Chiral Aminoalcohol-Derived δ-Lactams Provide Easy Access to Piperidines and Acyclic Five-Carbon Building Blocks Bearing a Tertiary and a Quaternary Stereocenter

Núria Llor, Peter Peršolja, Arnau Calbó, Sergi Ordeix, Nicolás Ramírez, Joan Bosch, and Mercedes Amat*

Cite This: ACS Omega 2023, 8, 34650-34662

Read Online
ACCESS | Llull Metrics \& More | 国 Article Recommendations | © Supporting Information

Abstract

A procedure for the synthesis of enantiopure piperidines and acyclic building blocks (5-aminopentanols, O protected 5 -hydroxypentanenitriles) containing a tertiary and a quaternary stereocenter has been developed. Starting from a phenylglycinol- or aminoindanol-derived δ-lactam bearing an alkyl substituent at the α-position of the N, O-acetal carbon, easily accessible by a cyclocondensation reaction, the stereoselective dialkylation at the carbonyl α-position generates the quaternary stereocenter and the subsequent two-step reductive removal of the chiral inductor provides enantiopure 3,3,5-trisubstituted piperidines. Alternatively, the simultaneous reductive opening of the oxazolidine and piperidone rings of the dialkylated lactams followed by reductive or oxidative cleavage of the chiral inductor opens access to chiral 2,2,4-trisubstituted 5-amino-1-pentanols or 2,4,4-trisubstituted 5-hydroxypentanenitriles.

1. INTRODUCTION

Acyclic chiral building blocks play an important role in organic synthesis, in particular for the total synthesis of natural products and bioactive compounds. Of special interest are linear nitrogen-containing fragments possessing more than one stereocenter or an all-carbon quaternary stereocenter. ${ }^{1}$ An effective way to access these chiral acyclic systems consists of the stereocontrolled generation of the required stereocenters from a chiral cyclic substrate, ${ }^{2}$ taking advantage of its less conformational flexibility, and the subsequent ring-opening of the resulting substituted cyclic product.
In this context, aminoalcohol-derived oxazolopiperidone lactams have proven to be versatile chiral scaffolds for the enantioselective synthesis of a wide range of chiral molecules, ${ }^{3}$ including those containing quaternary carbon stereocenters. ${ }^{3 a, 4}$ Due to their functionality and conformational rigidity, substituents can be regio- and stereoselectively installed at the different positions of the piperidine ring to provide, after cleavage of the oxazolidine ring and removal of the aminoalcohol moiety, enantiopure piperidine derivatives bearing virtually any type of substitution pattern, ${ }^{3 \mathrm{~d}, \mathrm{e}}$ which can be further elaborated into structurally diverse piperidinecontaining alkaloids and bioactive compounds. ${ }^{5}$ Alternatively, simultaneous opening of the oxazolidine and lactam rings provides five-carbon chiral linear building blocks, ${ }^{6}$ which have been successfully employed in the synthesis of complex natural products. ${ }^{6 \mathrm{~b}, 7}$

Taking a further step toward greater structural and stereochemical complexity, we report herein the generation of enantiopure 3,3,5-trisubstituted piperidines and acyclic five-
carbon, nitrogen-containing building blocks (1,5-aminoalcohols, 5-hydroxypentanenitriles) bearing two stereocenters, one of them quaternary, from chiral aminoalcohol-derived δ lactams.

2. RESULTS AND DISCUSSION

Initially, we focused our attention on the dialkylation of the known phenylglycinol-derived lactam 1a, which incorporates a methyl substituent with a well-defined configuration at the α position of the N, O-acetal carbon. This lactam was easily accessible in 74% yield by a cyclocondensation reaction of (R)phenylglycinol with methyl 4-methyl-5-oxopentanoate (2), in a process that involves a dynamic kinetic resolution of the racemic substrate. ${ }^{7 \mathrm{a}}$ Treatment of a THF solution of lactam 1a with LiHMDS at $-78{ }^{\circ} \mathrm{C}$, followed by addition of allyl bromide at the same temperature, afforded the alkylated products 3 and 6 -epi- 3 in 82% yield as an 8:2 epimeric mixture ${ }^{8}$ at the new stereogenic center (Scheme 1), in which endo isomer 3 was predominant. A similar endo facial selectivity was observed in the alkylation with methyl iodide, leading to lactams 4 (9:1 endo/exo ratio) in 70% yield.

[^0]

Scheme 1. Dialkylation Reactions from 3,8a-cis
Phenylglycinol-Derived Lactams

As could be expected, ${ }^{9}$ in both cases, the alkylation took place predominantly from the endo face of the lactam, i.e., trans with respect to the hydrogen at the C-8a position. The configurational assignment of exo/endo epimers of lactams 3 and $\mathbf{4}$ was effected by ${ }^{13} \mathrm{C}$ NMR spectroscopy: the shielding of C-6 and C-8 in the endo isomers as compared with the exo (6epi series) isomers was of diagnostic value.
The introduction of the second substituent was performed from the epimeric mixtures of the above monoalkylated lactams under the same reaction conditions used in the monoalkylation reactions (LiHMDS, $-78{ }^{\circ} \mathrm{C}$). The alkylation of 3 with methyl iodide took place in 75% yield with good endo stereofacial selectivity ($\mathrm{dr} 9: 1$) to give trisubstituted lactam 5 as the major product. The absolute configuration of the new quaternary stereocenter of this lactam was unambiguously established by X-ray crystallographic analysis.
Rather surprisingly, treatment of the lithium enolate of lactams 4 with allyl bromide afforded with good stereoselectivity (dr 82:18; 87% yield) the same lactam 5 , arising in this case from alkylation on the exo face of the enolate. ${ }^{10}$ Interestingly, the two sequences afforded a dialkylated lactam with the same absolute configuration at the quaternary stereocenter. The expected endo facial selectivity was also observed in the methylation of a C-6 epimeric mixture of lactams 7 (prepared from 6 as previously described ${ }^{11}$), which afforded lactam 8 as the major product ($\mathrm{dr} 81: 19 ; 42 \%$ yield).

Bearing in mind that the configuration of the C-8a stereocenter of oxazolopiperidone lactams exerts a dramatic influence on the stereoselectivity of alkylation reactions, ${ }^{9}$ we decided to study the stereochemical outcome of dialkylation reactions from the 3,8a-trans phenylglycinol-derived lactam $\mathbf{1 b}$, which was prepared by epimerization of $\mathbf{1 a}$ under acidic conditions (see the Supporting Information). The initial alkylation of the enolate of $\mathbf{1 b}$ with allyl bromide occurred in good yield (70%) and excellent stereoselectivity ($96: 4$ exo/ endo ratio) providing almost exclusively lactam 9 (Scheme 2). A subsequent alkylation with methyl iodide took place predominantly on the exo face to give (68\%) trisubstituted lactam 10 and its 6 -epimer ($78: 22$ ratio). In contrast, indicating that the order of introduction of the substituents has a dramatic influence on the stereoselectivity of the

Scheme 2. Dialkylation Reactions from 3,8a-trans Phenylglycinol-Derived Lactams

dialkylation, a sequential alkylation of $\mathbf{1 b}$ with methyl iodide and allyl bromide led to a nearly equimolecular mixture of lactams 10 and 6 -epi-10 (45:55 ratio). As anticipated, ${ }^{9}$ the initial enolate alkylation of $\mathbf{1 b}$ with methyl iodide took place with exo facial selectivity (87%; $85: 15$ exo/endo ratio) to yield lactam 11 as the major product, although, as in the allylation of 3,8a-cis lactam 4, the subsequent allylation of 11 occurred with an unexpected stereoselectivity. Nevertheless, predictably, the alkylation of 11 with ethyl iodide occurred with the same exo stereoselectivity as the methylation of 9 , affording (62% yield) trisubstituted lactams 12 and 6 -epi-12 (80:20 ratio), ${ }^{12}$ a result similar to that observed from the 8-demethyl analogue of 11 . $^{7 \mathrm{~b}}$ The same stereochemical outcome was observed in the dialkylation of the known ${ }^{13}$ 8-ethyl substituted lactam 13: Both the initial benzylation with benzyl bromide and the subsequent generation of the quaternary stereocenter by alkylation of the resulting substituted lactam 14 (72% yield; dr 92:8) with methyl iodide took place in good yield and exo facial selectivity to provide trisubstituted lactam 15 (85% yield; dr $85: 15$) as the major product.

In order to analyze the influence exerted on the stereoselectivity by the amino alcohol moiety, we then studied similar dialkylations using chiral lactam 16 derived from ($1 R, 2 S$)-1-amino-2-indanol, ${ }^{14}$ a conformationally rigid analogue of phenylglycinol. The results are outlined in Scheme 3. This lactam, in which the two H atoms at the carbons α to the nitrogen are cis, can be envisaged as a rigid analogue of phenylglycinol-derived lactam 1a and was prepared in 48\% yield by cyclocondensation of cis-1-amino-2-indanol with racemic δ-oxoester 2 . Significant amounts of the diastereomers 1-epi-16 (19\%) and 1,11a-diepi-16 (10\%) were also isolated (see the Supporting Information).

