HCC recurrence rate re-
mained higher in LDLT patients compared with DDLT
patients.24 This is consistent with the result of LDLT for
liver cancer patients fromHong Kong.26 However, compara-
ble results of HCC recurrence and outcome between LDLT
and DDLT patients were also reported in eastern and
western countries.27-29

Liver Transplantation with DCD
In recent years, DCD has been adapted for expanding the

donor pool.30 DCD refers to the recovery of organs from a
donor who has experienced circulatory arrest after with-
drawal of life-sustaining medical interventions. Compared
with liver grafts from donors after brain death (DBD),
DCD liver grafts were associated with longer WIT, increased
risk of graft failure, inferior outcomes, and higher tumor re-
currence.13,16,31-34 A meta-analysis using 11 studies reported
that DCD recipients experienced worse 1-year patient and
graft survival, higher rates of biliary complications, and is-
chemic cholangiopathy when compared with DBD recipi-
ents.31 Orci et al16 reported that recipients of organs from
DCD donors with prolonged warm ischemia had higher
HCC recurrence rates after liver transplantation. A study
using the data from the Scientific Registry of Transplant Re-
cipients showed that patients transplanted with DCD graft
have lower 5-year survival (55.9%) compared with the recip-
ients with DBD graft (63.8%).35 However, the effect of the
use of DCD on tumor recurrence posttransplantation for
HCC remains controversial. Some reports showed similar
outcomes between DCD andDBD.36,37 A recent report using
the data from Scientific Registry of Transplant Recipients
showed that HCC recurrences in DBD and DCD group
were 12.1% and 12.3%, respectively.38 Furthermore,
Khorsandi et al36 reported that DCD has no influence on
cancer-related survival after liver transplantation for HCC.

Steatotic Graft
In recent years, hepatic steatosis has become themost com-

mon liver disorder, which is caused by a variety of etiologies
such as diabetes, obesity, and alcohol consumption.39

Twenty-six percent of potential donors for liver transplanta-
tion received a diagnosis of hepatic steatosis.40,41 More evi-
dences showed that steatotic grafts are more prone to
hepatic I/R injury after liver transplantation.42,43 Impor-
tantly, the consequences of transplantation using fatty liver
graft largely depend on the degree of steatosis.44-46

It has been confirmed that severe steatosis (>60%) is re-
lated to higher incidence of primary nonfunction, inferior al-
lograft survival after liver transplantation.47-49 Orci et al16

showed that severe graft steatosis was linked to an increased
risk of HCC recurrence after liver transplantation in their
large clinical cohort with 3007 patients. Whether liver graft
with moderate steatosis has similar outcome compared with
normal graft is still controversial.44,45 Nevertheless, the graft

http://www.transplantjournal.com


© 2017 Wolters Kluwer Li et al 2667
with mild steatosis is believed to have no adverse effect on the
outcomes of liver transplantation.48,50

Mechanisms of Hepatic I/R Injury Promoting Tumor
Recurrence Posttransplantation

Several evidences have proposed a number of mechanisms
of hepatic I/R injury promoting tumor recurrence7,51-54

(Figure 1). The inflammatory response resulted from hepatic
I/R injury not only makes the liver microenvironment favorable
for tumor cell growth, migration, and invasion through the
disturbance of microcirculatory barrier function, induction of
hypoxia, and angiogenesis but also makes the tumor cells
more aggressive by directly activating tumor cell migration
and invasion pathways. In addition, acute-phase liver graft
injury also directly induces the circulatory progenitor cells
and immune cells mobilization and recruitment to liver graft,
hence further promoting the late phase tumor recurrence
postliver transplantation.

Microvascular Dysfunction, Hypoxia, and Angiogenesis
Induced by Hepatic I/R Injury Produces a Favorable
Environment for Liver Tumor Recurrence

During hepatic I/R injury, endothelial cell swelling, as well
as a local imbalance of vasoconstrictors and vasodilators to-
gether with neutrophils infiltration, leads to microcirculatory
disturbances.55,56 Microvascular dysfunction plays a crucial
role in promoting tumor outgrowth or metastasis.57,58 He-
patic sinusoids lose their integrity because of the lining cell
disruption resulting from hemodynamic force during I/R.20

It not only is the major cause of acute-phase liver graft injury
but also may facilitate tumor cell dissemination at late phase.
Furthermore, infiltrated lymphocytes can induce hepatocytes
apoptosis through stimulation of Fas signaling, which may
alter liver tissue structure and facilitate tumor outgrowth.59

van der Bilt et al51 also demonstrated that hepatic I/R injury
accelerates tumor growth predominantly surrounding necrotic
FIGURE 1. Acute-phase liver graft injury promotes late-phase tumor re
parenchyma. Moreover, restoration of ischemia-induced mi-
crocirculation disturbance by treatment with L-arginine de-
creases the outgrowth of micrometastasis.57