As in the case of 1a, we studied the facial selectivity in the generation of the quaternary stereocenter by introduction of allyl and methyl substituents. When the initial alkylation of the enolate of $\mathbf{1 6}$ was performed with allyl tosylate, the subsequent alkylation of the resulting allyl lactam 17 (75% yield; 70:30

Scheme 3. Dialkylation Reactions from Aminoindanol-Derived Lactams

exo/endo ratio ${ }^{15,16}$ with methyl iodide took place with endo facial selectivity ($\mathrm{dr} 74: 26$) to give lactams 18 and 3-epi-18 in 62% yield. ${ }^{17}$ By reversing the order of introduction of the substituents, after the initial alkylation of the enolate of 16 with methyl iodide to give an epimeric mixture of 19 and 3-epi-19 (75% yield; 68:32 exo/endo ratio), ${ }^{18}$ the quaternary stereocenter was generated by reaction with allyl tosylate, also with endo facial selectivity (50% yield; endo/exo ratio: 63:37), to give lactam 3 -epi-18 as the major product. ${ }^{19}$ Interestingly, by selecting the appropriate order of the alkylations, either of the two epimers at the new quaternary stereocenter can be obtained as the major product. It is worth mentioning that the dialkylation of the above aminoindanol-derived lactams takes place predominantly on the endo face, as in the dialkylations of phenylglycinol-derived lactam 1a. However, taking into account that the stereoselectivity in both the cyclocondensation reaction leading to the aminoindanol-derived lactam 16 and the generation of the quaternary stereocenter from this lactam was lower than when operating from phenylglycinolderived lactam 1a, no additional studies were performed in this series.
To illustrate the potential of the procedure in providing stereochemical diversity, lactams 5 and 10 were converted to the corresponding piperidines 20 and 5-epi-20 by treatment with alane (generated in situ from LiAlH_{4} and AlCl_{3}), which brought about the reduction of the amide carbonyl and the reductive opening of the oxazolidine ring (Scheme 4). A subsequent debenzylation by hydrogenolysis in the presence of $\mathrm{Boc}_{2} \mathrm{O}$ provided the respective trisubstituted piperidine 21 and its epimer at the quaternary center 5 -epi-21. A similar two-step sequence from the tetracyclic aminoindanol-derived lactam 3-epi-18 led to piperidine 3-epi-21 (ent-5-epi-21). In this way, the procedure provides access to three stereoisomeric piperidines bearing a tertiary and a quaternary stereocenter. Furthermore, taking into account that both enantiomers of phenylglycinol are commercially available, by selection of the appropriate R or S enantiomer of the aminoalcohol, 3,3,5trisubstituted piperidines are accessible in both enantiomeric series.

Finally, we decided to convert some of the above tricyclic lactams to acyclic chiral building blocks. Simultaneous reductive cleavage of both the oxazolidine and piperidone rings was satisfactorily accomplished by treatment of lactams

Scheme 4. Access to Diastereomeric Piperidines Containing Tertiary and Quaternary Stereocenters

10, 6-epi-10, 12, and 15 with lithium amidotrihydroborate $\left(\mathrm{LiNH}_{2} \mathrm{BH}_{3}\right),{ }^{20}$ generated in situ by deprotonation of the borane-ammonia complex with n-BuLi (Scheme 5). After protection of the secondary amino group of the resulting acyclic amino diols (23, 2-epi-23 and 24) as an N-Boc derivative (compounds 26, 2 -epi-26 and 27), the reductive removal of the benzylic substituent was performed in excellent yield by treatment with sodium in liquid NH_{3} at $-33^{\circ} \mathrm{C}$ for short reaction times (seconds) to give the respective 5 -amino-1-pentanols 28, 2-epi-28, and 29, all of them containing a tertiary and a quaternary stereocenter. As illustrated by the preparation of 28 and 2-epi-28, this methodology tolerates the presence of an alkene group.

Acyclic amino diols 24 and 25 were also envisaged as precursors of related five-carbon building blocks, bearing a nitrile functionality. This was achieved in two steps: protection of the hydroxy groups as TBDPS ethers (compounds 30 and 31) followed by oxidative removal of the phenylethanol moiety

Scheme 5. Access to Acyclic Chiral Building Blocks Containing Tertiary and Quaternary Stereocenters

using molecular iodine in aqueous ammonia ${ }^{21}$ gave the O protected hydroxy nitriles 32 and 33.

3. CONCLUSIONS

Chiral aminoalcohol-derived oxazolopiperidone lactams constitute useful starting materials for the preparation of enantiopure piperidines and linear nitrogen-containing fivecarbon building blocks bearing a tertiary and a quaternary stereocenter. In the phenylglycinol series, starting from 8substituted lactams, easily accessible by cyclocondensation reactions, the stereoselective dialkylation at the carbonyl α position generates the quaternary stereocenter and the subsequent two-step reductive removal of the chiral inductor provides enantiopure 3,3,5-trisubstituted piperidines. The stereoselectivity of the dialkylation process mainly depends on the relative $\mathrm{H}-3 / \mathrm{H}-8$ a configuration of the starting lactam and the order of introduction of the two substituents. The use of aminoindanol-derived instead of phenylglycinol-derived lactams does not represent an improvement in terms of stereoselectivity and chemical yield. On the other hand, the simultaneous reductive $\left(\mathrm{LiNH}_{2} \mathrm{BH}_{3}\right)$ opening of the oxazolidine and piperidone rings of the dialkylated lactams followed by reductive (Na , liq. NH_{3}) or oxidative $\left(\mathrm{I}_{2}\right.$, aq. $\left.\mathrm{NH}_{3}\right)$ cleavage of the chiral inductor opens access to 5 -amino-1-pentanols or O-protected 5 -hydroxypentanenitriles also containing a tertiary and a quaternary stereocenter. By the appropriate choice of the alkylating reagents, the methodology described herein could be applied to the synthesis of a variety of related enantiopure trisubstituted piperidines and acyclic aminoalcohols and hydroxynitriles, thus significantly expanding the synthetic potential of phenylglycinol-derived oxazolopiperidone lactams.

4. EXPERIMENTAL SECTION

4.1. General Information. All air-sensitive reactions were performed under a dry argon or nitrogen atmosphere with dry, freshly distilled solvents using standard procedures. Evaporation of solvent was accomplished with a rotatory evaporator. Drying of organic extracts during the workup of reactions was performed over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Thin-layer chromatography was done on SiO_{2} (silica gel $60 \mathrm{~F}_{254}$), and the spots were located by UV light and a $1 \% \mathrm{KMnO}_{4}$ solution. Chromatography refers to flash column chromatography and was carried out on SiO_{2} (silica gel 60, 230-400 mesh). Diastereomeric ratios were calculated by ${ }^{1} \mathrm{H}$ NMR from the crude reaction mixtures. NMR spectra were recorded on a Varian VNMRS400 or Mercury 400 spectrometer [$400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and 100.6 $\left.\mathrm{MHz}\left({ }^{13} \mathrm{C}\right)\right]$, and chemical shifts are reported in δ values, in parts per million (ppm) relative to $\mathrm{Me}_{4} \mathrm{Si}(0 \mathrm{ppm})$ or relative to residual chloroform ($7.26 \mathrm{ppm}, 77.0 \mathrm{ppm}$) as an internal standard. Data are reported in the following manner: chemical shift, multiplicity, coupling constant (J) in hertz (Hz), integrated intensity, and assignment. Assignments and stereochemical determinations are given only when they are derived from definitive two-dimensional NMR experiments (g-HSQCCOSY). IR spectra were performed in a spectrophotometer Nicolet Avatar 320 FTIR, and only noteworthy IR absorptions $\left(\mathrm{cm}^{-1}\right)$ are listed. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. $[\alpha]_{\mathrm{D}}$ values are given in 10^{-1} deg. $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. High-resolution mass spectra (HMRS) were performed by Centres Cientifics i Tecnològics de la Universitat de Barcelona.
4.2. General Procedure for the Monoalkylation Reactions. A solution of the lactam (1a, 1b, 6, 13, or 16; 1
$\mathrm{mmol})$ in anhydrous THF was added to a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of LiHMDS (1.0 M in THF, 1.5 mmol) in anhydrous THF under an argon atmosphere. After stirring the solution for 2 h , the alkylating reagent (2.5 mmol) was added and stirring was continued at this temperature for an additional 3 h . The reaction was quenched by the addition of saturated aqueous NaCl , and the resulting mixture was extracted with EtOAc and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated, and the resulting residue was chromatographed (SiO_{2} previously washed with $9: 1$ hexane $-\mathrm{Et}_{3} \mathrm{~N}$).
4.2.1. (3R, $6 \mathrm{~S}, 8 \mathrm{~S}, 8 a \mathrm{R}$)-6-Allyl-8-methyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (3) and Its ($3 R, 6 R, 8 S, 8 a R$) Diastereomer ($6-E p i-3$). Following the general procedure, from lactam $1 \mathrm{a}^{7 \mathrm{a}}(1.8 \mathrm{~g}, 7.8 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$, LiHMDS ($11 \mathrm{~mL}, 11 \mathrm{mmol}$) in THF (65 mL), and allyl bromide ($1.69 \mathrm{~mL}, 19.5 \mathrm{mmol}$), lactam $3(1.38 \mathrm{~g}, 66 \%)$ and its diastereomer 6 -epi-3 ($350 \mathrm{mg}, 16 \%$) were obtained after flash chromatography ($9: 1$ to $1: 1$ hexane-EtOAc). ${ }^{8}$ 3: IR (film) ν 2922, 1656, $699 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g-HSQC) $\delta 1.20\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27-1.37$ (m, 1H, H-7), 1.91-1.98 (m, 1H, H-7), 1.99-2.04 (m, 1H, H8), 2.22-2.29 (m, 1H, $\left.=\mathrm{CHCH}_{2}\right), 2.33-2.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}-6)$, $2.57-2.63\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CHCH}_{2}\right), 4.02(\mathrm{dd}, J=9.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, H-2), 4.15 (dd, $J=9.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 4.89 (dd, $J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $5.03-5.08$ (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.67-5.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.21-7.35(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.0\left(\mathrm{CH}_{3}\right), 32.9$ (C-7), 34.4 (C-8), $35.8\left(=\mathrm{CHCH}_{2}\right), 41.3(\mathrm{C}-6), 59.4(\mathrm{C}-3)$, 73.8 (C-2), 93.4 (C-8a), $117.2\left(\mathrm{CH}_{2}=\right), 126.4(\mathrm{C}-\mathrm{Ar}), 126.4$ (C-Ar), 127.5 (C-Ar), 128.3 (C-Ar), 128.3 (C-Ar), 135.8 $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 141.6(\mathrm{C}-\mathrm{Ar}), 168.9(\mathrm{CO}) ;[\alpha]_{\mathrm{D}}^{22}-4.0$ (c 1.3, CHCl_{3}); HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{2}$ 272.1645; found, 272.1644. 6-epi-3: IR (film) ν 2933, 1651, $701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g HSQC) $\delta 1.17\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.53-1.61(\mathrm{~m}, 1 \mathrm{H}$, H-7), $1.81-1.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 2.04-2.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8)$, 2.13-2.21 (m, 1H, $\left.=\mathrm{CHCH}_{2}\right), 2.36-2.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6)$, 2.40-2.48 (m, 1H, $\left.=\mathrm{CHCH}_{2}\right), 4.02(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, 4.15 (dd, $J=9.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 8a), $4.92(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.99-5.03(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}=$), $5.63-5.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.22-7.33(\mathrm{~m}, 5 \mathrm{H}$, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.8\left(\mathrm{CH}_{3}\right), 31.0(\mathrm{C}-$ 7), 31.3 (C-8), $37.1\left(=\mathrm{CHCH}_{2}\right), 39.9(\mathrm{C}-6), 59.1(\mathrm{C}-3), 74.0$ (C-2), $93.5(\mathrm{C}-8 \mathrm{a}), 117.1\left(\mathrm{CH}_{2}=\right), 126.3(\mathrm{C}-\mathrm{Ar}), 126.3(\mathrm{C}-$ $\mathrm{Ar}), 127.5$ (C-Ar), 128.6 (C-Ar), 128.6 (C-Ar), $136.2(=\mathrm{CH})$, 141.6 (C-Ar), 169.7 (CO); $[\alpha]^{22}{ }_{\mathrm{D}}+3.6\left(c 1.6, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}$ $73-80{ }^{\circ} \mathrm{C}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{2}$ 272.1645; found, 272.1647 .
4.2.2. (3 R, $6 S, 8 S, 8 a R$)-6,8-Dimethyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (4). Following the general procedure, from lactam $\mathbf{1 a}^{7 \mathrm{a}}(1.89 \mathrm{~g}, 8.15$ mmol) in THF (21 mL), LiHMDS ($12.2 \mathrm{~mL}, 12.2 \mathrm{mmol}$) in THF (68 mL) , and methyl iodide ($1.3 \mathrm{~mL}, 20.4 \mathrm{mmol}$), lactam 4 ($1.26 \mathrm{~g}, 63 \%$) and its diastereomer 6 -epi-4 ($140 \mathrm{mg}, 7 \%$) were obtained after flash chromatography ($9: 1$ hexaneEtOAc). ${ }^{10}$ 4: IR (film) ν 2930, 1657, $697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, g$-HSQC) $\delta 1.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{C} 6-\mathrm{CH}_{3}\right), 1.19\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{CH}_{3}\right), 1.68-1.72$ (m, 2H, H-7), 2.04-2.18 (m, 1H, H-8), 2.42-2.50 (m, 1H, H6), 4.00 (dd, $J=8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.13$ (dd, $J=8.8,6.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 4.91(\mathrm{dd}, J=6.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.21-7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.9\left(\mathrm{C} 8-\mathrm{CH}_{3}\right), 18.8\left(\mathrm{C} 6-\mathrm{CH}_{3}\right), 31.0(\mathrm{C}-8)$,
34.7 (C-7), 35.2 (C-6), 58.8 (C-3), 74.0 (C-2), 93.6 (C-8a), 126.2 (C-Ar), 126.2 (C-Ar), 127.4 (C-Ar), 128.5 (C-Ar), 128.5 (C-Ar), 141.7 (C-Ar), 170.9 (CO); $[\alpha]^{22}{ }_{\mathrm{D}}-3.3$ (c 1.0, CHCl_{3}); HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}$ 246.1489; found, 246.1491.
4.2.3. ($3 \mathrm{R}, 6 \mathrm{~S}, 8 \mathrm{R}, 8 a \mathrm{~S}$)-6-Allyl-8-methyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (9). Following the general procedure, from lactam $\mathbf{1 b}(1.5 \mathrm{~g}, 6.49$ mmol; see the Supporting Information) in THF (17 mL), LiHMDS ($10 \mathrm{~mL}, 10.0 \mathrm{mmol}$) in THF (60 mL), and allyl bromide ($1.41 \mathrm{~mL}, 16.2 \mathrm{mmol}$), lactam $9(1.1 \mathrm{~g}, 63 \%)$ and a 62:38 mixture of 9 and its diastereomer 6-epi-9 ($130 \mathrm{mg}, 7 \%$) were obtained after flash chromatography ($9: 1$ to $1: 1$ hexaneEtOAc). 9: IR (film) $\nu 1657$ (NCO) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{g}$-HSQC) $\delta 1.17(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $1.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 1.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 1.84$ (ddd, $J=$ 13.8, 6.4, $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 2.37 (m, 1H, CH2C-6), 2.49 (m, $1 \mathrm{H}, \mathrm{H}-6), 2.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}-6\right), 3.72(\mathrm{dd}, J=8.8,8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2), 4.48$ (dd, $J=8.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $4.58(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 5.05-5.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}=\right), 5.25(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.67-5.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=), 7.22-7.28(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{ArH}), 7.32-7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 17.1\left(\mathrm{CH}_{3} \mathrm{C}-8\right), 31.6(\mathrm{C}-7), 34.5(\mathrm{C}-8), 36.8(\mathrm{C} 6-$ CH_{2}), 41.6 (C-6), 58.7 (C-3), 72.8 (C-2), 93.9 (C-8a), 117.5 $\left(\mathrm{CH}_{2}=\right), 125.9$ (C-Ar), 128.8 (C-Ar), 127.5 (C-Ar), 135.3 $(\mathrm{CH}=)$), $139.6(\mathrm{C}-\mathrm{Ar}), 170.9(\mathrm{NCO}) ;[\alpha]_{\mathrm{D}}^{22}-62.78$ (c 1.16, MeOH); HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{2}$ 272.1645; found 272.1654.
4.2.4. (3R, $6 S, 8 R, 8 a S$)-6,8-Dimethyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (11) and Its ($3 R, 6 R, 8 R, 8 a S$) Diastereomer ($6-E p i-11$). Following the general procedure, from lactam $\mathbf{1 b}(1.86 \mathrm{~g}, 8.03 \mathrm{mmol}$; see the Supporting Information) in anhydrous THF (21 mL), LiHMDS ($12.0 \mathrm{~mL}, 12.0 \mathrm{mmol}$) in THF (67 mL), and methyl iodide ($1.25 \mathrm{~mL}, 20.1 \mathrm{mmol}$), lactam $11(1.3 \mathrm{~g}, 66 \%)$ and a $37: 63$ mixture of 11 and its diastereomer 6 -epi-11 (410 $\mathrm{mg}, 21 \%$) were obtained after flash chromatography ($9: 1$ to 7:3 hexane-EtOAc). ${ }^{12}$ 11: IR (film) $\nu 1656$ (NCO) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g-HSQC) $\delta 1.17$ (d, $J=6.2$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{C} 8-\mathrm{CH}_{3}\right), 1.25\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 6-\mathrm{CH}_{3}\right), 1.36(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-7$), 1.74 (m, 1H, H-8), 1.90 (ddd, $J=13.7,6.2,2.9 \mathrm{~Hz}$, 1H, H-7), 2.45 (ddd, $J=18.4,13.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.74 (dd, $J=9.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.47(\mathrm{dd}, J=9.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2), 4.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 5.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3), 7.23-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.31-7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.1\left(\mathrm{C} 8-\mathrm{CH}_{3}\right), 18.3\left(\mathrm{C} 6-\mathrm{CH}_{3}\right)$, 34.6 (C-8), 35.0 (C-7), 37.2 (C-6), 58.4 (C-3), 72.7 (C-2), 93.9 (C-8a), 125.9 (C-Ar), 128.8 (C-Ar), 127.5 (C-Ar), 139.7 (C-Ar), 172.1 (NCO); $[\alpha]_{\mathrm{D}}^{22}-136.1$ (c $1.05, \mathrm{MeOH}$); HRMS (ESI-TOF) $m / z[M+H]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}$ 246.1489; found 246.1489.
4.2.5. (3R, $6 R, 8 S, 8 a S)-6-B e n z y l-8-e t h y l-5-o x o-3-p h e n y l-~$ 2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (14). Following the general procedure, from lactam $13^{13}(112 \mathrm{mg}, 0.46$ mmol) in THF (2 mL), LiHMDS (0.68 mL 0.68 mmol) in THF (3.8 mL), and benzyl bromide ($0.14 \mathrm{~mL}, 1.14 \mathrm{mmol}$), lactam 14 ($102 \mathrm{mg}, 70 \%$) and its diastereomer 6 -epi-14 (9 mg , 2%) were obtained after flash chromatography ($98: 2$ to 9:1 hexane-EtOAc). 14: IR (film) $\nu 1651$ (NCO) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, g$-HSQC) $\delta 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.05-1.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.52(\mathrm{ddd}, \mathrm{J}=14.4$, $11.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 1.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.81$ (ddd, $J=$ $14.4,10.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 2.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 2.64(\mathrm{~m}, 1 \mathrm{H}$,