Ischemia and microcirculatory disturbances are the main
causes inducing hypoxia during hepatic I/R injury. Hypoxia
contributes to I/R-accelerated tumor growth and metastasis
through several distinct pathways. In response to liver tissue
hypoxia, the transcription factor hypoxia-inducible factor
(HIF-1α) stabilizes.57,60 HIF-1α is a strong promoter of tu-
mor cell proliferation, anaerobic metabolism, migration,
and angiogenesis.61-63 van der Bilt et al57 demonstrated that
I/R injury accelerates tumor growth that occurred in the areas
of hypoxia, which is associatedwith increased liver parenchy-
mal HIF-1α expression. The destabilization of HIF-1α by
17-dimethylaminoethylamino-17-demethoxygeldanamycin
can attenuate hepatic I/R injury–stimulated tumor growth.57

Furthermore, hypoxia also stimulates tumor cell proliferation
and tumor angiogenesis by inducing the secretion of growth
factors and angiogenic factors, such as vascular endothelial
growth factor (VEGF).64,65VEGF, as amajor angiogenic factor,
is upregulated in ischemic liver by multiple factors including
hypoxia and inflammatory cytokines and chemokines. VEGF
plays a pivotal role in tumor growth by improving tumor an-
giogenesis.66Masood et al66 reported that either inhibition of
VEGF expression or prevention of VEGF binding to VEGFR
suppresses the growth of VEGFR expressing tumor cell lines.
Inflammatory ResponseResults From I/R Injury Educates
Tumor Cells to Be More Aggressive by Triggering Cell
Adhesion, Migration, and Invasion Signaling

More evidence shows that I/R injury is a typical inflam-
matory response involving a complex web of interactions
between various cellular (macrophages/neutrophils) and
humoral contributors (cytokines/chemokines).12,67 During
hepatic I/R injury, activated macrophages contribute to the
currence posttransplantation.
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generation of a host of proteins associated with inflamma-
tory responses and secretion of proinflammatory cytokines/
chemokines.67,68 Except to directly damage hepatocyte,
these inflammatory cytokines/chemokines can also acti-
vate and recruit more circulating neutrophils into in the
liver. After neutrophils transmigrate to the liver, inflamma-
tory factors, reactive oxygen species, and proteases are ac-
tive, which are able to directly cause hepatocellular injury
and aggravate the inflammatory response.69,70

Hepatic I/R stimulates the expressions of many proinflam-
matory cytokines such as tumor necrosis factor α and inter-
leukin 1, which can markedly upregulate the expressions of
adhesion molecules such as E-selectin and intercellular adhesion
molecule 1 in endothelial cells.71 E-selectin and intercellular
adhesion molecule 1 have been reported to play critical roles
in tumor cell adhesion and growth.72,73 E-selectin and inter-
cellular adhesion molecule 1 induces the metastasis of tumor
cells not only by facilitating the adhesion of cancer cells to en-
dothelial cells74-76 but also by promoting the capture of leu-
kocytes rolling along the vascular endothelium.77,78 Kurata
et al79 showed that the inhibition of tumor necrosisα–induced
expression of E-selectin by antithrombin reduces I/R-induced
hepatic metastasis of colon cancer cells.

In addition to facilitating cell adhesion, hepatic I/R injury
also promotes tumor growth and metastasis through activat-
ing cell migration and invasion pathways.7 Our animal ex-
periments demonstrated that the Rho family (Rac1, rho-
associated protein kinase, and Cdc42) is overexpressed in
the tumor tissues from rats undergoing hepatic I/R injury
and major hepatectomy. The upregulation of Rho signaling
is also associated with the invasive tumor growth pattern
and remarkable local and distant metastatic features.7 Con-
sistently, overexpression or activation of Rho signaling path-
ways may also induce tumor cell migration, invasion, and
progression, significantly.80,81 Rho-associated kinase inhibi-
tor can suppress the cancer cell migration, thereby reducing
tumor recurrence after liver transplantation.82 Chemokines
are critical mediators involved in the process of I/R injury
and induction of cancer cell invasive potentials.83-85 We
showed that C-X-C motif chemokine ligand 10 (CXCL10)
is not only upregulated in small-for-size graft at the early
phase after liver transplantation but also overexpressed in tu-
mor tissue developed from small-for-size grafts at the late-
phase posttransplantation.54 CXCL10 may not only affect
the tumor microenvironment by increasing the intragraft
macrophage infiltration but also directly stimulate the inva-
sive properties of the tumor cell itself.54 Furthermore, matrix
metalloproteinases (MMPs) have been shown to be crucial in
promoting tumor invasiveness and metastasis by allowing
the initial migration and seeding of tumor cells.86,87 Nicoud
et al88 demonstrated that MMP-9 is upregulated after I/R in-
jury and promotes the outgrowth of colorectal carcinoma
micrometastasis. The inhibition and silence of MMP-9 may
reverse the I/R-induced tumor growth and metastasis.