H-6), 2.97 (dd, $J=13.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.06 (dd, $J=$ $13.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.68 (dd, $J=9.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.39 (dd, $J=9.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.95$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 9), 5.18 ($\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-3$), $7.08-7.35(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 16.6$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 25.1(\mathrm{C}-7), 36.0(\mathrm{C}-8), 37.7\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 38.3(\mathrm{C}-$ 6), 58.4 (C-3), 72.6 (C-2), 90.3 (C-9), 125.9 (C-Ar), 128.1 (C-Ar), 128.5 (C-Ar), 129.3 (C-Ar), 126.1 (C-Ar), 127.3 (C$\mathrm{Ar}), 138.6$ (C-Ar), 139.3 (C-Ar), 170.3 (NCO); $[\alpha]_{\mathrm{D}}^{22}+17.9$ (c 1.19, CHCl_{3}); mp $114-116{ }^{\circ} \mathrm{C}$; HRMS (ESI-TOF) m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 336.1958$; found 336.1956.
4.2.6. (1S, 3R,5aR,10aS, 11aR)-3-Allyl-1-methyl-4-oxo-1,2,3,4,5a,10,10a,11a-octahydroindeno[1', 2':4,5]oxazolo-[3,2-a]pyridine (17) and Its (1S,3S,5aR,10aS,11aR) Diastereomer (3-Epi-17). Following the general procedure, from lactam 16 ($803 \mathrm{mg}, 3.3 \mathrm{mmol}$) in THF (8.5 mL), LiHMDS ($4.95 \mathrm{~mL}, 4.95 \mathrm{mmol}$) in THF (27 mL), and allyl tosylate ($1.50 \mathrm{~mL}, 8.25 \mathrm{mmol}$), lactam 17 ($492 \mathrm{mg}, 53 \%$) and its diastereomer 3-epi-17 ($210 \mathrm{mg}, 22 \%$) were obtained after flash chromatography ($95: 5$ to $1: 1$ hexane-EtOAc). ${ }^{16}$ 17: IR (film) ν 2922, 1648, $753 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}$, g-HSQC) $\delta 1.02\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.46-1.54(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-2), 1.65-1.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-2), 2.17-2.25(\mathrm{~m}, 1 \mathrm{H},=$ $\left.\mathrm{CHCH}_{2}\right), 2.43-2.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.57-2.63(\mathrm{~m}, 1 \mathrm{H},=$ $\left.\mathrm{CHCH}_{2}\right), 3.20(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10), 4.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-11 \mathrm{a}), 4.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{a}), 4.99-5.03(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\right), 5.50(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}), 5.69-5.79(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 7.17-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.7\left(\mathrm{CH}_{3}\right), 31.0(\mathrm{C}-$ $1 / 2), 31.2(\mathrm{C}-1 / 2), 36.5(\mathrm{C}-10), 37.6\left(=\mathrm{CHCH}_{2}\right), 40.0(\mathrm{C}-$ 3), 64.5 (C-5a), 81.4 (C-10a), 93.2 (C-11a), $117.1\left(\mathrm{CH}_{2}=\right)$, 124.8 (C-Ar), 127.4 (C-Ar), 128.2 (C-Ar), 128.4 (C-Ar), $136.3\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 140.1(\mathrm{C}-\mathrm{Ar}), 141.8(\mathrm{C}-\mathrm{Ar}), 170.1(\mathrm{CO})$; $[\alpha]_{\mathrm{D}}^{22}-12.5\left(c 0.8, \mathrm{CHCl}_{3}\right)$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}, 284.1645$ found, 284.1643. 3-epi17: IR (film) $\nu 2917,1648,751 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CDCl}_{3}, \mathrm{COSY}, g$-HSQC) $\delta 1.04\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.19-1.29(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 1.63-1.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1)$, 1.84-1.90 (ddd, $J=14.0,6.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 2.31-2.38$ $\left(\mathrm{m}, 1 \mathrm{H},=\mathrm{CHCH}_{2}\right), 2.42-2.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.68-2.74(\mathrm{~m}$, $\left.1 \mathrm{H},=\mathrm{CHCH}_{2}\right), 3.20(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10), 4.42(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{a}), 4.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{a}), 5.06-5.13(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\right), 5.49(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}), 5.72-5.83(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 7.16-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.4\left(\mathrm{CH}_{3}\right), 33.0(\mathrm{C}-$ 2), $34.1(\mathrm{C}-1), 35.9\left(=\mathrm{CHCH}_{2}\right), 36.5(\mathrm{C}-10), 41.1(\mathrm{C}-3)$, 64.9 (C-5a), 81.3 (C-10a), 93.1 (C-11a), $117.3\left(\mathrm{CH}_{2}=\right)$, 124.9 (C-Ar), 127.4 (C-Ar), 128.5 (C-Ar), 128.8 (C-Ar), $135.8\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 140.3(\mathrm{C}-\mathrm{Ar}), 141.5(\mathrm{C}-\mathrm{Ar}), 169.8(\mathrm{CO})$; $[\alpha]_{\mathrm{D}}^{22}-18.2$ (c 1.3, CHCl_{3}); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}$, 284.1645; found, 284.1644.
4.2.7. (1S, 3R,5aR,10aS, $11 a R$)-1,3-Dimethyl-4-oxo-1,2,3,4,5a,10,10a,11a-octahydroindeno[1',2':4,5]oxazolo-[3,2-a]pyridine (19) and Its (1S, $3 \mathrm{~S}, 5 a \mathrm{R}, 10 a \mathrm{~S}, 11 a \mathrm{R}$) Diastereomer (3-Epi-19). Following the general procedure, from lactam $16(470 \mathrm{mg}, 1.93 \mathrm{mmol})$ in THF (5 mL), LiHMDS $(2.9 \mathrm{~mL}, 2.9 \mathrm{mmol})$ in THF (16 mL), and methyl iodide (0.31 $\mathrm{mL}, 4.83 \mathrm{mmol}$), lactam 19 ($252 \mathrm{mg}, 51 \%$) and its diastereomer 3-epi-19 ($119 \mathrm{mg}, 24 \%$) were obtained as white solids after flash chromatography (95:5 to 7:3 hexane-EtOAc). 19: IR (film) $\nu 2924,1648,1467 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g-HSQC) $\delta 1.09$ ($\mathrm{d}, J=6.4$
$\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{C} 1-\mathrm{CH}_{3}\right), 1.28\left(\mathrm{~d}, J=7.2,3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 1.63-1.68$ (m, 2H, H-2), $1.74-1.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 2.52-2.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 3), 3.25 (d, $J=2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10$), 4.51 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 11a), 4.84 (m, 1H, H-10a), 5.53 (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}$), $7.21-7.32$ (m, 3H, ArH), 7.94 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$); ${ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.8\left(\mathrm{C} 1-\mathrm{CH}_{3}\right), 19.2\left(\mathrm{C} 3-\mathrm{CH}_{3}\right)$, 31.0 (C-1), 34.7 (C-2), 35.4 (C-3), 36.4 (C-10), 64.4 (C-5a), 81.4 (C-10a), 93.2 (C-11a), 124.8 (C-Ar), 127.4 (C-Ar), 128.1 (C-Ar), 128.4 (C-Ar), 140.1 (C-Ar), 141.8 (C-Ar), 172.2 (CO); $[\alpha]^{22}{ }_{\mathrm{D}}-17.3$ (c 1.0, CHCl_{3}); mp 143-147 ${ }^{\circ} \mathrm{C}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}, 258.1489$; found, 258.1486. 3-epi-19: IR (film) $\nu 2926,1649,1465 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, g$-HSQC) $\delta 1.04$ ($\mathrm{d}, J=$ $\left.6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 1-\mathrm{CH}_{3}\right), 1.17-1.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.27(\mathrm{~d}, \mathrm{~J}=$ $\left.7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 1.67-1.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 1.92-1.96(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-2), 2.38-2.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 3.20(\mathrm{~d}, 2 \mathrm{H}, J=3.2 \mathrm{~Hz}, \mathrm{H}-$ 10), $4.43(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{a}), 4.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{a})$, $5.48(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}), 7.16-7.25(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 8.00$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $16.4\left(\mathrm{C} 1-\mathrm{CH}_{3}\right), 17.1\left(\mathrm{C} 3-\mathrm{CH}_{3}\right), 34.2(\mathrm{C}-1), 36.4(\mathrm{C}-2), 36.5$ (C-10), 36.7 (C-3), 64.7 (C-5a), 81.4 (C-10a), 93.3 (C-11a), 124.8 (C-Ar), 127.3 (C-Ar), 128.5 (C-Ar), 128.8 (C-Ar), 140.3 (C-Ar), 141.5 (C-Ar), 171.2 (CO). $[\alpha]^{22}{ }_{\mathrm{D}}-16.9$ (c 1.0, CHCl_{3}); mp 115-117 ${ }^{\circ} \mathrm{C}$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}, 258.1489$; found, 258.1493.
4.3. General Procedure for the Dialkylation Reactions. A solution of epimeric mixture of the lactam (3, 4, 7, 9, $11,14,17$, or 19 ; 1 mmol) in anhydrous THF was added to a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of LiHMDS (1.0 M in THF, 3 or 4.2 mmol) in anhydrous THF under an argon atmosphere. The cooled solution was stirred for 2 h , the alkylating reagent (3 mmol) was added at $-78^{\circ} \mathrm{C}$, and stirring was continued at this temperature for an additional 3 h . The reaction was quenched by the addition of saturated aqueous NaCl at room temperature, and the resulting mixture was extracted with EtOAc and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated, and the resulting residue was chromatographed.
4.3.1. (3R, $6 R, 8 S, 8 a R)-6-A l l y l-6,8$-dimethyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (5) and Its ($3 R, 6 S, 8 S, 8 a R$) Diastereomer (6-Epi-5). From lactams 3: Following the general procedure, from a mixture of lactams 3 and 6 -epi- $3(200 \mathrm{mg}, 0.74 \mathrm{mmol})$ in THF (4 mL), LiHMDS $(2.22 \mathrm{~mL}, 2.22 \mathrm{mmol})$ in THF $(6.6 \mathrm{~mL})$, and methyl iodide ($0.14 \mathrm{~mL}, 2.29 \mathrm{mmol}$), lactam $5(142 \mathrm{mg}, 68 \%)$ and its diastereomer 6 -epi- $5(15 \mathrm{mg}, 7 \%)$ were obtained after flash chromatography ($9: 1$ to $1: 1$ hexane-EtOAc). From lactams 4: Following the general procedure, from a mixture of lactams 4 and 6 -epi-4 ($99 \mathrm{mg}, 0.40 \mathrm{mmol}$) in THF (2 mL), LiHMDS ($1.18 \mathrm{~mL}, 1.18 \mathrm{mmol}$) in THF (6.6 mL), and allyl bromide ($0.11 \mathrm{~mL}, 1.23 \mathrm{mmol}$), lactam $5(82 \mathrm{mg}, 71 \%)$ and its diastereomer 6 -epi- 5 ($19 \mathrm{mg}, 16 \%$) were obtained after flash chromatography ($9: 1$ to $1: 1$ hexane-EtOAc). ${ }^{10}$ 5: IR (film) ν 2924, 1653, $699 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{g}$ HSQC) $\delta 1.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.47 (dd, $J=3.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 1.66 (dd, $J=14.0,14.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-7), 2.01-2.10\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CHCH}_{2}\right), 2.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8)$, $2.46-2.51\left(\mathrm{dd}, J=6.4,13.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHCH}_{2}\right), 3.99(\mathrm{dd}, J=$ $10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.12$ (dd, $J=10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, $4.38(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 4.87(\mathrm{dd}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3), 5.03-5.09\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}_{2}\right), 5.66-5.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\right.$ CH), 7.21-7.30 (m, 5H, ArH); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 16.7\left(\mathrm{C} 8-\mathrm{CH}_{3}\right), 26.4\left(\mathrm{C} 6-\mathrm{CH}_{3}\right), 31.3(\mathrm{C}-8), 39.1$
(C-7), 42.3 (C-6), $43.9\left(=\mathrm{CHCH}_{2}\right), 59.2(\mathrm{C}-3), 73.9$ (C-2), 93.6 (C-6), $118.4\left(\mathrm{CH}_{2}=\right)$, 126.2 (C-Ar), 126.2 (C-Ar), 127.4 (C-Ar), 128.5 (C-Ar), 128.5 (C-Ar), $134.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 141.8$ (C-Ar), 171.9 (CO); $[\alpha]^{22}{ }_{\mathrm{D}}-6.5$ ($c 1.0, \mathrm{CHCl}_{3}$); mp 68-70 ${ }^{\circ} \mathrm{C}$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2}$, 286.1802; found, 286.1801. 6-epi-5: IR (film) $~ 2924,1651$, $698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g-HSQC) δ $1.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.34(\mathrm{dd}, J=$ $14.4,13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 1.85 (dd, $J=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $2.10\left(\mathrm{dd}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHCH}_{2}\right), 2.12-2.18(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-8), 2.26\left(\mathrm{dd}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHCH}_{2}\right), 4.04(\mathrm{dd}, J=$ 9.0, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.15 (dd, $J=9.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.42 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 4.85(\mathrm{dd}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, $4.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\right), 4.96-5.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.52-5.63$ (m, 1H, CH $\mathrm{C}_{2}=\mathrm{CH}$), 7.21-7.34 (m, 5H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.6\left(\mathrm{C} 8-\mathrm{CH}_{3}\right), 25.2\left(\mathrm{C} 6-\mathrm{CH}_{3}\right), 31.5$ (C-8), 39.5 (C-7), $41.8(\mathrm{C}-6), 44.1\left(=\mathrm{CHCH}_{2}\right), 59.3(\mathrm{C}-3)$, 73.9 (C-2), 93.6 (C-8a), $118.2\left(\mathrm{CH}_{2}=\right)$, 126.6 (C-Ar), 126.6 (C-Ar), 127.4 (C-Ar), 128.4 (C-Ar), 128.4 (C-Ar), 133.8 $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 141.8(\mathrm{C}-\mathrm{Ar}), 172.4(\mathrm{CO}) ;[\alpha]_{\mathrm{D}}^{22}+1.6$ (c 1.0, CHCl_{3}); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2}, 286.1802$; found, 286.1800.
4.3.2. (3R, $6 R, 8 S, 8 a R$)-6-Allyl-8-ethyl-6-methyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (8). Following the general procedure, from a mixture of lactams 7 and 6 -epi- $7^{11}(274 \mathrm{mg}, 0.96 \mathrm{mmol})$ in THF (4 mL), LiHMDS ($4.12 \mathrm{~mL}, 4.12 \mathrm{mmol}$) in THF (16 mL), and methyl iodide ($0.41 \mathrm{~mL}, 2.88 \mathrm{mmol}$) lactam $8(98 \mathrm{mg}, 34 \%)$ and its diastereomer 6 -epi- $8(23 \mathrm{mg}, 8 \%)$ were obtained after flash chromatography ($90: 10$ to $70: 30$ hexane-EtOAc). IR (film) ν $1660 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{g}$-HSQC) δ 1.07 (t, J = $7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6}-\mathrm{CH}_{3}\right)$, 1.30-1.38 (m, 1H, H-7), 1.60 (m, 2H, H-7, H-8), 1.81-1.87 (m, 1H, CH2 CH3 $), 1.89-1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.07$ (dd, J $\left.=13.5,8.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHCH}_{2}\right), 2.50(\mathrm{dd}, J=13.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.=\mathrm{CHCH}_{2}\right), 3.99(\mathrm{dd}, J=9.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.13(\mathrm{dd}, J=$ 9.0, $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.46 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 4.86 (dd, $J=6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.05-5.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.66-$ $5.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.22-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.1\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 26.4$ $\left(\mathrm{C} 6-\mathrm{CH}_{3}\right), 35.9(\mathrm{C}-8), 37.7(\mathrm{C}-7), 42.0\left(=\mathrm{CHCH}_{2}\right), 44.4(\mathrm{C}-$ 6), 59.1 (C-3), 73.9 (C-2), 92.7 (C-8a), $118.4\left(\mathrm{CH}_{2}=\right), 126.3$ (C-Ar), 127.4 (C-Ar), $128.5(\mathrm{C}-\mathrm{Ar}), 134.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right) 141.9$ (C-Ar), 171.9 (NCO); $[\alpha]^{22}{ }_{\mathrm{D}}-97.5$ (c 1.0, MeOH); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}$, 300.4102; found 300.4198.
4.3.3. (3R,6S,8R,8aS)-6-Allyl-6,8-dimethyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (10) and Its ($3 R, 6 R, 8 R, 8 a S$) Diastereomer ($6-E p i-10$). From lactams 9 : Following the general procedure, from a mixture of lactams 9 and 6 -epi-9 ($547 \mathrm{mg}, 2.02 \mathrm{mmol}$) in THF (12 mL), LiHMDS ($5.86 \mathrm{~mL}, 5.86 \mathrm{mmol}$) in THF (20 mL), and methyl iodide $(0.36 \mathrm{~mL}, 5.86 \mathrm{mmol})$, lactam $10(300 \mathrm{mg}, 52 \%)$ and a $7: 93$ diastereomeric mixture of lactams 10 and 6 -epi- 10 (92 mg , 16%) were obtained after flash chromatography ($95: 5$ hexane$\mathrm{Et}_{2} \mathrm{O}$ to EtOAc). From lactams 11: Following the general procedure, from a mixture of lactams 11 and 6 -epi- $11(250 \mathrm{mg}$, 1.02 mmol) in THF (3 mL), LiHMDS ($2.95 \mathrm{~mL}, 2.95 \mathrm{mmol}$) in THF (16 mL), and allyl bromide ($0.28 \mathrm{~mL}, 3.07 \mathrm{mmol}$), lactam 10 ($107 \mathrm{mg}, 37 \%$) and its diastereomer 6 -epi-10 (130 $\mathrm{mg}, 44 \%$) were obtained after flash chromatography (9:1 to 1:1 hexane-EtOAc). 10: IR (film) $\nu 1654 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g-HSQC) $\delta 1.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}$,
$\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 1.78-1.86$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-8$), 2.37 (dd, $J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{CH}_{2}$), 2.49 (dd, $\left.J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{C}-6\right), 3.74$ (dd, $J=9.2,8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.48$ (dd, $J=9.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.58$ (d, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 5.05-5.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}=\right)$, $5.21(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.74-5.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=), 7.22-7.28(\mathrm{~m}, 3 \mathrm{H}$, ArH), 7.32-7.35 (m, 2H, ArH); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 17.1\left(\mathrm{C} 8-\mathrm{CH}_{3}\right), 26.6\left(\mathrm{C} 6-\mathrm{CH}_{3}\right), 31.8(\mathrm{C}-8), 37.9$ (C-7), 41.9 ($\left.\mathrm{C} 6-\mathrm{CH}_{2}\right), 42.8$ (C-6), 58.7 (C-3), 72.9 (C-2), 93.9 (C-8a), $118.2\left(\mathrm{CH}_{2}=\right)$, 125.9 (C-Ar), 128.8 (C-Ar), $127.5(\mathrm{C}-\mathrm{Ar})$, $134.1(\mathrm{CH=}) 139.7(\mathrm{C}-\mathrm{Ar}), 174.2(\mathrm{NCO})$; $[\alpha]^{22}{ }_{\mathrm{D}}-160.5(c \quad 1.15, \mathrm{MeOH})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2}$ 286.1802; found 286.1810. 6-epi10: IR (film) $\nu 1655 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g-HSQC) $\delta 1.15\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.42(\mathrm{dd}, J=13.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 1.73(\mathrm{t}, J=13.2$ Hz, 1H, H-7), 1.80 (m, 1H, H-8), 2.06 (dd, $J=13.4,8.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{CH}_{2}$), 2.49 (dd, $J=13.4,8.4 \mathrm{~Hz} \mathrm{1H}, \mathrm{C6-CH2)}$, (dd, $J=9.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.46$ (dd, $J=9.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2), 4.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 5.00-5.10(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}_{2} \mathrm{C}=\right), 5.19(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.56-5.67(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}=$), 7.23-7.26 (m, 3H, ArH), 7.30-7.34 (m, 2H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.0\left(\mathrm{C} 8-\mathrm{CH}_{3}\right), 25.6(\mathrm{C} 6-$ CH_{3}), 31.6 (C-8), 37.6 (C-7), $42.3(\mathrm{C}-6), 45.3\left(\mathrm{C} 6-\mathrm{CH}_{2}\right)$, 58.9 (C-3), 72.9 (C-2), $94.0(\mathrm{C}-8 \mathrm{a}), 118.6\left(\mathrm{CH}_{2}=\right), 126.0$ (C-Ar), 128.6 (C-Ar), 127.4 (C-Ar), $133.7(\mathrm{CH=}=139.7(\mathrm{C}-$ Ar), 173.5 (NCO); $[\alpha]_{\mathrm{D}}^{22}-30.55$ (c 1.29, CHCl_{3}); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2}$ 286.1802; found 286.1810.