Graft I/R Injury Mobilizes Circulatory Progenitor and
Immune Cells to Facilitate Tumor
Recurrence Posttransplantation

Endothelial progenitor cells (EPCs), a subtype of progeni-
tor cells in postnatal bonemarrow, canmigrate to the periph-
eral circulation under physical and pathological conditions
and differentiate intomature endothelial cells.89,90 Increasing
evidences indicated that EPCs play an important role in tumor
growth through facilitating early-stage tumor vascularization
and controlling tumor angiogenic switch of tumor metastasis
transition.91-93 Circulating EPCs are higher in the patients
with advanced HCC. It may act as a potential prognostic sur-
rogate marker in HCC patients.94,95 We have demonstrated
that CXCL10/C-X-C motif chemokine receptor 3 (CXCR3)
signaling, which was upregulated by acute-phase liver graft in-
jury, mobilizes circulatory EPCs into liver graft, hence promot-
ing tumor growth and recurrence after liver transplantation.53

Patients with small-for-size liver grafts had significantly higher
HCC recurrence, which is associated with more circulating
EPCs and higher expression of intragraft and circulatory
CXCL10. The knockout of CXCL10/CXCR3 signaling signif-
icantly reduces the mobilization of EPCs after liver I/R injury.
Furthermore, both EPCs injection andCXCL10 treatment can
directly enhance the orthotopic liver tumor growth, angiogen-
esis, and metastasis in a nude mice liver tumor model. These
results indicated that CXCL10/CXCR3 signaling can directly
mobilize circulatory EPCs posttransplantation and thereby
promote tumor angiogenesis. Lim et al96 also reported that
hepatic I/R injury leads to the mobilization of bone marrow–
derived EPCs and increases tumor growth by enhancing angio-
genesis inmousemodel of colorectal livermetastasis. Targeting
at EPCs with antiangiogenic drugs may enhance the sensitivity
of tumors in response to chemotherapeutics.97We also showed
that FTY720, an immune modulator, suppresses liver tumor
recurrence andmetastasis through attenuating hepatic I/R in-
jury and reducing the number of circulating EPCs.98

Furthermore, a number of evidence has demonstrated that
regulatory Tcells (Treg cells) can promote tumor growth and
metastasis. Treg cells play important roles in maintaining im-
mune tolerance and preventing allograft rejection.99,100

However, this negative regulatory activity can also suppress
the host immune surveillance function, thereby promote tu-
mor growth and progress.101 We recently demonstrated that
posttransplant inflammatory responses mobilize more circu-
latory Treg cells, which promote late-phase tumor recurrence
posttransplantation.52 More circulating Treg cells, together
with higher expression of CXCL10/CXCR3, can be detected
in the recipients with small-for-size liver graft and tumor re-
currence. In mouse model, the knockout of CXCL10 signifi-
cantly decreases hepatic recruitment of CXCR3+ Treg cells
after hepatic I/R injury. Moreover, the knockout of CXCL10
and depletion of Treg cells may directly inhibit tumor recur-
rence after hepatic I/R injury.

In summary, liver transplantation is an effective treatment
for the selected HCC patients. However, tumor recurrence
posttransplantation remains to be the major obstacle for
achieving long-term survival of the liver cancer recipients.
Obviously, the mechanism of graft injury accelerating tumor
growth and recurrence is multifactorial. Posttransplant tu-
mor recurrence and metastatic properties are not only deter-
mined by the biological behavior of cancer cells but also
because of the recruitment of circulatory progenitor cells
and immunoregulatory cells during liver transplantation.
The inflammatory microenvironment may play critical roles
on orchestrating cancer cells together with immune cells to
facilitate tumor recurrence posttransplantation. An updated
and improved understanding of liver I/R injury and tumor
recurrence will facilitate to develop new therapeutic mea-
sures, not only for attenuating early phase liver graft injury
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but also for preventing late-phase tumor recurrence after
liver transplantation.
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