4.3.4. ($3 R, 6 S, 8 R, 8 a S$)-6-Ethyl-6-methyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (12) and Its (3 R, $6 R, 8 R, 8 a S$) Diastereomer (6-Epi-12). Following the general procedure, from a mixture of lactams 11 and 6 -epi-11 $(1.11 \mathrm{~g}, 4.51 \mathrm{mmol})$ in THF (12 mL), LiHMDS (13.1 mL , 13.1 mmol) in THF (50 mL) , and ethyl iodide ($1.1 \mathrm{~mL}, 13.1$ mmol), lactam 12 ($614 \mathrm{mg}, 50 \%$) and its diastereomer 6-epi12 ($153 \mathrm{mg}, 12 \%$) were obtained after flash chromatography (9:1 to $85: 15$ hexane- $\mathrm{Et}_{2} \mathrm{O}$). ${ }^{12}$ 12: IR (film) $\nu 1651 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{g}$-HSQC) $\delta 0.79(\mathrm{t}, J=7.4$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.18\left(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 1.21(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.34-1.44 (m, 2H, H-7, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.61-1.80 (m, $2 \mathrm{H}, \mathrm{H}-7, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.80-1.88 (m, 1H, H-8), 3.72 (dd, $J=$ $8.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.46$ (dd, $J=8.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.59$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 5.19 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $7.22-$ $7.26(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.30-7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 17.2\left(\mathrm{CH}_{3}\right), 25.7$ $\left(\mathrm{CH}_{3} \mathrm{CH}\right), 31.8(\mathrm{C}-8), 33.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 37.5(\mathrm{C}-7), 42.8(\mathrm{C}-$ 6), 59.0 (C-3), 73.0 (C-2), 94.2 (C-8a), 126.1 (C-Ar), 128.7 (C-Ar), 127.5 (C-Ar), 139.8 (C-Ar), 174.3 (NCO); $[\alpha]^{22}{ }_{\mathrm{D}}$ $-128.6(c 0.97, \mathrm{MeOH})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{2}$ 274.1802; found 274.1807. 6-epi-12: IR (film) $\nu 1655 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{g}$ HSQC) $\delta 0.90\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.14(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.15\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 1.35-1.42(\mathrm{~m}, 1 \mathrm{H}$, H-7), $1.59-1.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.77-1.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7$, H-8), 3.74 (dd, $J=8.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.47 (dd, $J=8.8,8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.59$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 5.21(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.23-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.31-7.35(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 17.2$ $\left(\mathrm{CH}_{3} \mathrm{CH}\right), 26.2\left(\mathrm{CH}_{3}\right), 31.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 32.1(\mathrm{C}-8), 37.9(\mathrm{C}-$ 7), 42.1 (C-6), 58.6 (C-3), 72.9 (C-2), 93.9 (C-8a), 126.0 (CAr), 128.8 (C-Ar), 127.5 (C-Ar), 139.8 (C-Ar), 174.9 (NCO);
$[\alpha]^{22}{ }_{\mathrm{D}}-132.2(c 0.86, \mathrm{MeOH})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{2}$ 274.1802; found 274.1801.
4.3.5. (3R,6S,8S,8aS)-6-Benzyl-8-ethyl-6-methyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (15). Following the general procedure, from a mixture of lactams 14 and 6 -epi- 14 ($334 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (2.7 mL), LiHMDS ($3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$) in THF $(11.0 \mathrm{~mL})$, and methyl iodide ($0.19 \mathrm{~mL}, 3.0 \mathrm{mmol}$), lactam 15 ($210 \mathrm{mg}, 61 \%$) and a 50:50 mixture of 15 an its diastereomer 6-epi-15 (85 mg , 24\%) were obtained after flash chromatography (hexane to 85:15 hexane-EtOAc). 15: IR (film) $\nu 1659 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, ~ g$-HSQC) $\delta 0.93(t, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}$ $\mathrm{CH}_{3} \mathrm{CH}_{2}$), $1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 6-\mathrm{CH}_{3}\right), 1.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $1.51-1.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7), 2.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 2.99(\mathrm{~d}, J=13.6$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C} 6-\mathrm{CH}_{2}\right), 3.72(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.36(\mathrm{t}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.82(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 5.44(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3) 7.25-7.45(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 25.2(\mathrm{C} 6-$ CH_{3}), 33.4 (C-7), $34.4(\mathrm{C}-8)$, $42.0(\mathrm{C}-6), 44.1\left(\mathrm{C} 6-\mathrm{CH}_{2}\right)$, 58.2 (C-3), 70.9 (C-2), 88.2 (C-8a), 125.8 (C-Ar), 126.2 (CAr), 127.4 (C-Ar), 127.9 (C-Ar), 128.8 (C-Ar), 131.1 (C-Ar), 138.0 (C-Ar), 140.3 (C-Ar), 176.3 (CO); $[\alpha]_{\mathrm{D}}^{22}-154.8$ (c $0.97, \mathrm{MeOH}$); mp $110-112{ }^{\circ} \mathrm{C}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{2} 350.2115$; found 350.2120 .
4.3.6. (1S,3R,5aR,10aS, 11aR)-3-Allyl-1,3-dimethyl-4-oxo-1,2,3,4,5a,10,10a,11a-octahydroindeno [1', 2':4,5]oxazolo-[3,2-a]pyridine (18) and Its (1S,3S,5aR,10aS,11aR) Diastereomer (3-Epi-18). From lactams 17: Following the general procedure, from a mixture of lactams 17 and 3 -epi- $17(300 \mathrm{mg}$, $1.06 \mathrm{mmol})$ in THF (3 mL), LiHMDS ($3.2 \mathrm{~mL}, 3.2 \mathrm{mmol}$) in THF (12 mL), and methyl iodide ($0.20 \mathrm{~mL}, 3.2 \mathrm{mmol}$), lactams 18 ($144 \mathrm{mg}, 46 \%$) and 3-epi-18 ($51 \mathrm{mg}, 16 \%$) were obtained as light yellow oils after flash chromatography ($95: 5$ to $1: 1$ hexane-EtOAc). ${ }^{17}$ From lactams 19: Following the general procedure, from a mixture of lactams 19 and 3-epi-19 ($439 \mathrm{mg}, 1.71 \mathrm{mmol}$) in THF (4.5 mL), LiHMDS (5.1 mL , 5.1 mmol) in THF (19 mL), and allyl tosylate ($0.97 \mathrm{~mL}, 5.1$ mmol), lactam 18 ($94 \mathrm{mg}, 19 \%$) and its diastereomer 3-epi-18 ($158 \mathrm{mg}, 31 \%$) were obtained after flash chromatography (95:5 to $1: 1$ hexane-EtOAc). ${ }^{19}$ 18: IR (film) ν 2924, 1645, $751 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g-HSQC) δ 0.98 (d, $\left.J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 1-\mathrm{CH}_{3}\right), 1.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right)$, $1.25-1.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.75-1.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-2), 2.25$ (dd, $J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHCH}_{2}$), $2.33(\mathrm{dd}, J=14.0,7.6$ $\left.\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CHCH}_{2}\right), 3.20(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10), 4.43(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{a}), 4.77-4.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{a}), 4.96-4.97$ $\left(\mathrm{dm}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\right), 4.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.49(\mathrm{~d}, J$ $=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}), 5.64-5.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.16-$ $7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.4\left(\mathrm{C} 1-\mathrm{CH}_{3}\right), 24.9\left(\mathrm{C} 3-\mathrm{CH}_{3}\right), 31.4$ (C-1), 36.4 (C-10), $39.6(\mathrm{C}-2), 41.8(\mathrm{C}-3), 44.8\left(=\mathrm{CHCH}_{2}\right)$, 64.6 (C-5a), 81.4 (C-10a), 93.3 (C-11a), $118.2\left(\mathrm{CH}_{2}=\right)$, 124.8 (C-Ar), 127.4 (C-Ar), 128.3 (C-Ar), 128.4 (C-Ar), $133.7\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 140.1(\mathrm{C}-\mathrm{Ar}), 141.9(\mathrm{C}-\mathrm{Ar}), 173.6(\mathrm{CO})$; $[\alpha]^{22}-11.8\left(c 1.1, \mathrm{CHCl}_{3}\right)$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{2}, 298.1802$; found, 298.1803. 3-epi18: IR (film) $\nu 2928,1651,750 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CDCl}_{3}, \mathrm{COSY}, g$-HSQC) $\delta 1.02\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 1-\mathrm{CH}_{3}\right)$, 1.19 (s, 3H, C3-CH3), 1.41-1.45 (m, 1H, H-2), 1.57-1.63 (m, 1H, H-2), 1.73-1.81 (m, 1H, H-1), 2.13-2.18 (dd, J = $\left.13.6,8.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHCH}_{2}\right), 2.59-2.64(\mathrm{dd}, J=13.6,6.0 \mathrm{~Hz}$, $\left.1 \mathrm{H},=\mathrm{CHCH}_{2}\right), 3.20(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10), 4.39(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{a}), 4.77-4.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{a}), 5.09-5.13$
$\left(\mathrm{m}, 2 \mathrm{H},=\mathrm{CH}_{2}\right), 5.49(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}), 5.71-5.86$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.17-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.93(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.4(\mathrm{C} 1-$ CH_{3}), $27.2\left(\mathrm{C} 3-\mathrm{CH}_{3}\right), 31.2(\mathrm{C}-1), 36.4(\mathrm{C}-10), 39.2(\mathrm{C}-2)$, 42.3 (C-3), $43.8\left(=\mathrm{CHCH}_{2}\right), 64.6(\mathrm{C}-5 \mathrm{a}), 81.4(\mathrm{C}-10 \mathrm{a}), 93.3$ (C-11a), $118.4\left(=\mathrm{CH}_{2}\right), 124.9(\mathrm{C}-\mathrm{Ar}), 127.5(\mathrm{C}-\mathrm{Ar}), 128.3$ (C-Ar), 128.4 (C-Ar), $134.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 140.1(\mathrm{C}-\mathrm{Ar}), 141.9$ (C-Ar), 173.2 (CO); $[\alpha]^{22}{ }_{\mathrm{D}}-16.5$ (c 0.9, CHCl_{3}); HRMS (ESI-TOF) $m / z[M+H]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{2}$, 298.1802; found, 298.1798.
4.4. General Procedure for the Alane Reduction Reactions. $\mathrm{LiAlH}_{4}(1 \mathrm{M}$ solution in THF, 6.5 mmol) was slowly added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{AlCl}_{3}(2 \mathrm{mmol})$ in anhydrous THF, and the mixture was stirred at room temperature for 30 min . The temperature was lowered (-78 ${ }^{\circ} \mathrm{C}$), the lactam ($\mathbf{5}, \mathbf{1 0}$, or 3 -epi- $\mathbf{1 8}$; 1 mmol) was added dropwise, and the resulting suspension was stirred at $-78{ }^{\circ} \mathrm{C}$ for 90 min and at room temperature for 24 h . The mixture was cooled to $0^{\circ} \mathrm{C}$, and the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic extracts were dried and concentrated, and the resulting residue was purified by chromatography.
4.4.1. (3R,5S)-3-Allyl-1-[(1R)-2-hydroxy-1-phenylethyl]-3,5-dimethylpiperidine (20). Following the general procedure, from lactam $5(204 \mathrm{mg}, 0.72 \mathrm{mmol}), \mathrm{AlCl}_{3}(191 \mathrm{mg}, 1.43$ $\mathrm{mmol})$, and $\mathrm{LiAlH}_{4}(4.68 \mathrm{~mL}, 4.68 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$, piperidine 20 ($154 \mathrm{mg}, 79 \%$) was obtained as a colorless oil after flash chromatography ($95: 5$ to $8: 2$ hexane-EtOAc). IR (film) $\nu 3172 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g HSQC) $\delta 0.60(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 0.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right), 1.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 1.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6)$, $1.76(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 1.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H},=$ CHCH_{2}), 1.90 (brs, $1 \mathrm{H}, \mathrm{OH}$), 1.94 (brs, 1H, H-5), 2.44 (brm, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 2.82$ (brm, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, $3.59-3.64$ (dd, $J=10.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 3.75 (brs, 1 H , CHN), $3.98\left(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.94-5.02(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\right), 5.71-5.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.14-7.16(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.31-7.36 (m, 3H, ArH); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 19.5\left(\mathrm{C} 5-\mathrm{CH}_{3}\right), 22.6\left(\mathrm{C} 3-\mathrm{CH}_{3}\right), 27.7(\mathrm{C}-5), 34.0$ (C-3), $44.6(\mathrm{C}-4), 47.5\left(=\mathrm{CHCH}_{2}\right), 56.3(\mathrm{C}-6), 60.0$ $(\mathrm{CHOH}), 61.5(\mathrm{C}-2), 69.9(\mathrm{CHN}), 117.3\left(\mathrm{CH}_{2}=\right), 127.8$ (C-Ar), 128.1 (C-Ar), 128.1 (C-Ar), 129.0 (C-Ar), 129.0 (C$\mathrm{Ar})$, $134.2\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 135.1(\mathrm{C}-\mathrm{Ar}) ;[\alpha]_{\mathrm{D}}^{22}-2.0$ (c 1.2, CHCl_{3}); HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}, 274.2171$; found, 274.2165 .
4.4.2. (3R,5R)-3-Allyl-1-[(1R)-2-hydroxy-1-phenylethyl]-3,5-dimethylpiperidine (5-Epi-20). Following the general procedure, from lactam 10 ($70 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{AlCl}_{3}(65$ $\mathrm{mg}, 0.5 \mathrm{mmol})$, and $\mathrm{LiAlH}_{4}(1.62 \mathrm{~mL}, 1.62 \mathrm{mmol})$ in THF (6 mL), piperidine 5 -epi-20 ($58 \mathrm{mg}, 86 \%$) was obtained after flash chromatography ($95: 5$ to $8: 2$ hexane-EtOAc). IR (film) ν 3385, $2952 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g HSQC) $\delta 0.55(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 0.75(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 0.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right), 1.17(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2), 1.47(\mathrm{dm}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{H}-4), 1.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, $1.92(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 2.53\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CHCH}_{2}\right), 2.55$ (dt, $J=12.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 2.82(\mathrm{dm}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2), $3.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.03(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 5.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right)$, $7.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.34(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.6\left(\mathrm{C} 5-\mathrm{CH}_{3}\right), 26.2\left(\mathrm{C} 3-\mathrm{CH}_{3}\right), 27.2(\mathrm{C}-5)$, 34.5 (C-3), $41.3\left(=\mathrm{CHCH}_{2}\right), 44.8(\mathrm{C}-4), 53.7(\mathrm{C}-2), 60.2$ $(\mathrm{CHOH}), 69.8(\mathrm{CHN}), 117.2\left(=\mathrm{CH}_{2}\right), 127.9\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$,
129.1 (C-Ar), 128.1 (C-Ar), 135.0 (C-Ar), 135.2 (C-Ar); $[\alpha]_{\mathrm{D}}^{22}-8.0\left(\mathrm{c} 0.6, \mathrm{CHCl}_{3}\right)$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}, 274.2171$; found, 274.2172.
4.4.3. (3S,5S)-3-Allyl-1-[(1R,2S)-2-hydroxy-2,3-dihydro-1H-indenyl]-3,5-dimethylpiperidine (22). Following the general procedure, from lactam 3-epi-18 ($224 \mathrm{mg}, 0.75 \mathrm{mmol}$), AlCl_{3} ($201 \mathrm{mg}, 1.5 \mathrm{mmol}$), and $\mathrm{LiAlH}_{4}(4.8 \mathrm{~mL}, 4.8 \mathrm{mmol})$ in THF (17 mL), piperidine $22(116 \mathrm{mg}, 54 \%)$ was obtained after flash chromatography ($95: 5$ to $9: 1$ hexane-EtOAc). IR (film) ν $3172 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{g}$-HSQC) δ $0.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 0.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 0.86(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}$), 1.51 (m, 3H, H-4, H-6), 1.96 (brs, $1 \mathrm{H}, \mathrm{OH}$), $1.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.14-2.19\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CHCH}_{2}\right), 2.35-2.42$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2,=\mathrm{CHCH}_{2}\right), 2.80(\mathrm{dd}, J=17.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}-\mathrm{Ar}$), 2.94-3.02 (m, 1H, H-2), 3.26 (dd, $J=17.0,8.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}-\mathrm{Ar}$), 4.03-4.13 (m, 1H, CHN), 4.42-4.51 (m, $1 \mathrm{H}, \mathrm{CHOH}), 5.02-5.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.71-5.81(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 7.18-7.31(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 19.5\left(\mathrm{C} 5-\mathrm{CH}_{3}\right), 26.4\left(\mathrm{C} 3-\mathrm{CH}_{3}\right), 27.7(\mathrm{C}-5), 34.3$ (C-3), $40.9\left(=\mathrm{CHCH}_{2}\right), 41.6\left(\mathrm{CH}_{2} \mathrm{C}-\mathrm{Ar}\right), 43.8(\mathrm{C}-4), 59.0$ (C-6), 63.2 (C-2), 70.1 (CHOH), 70.2 (CHN), 117.4 $\left(\mathrm{CH}_{2}=\right), 124.7(\mathrm{C}-\mathrm{Ar}), 125.6(\mathrm{C}-\mathrm{Ar}), 126.3(\mathrm{C}-\mathrm{Ar}), 126.5$ (C-Ar), $128.5(\mathrm{C}-\mathrm{Ar}), 134.7\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 141.7(\mathrm{C}-\mathrm{Ar})$; $[\alpha]_{\mathrm{D}}^{22}-0.54\left(c 1.3, \mathrm{CHCl}_{3}\right)$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}$, 286.2162; found, 286.2165.
4.5. General Procedure for the Hydrogenolysis Reactions. A solution of the piperidine (20, 5-epi-20, or 22; 1 mmol) and di-tert-butyl dicarbonate (2.5 mmol) in MeOH containing Pd / C was hydrogenated at $25^{\circ} \mathrm{C}$ until the disappearance of the starting material was observed by TLC. The catalyst was removed by filtration and washed with hot MeOH , and the solution was concentrated to give the N-Boc piperidines after flash chromatography.
4.5.1. (3R,5S)-1-(tert-Butoxycarbonyl)-3,5-dimethyl-3-propylpiperidine (21). Following the general procedure, from piperidine 20 ($97 \mathrm{mg}, 0.35 \mathrm{mmol}$), $\mathrm{Boc}_{2} \mathrm{O}(252 \mathrm{mg}, 0.88$ mmol), and $\mathrm{Pd} / \mathrm{C}(38.6 \mathrm{mg}, 40 \% \mathrm{wt})$ in $\mathrm{MeOH}(8 \mathrm{~mL})$, piperidine 21 ($78 \mathrm{mg}, 86 \%$) was obtained after flash chromatography (98:2 to 9:1 hexane-EtOAc). IR (film) ν $1695 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{g}$-HSQC) δ $0.81\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right), 0.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 0.88$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.13(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4)$, 1.23-1.33 (m, 2H, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.44\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.45-$ $1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{2}\right.$), 1.75 (brs, $1 \mathrm{H}, \mathrm{H}-5$), 2.09 (brs, $1 \mathrm{H}, \mathrm{H}-$ 2 or H-6), 2.35 (brs, 1H, H-2 or H-6), 3.73 (brs, $1 \mathrm{H}, \mathrm{H}-2$ or H-6), 4.00 (brs, $1 \mathrm{H}, \mathrm{H}-2$ or H-6); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 16.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 19.2\left(\mathrm{C} 5-\mathrm{CH}_{3}\right)$, $20.9\left(\mathrm{C} 3-\mathrm{CH}_{3}\right), 26.7(\mathrm{C}-5), 28.4\left(\mathrm{C}-\left(\mathrm{CH}_{3}\right)_{3}\right), 34.2(\mathrm{C}-3), 45.4$ ($\mathrm{C} 3-\mathrm{CH}_{2}$), $44.9(\mathrm{C}-4), 50.9$ (C-2 or C-6), 54.6 (C-2 or C-6),
 HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{NO}_{2}$, 256.2198 found, 256.2201 .
4.5.2. (3R,5R)-1-(tert-Butoxycarbonyl)-3,5-dimethyl-3-propylpiperidine (5-Epi-21). Following the general procedure, from piperidine 5 -epi- $20(147 \mathrm{mg}, 0.51 \mathrm{mmol}), \mathrm{Boc}_{2} \mathrm{O}(279$ $\mathrm{mg}, 1.28 \mathrm{mmol}$), and $\mathrm{Pd} / \mathrm{C}(60 \mathrm{mg}, 40 \% \mathrm{wt})$ in $\mathrm{MeOH}(12$ mL), piperidine 5 -epi-21 ($74 \mathrm{mg}, 54 \%$) was obtained after flash chromatography (98:2 to 9:1 hexane-EtOAc). IR (film) $\nu 1695 \mathrm{~cm}^{-1}$; ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g-HSQC) δ $0.81\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right), 0.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 0.88$ $\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.13(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4)$, 1.23-1.33 (m, 2H, CH2 $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.44\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.45-1.50 (m, 2H, C3-CH2), 1.75 (brs, 1H, H-5), 2.09 (brs,

1H, H-2 or H-6), 2.35 (brs, 1H, H-2 or H-6), 3.73 (brs, 1H, $\mathrm{H}-2$ or H-6), 4.00 (brs, $1 \mathrm{H}, \mathrm{H}-2$ or H-6); ${ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 16.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.1$ $\left(\mathrm{C} 5-\mathrm{CH}_{3}\right), 26.4\left(\mathrm{C} 3-\mathrm{CH}_{3}\right), 25.4(\mathrm{C}-5), 28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 34.0$ (C-3), $45.8(\mathrm{C}-4), 47.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 50.5(\mathrm{C}-2$ or $\mathrm{C}-6)$, $53.6(\mathrm{C}-2$ or $\mathrm{C}-6), 79.0\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 154.9(\mathrm{CO}) ;[\alpha]_{\mathrm{D}}^{22}+6.8}\right.$ (c 1.0, CHCl_{3}); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{NO}_{2}, 255.2198$; found, 256.2281.
4.5.3. (3S,5S)-1-(tert-Butoxycarbonyl)-3,5-dimethyl-3-propylpiperidine (3-Epi-21). Following the general procedure, from piperidine $22(50 \mathrm{mg}, 0.18 \mathrm{mmol})$, $\mathrm{Boc}_{2} \mathrm{O}(99 \mathrm{mg}, 0.45$ mmol), and $\mathrm{Pd} / \mathrm{C}(20 \mathrm{mg}, 40 \% \mathrm{wt})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$, piperidine 3 -epi-21 ($34 \mathrm{mg}, 76 \%$) was obtained after flash chromatography (98:2 to 9:1 hexane-EtOAc). IR (film) ν $1696 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g-HSQC) δ $0.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 0.80\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right), 0.87$ $\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.18-1.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 1.22$ (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.45\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, 2.06 (brs, 1H, H-2 or H-6), 2.28 (brs, $1 \mathrm{H}, \mathrm{H}-2$ or H-6), 3.79 (brs, $1 \mathrm{H}, \mathrm{H}-2$ or $\mathrm{H}-6$), 4.10 (brs, $1 \mathrm{H}, \mathrm{H}-2$ or $\mathrm{H}-6$); ${ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 16.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 19.1$ $\left(\mathrm{C} 5-\mathrm{CH}_{3}\right), 25.4\left(\mathrm{C} 3-\mathrm{CH}_{3}\right), 26.4(\mathrm{C}-5), 28.4\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 34.0$ (C-3), $37.8\left(\mathrm{C}_{3}-\mathrm{CH}_{2}\right), 45.4(\mathrm{C}-4), 50.5(\mathrm{C}-2$ or C-6), 53.6 (C2 or C-6), $79.0\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 154.9(\mathrm{CO}) ; ~[\alpha]_{\mathrm{D}}^{22}-6.18 \text { (c 1.0, }}\right.$ CHCl_{3}); HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{NO}_{2}, 255.2198$; found, 255.2194 .
4.6. General Procedure for the Reductive Cleavage of the Oxazolidine and Piperidone Rings. n - BuLi (4.3 mmol) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(4.3 \mathrm{mmol})$ in anhydrous THF at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 min . Then, the mixture was added to a solution of the lactam (10,6 -epi-10, 12, or $15 ; 1.0 \mathrm{mmol}$) in anhydrous THF, and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated to give a residue, which was purified by flash chromatography.
4.6.1. $(2 R, 4 R)-2-A l l y l-5-\{[(R)-2-h y d r o x y-1-p h e n y l e t h y l]-~$ amino\}-2,4-dimethyl-1-pentanol (23). Following the general procedure, from lactam $10(200 \mathrm{mg}, 0.7 \mathrm{mmol})$ in THF (1 $\mathrm{mL}), n-\mathrm{BuLi}(1.21 \mathrm{~mL}$ of a 1.6 M solution in hexanes, 3.01 $\mathrm{mmol})$, and $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(93 \mathrm{mg}, 3.01 \mathrm{mmol})$ in THF (2 mL), 1,5 -aminodiol 23 ($98 \mathrm{mg}, 48 \%$) was obtained as a yellowish oil after flash chromatography ($1: 1$ hexane-EtOAc EtOAc). IR (film) $\nu 3316 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, g-$ HSQC) $\delta 0.86\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 0.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 2-$ $\left.\mathrm{CH}_{3}\right), 1.05(\mathrm{dd}, J=14.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.50-1.54(\mathrm{~m}, 1 \mathrm{H}$, H-3), 1.59 (m, 1H, H-4), 1.85-1.97 (m, 2H, C2-CH2), 2.20 (m, 1H, H-5), 2.46 (dd, $J=12.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.19$ (d, $J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 3.44 (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $3.69-3.77$ (m, 3H, CHNH, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 5.00-5.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.73-$ $5.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=), 7.27-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6\left(\mathrm{C} 4-\mathrm{CH}_{3}\right), 23.6\left(\mathrm{C} 2-\mathrm{CH}_{3}\right), 28.6$ (C-4), $38.5(\mathrm{C}-2), 40.8\left(\mathrm{C}_{2}-\mathrm{CH}_{2}\right), 41.5(\mathrm{C}-3), 55.5(\mathrm{C}-5)$, $65.5(\mathrm{C}-\mathrm{Ar}), 66.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 68.3(\mathrm{C}-1), 117.9\left(\mathrm{CH}_{2}=\right), 127.4$ (C-Ar), 128.6 (C-Ar), 127.7 (C-Ar), $134.6(-\mathrm{CH}=), 139.8$ (C-Ar); $[\alpha]^{22}{ }_{\mathrm{D}}-46.1\left(c 1.87, \mathrm{CHCl}_{3}\right)$; HRMS (ESI-TOF) $m /$ $z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}_{2}$ 292.2271; found 292.2271.
4.6.2. (2S,4R)-2-Allyl-5-\{[(R)-2-hydroxy-1-phenylethyl]-amino\}-2,4-dimethyl-1-pentanol (2-Epi-23). Following the general procedure, from lactam 6-epi-10 ($351 \mathrm{mg}, 1.23 \mathrm{mmol}$) in THF (3 mL), n - BuLi $(2.12 \mathrm{~mL}$ of a 2.5 M solution in
hexane, 5.29 mmol), and $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(163 \mathrm{mg}, 5.29 \mathrm{mmol})$ in anhydrous THF (6 mL), 1,5-aminodiol 2-epi-23 (183 mg , 51%) was obtained after flash chromatography ($1: 1$ hexaneEtOAc to 9:1 EtOAc-MeOH). IR (film) ע 3318, 2955, 1454 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g-HSQC) $\delta 0.73$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{3}\right), 0.87\left(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 1.00(\mathrm{dd}$, $J=14.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 1.51 (m, 1H, H-4), 1.62 (dd, $1 \mathrm{H}, J$ $=14.2,3.2 \mathrm{~Hz}, \mathrm{H}-3), 2.01\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CHCH}_{2}\right), 2.11(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}-5,=\mathrm{CHCH}_{2}\right), 2.51(\mathrm{dd}, 1 \mathrm{H}, J=11.6,4.0 \mathrm{~Hz}, \mathrm{H}-5), 3.21(\mathrm{~d}$, $1 \mathrm{H}, J=11.6 \mathrm{~Hz}, \mathrm{H}-1), 3.39(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}, \mathrm{H}-1), 3.73(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{CHN}\right), 5.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.85(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 7.26-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 20.0\left(\mathrm{C} 2-\mathrm{CH}_{3}\right), 22.04\left(\mathrm{C} 4-\mathrm{CH}_{3}\right), 28.9(\mathrm{C}-4), 38.6$ (C-2), $42.0(\mathrm{C}-3), 45.8\left(=\mathrm{CHCH}_{2}\right), 55.9$ (C-5), 65.6 (CHAr), $66.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 67.1(\mathrm{C}-1), 117.2\left(\mathrm{CH}_{2}=\right), 135.2$ $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 127.3(\mathrm{C}-\mathrm{Ar}), 128.7(\mathrm{C}-\mathrm{Ar}), 127.7(\mathrm{C}-\mathrm{Ar}), 140.2$ (C-Ar); $[\alpha]_{\mathrm{D}}^{22}-60.9\left(c 0.65, \mathrm{CHCl}_{3}\right)$; HRMS (ESI-TOF) $\mathrm{m} /$ $z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}_{2}$, 292.2271; found, 292.2276.
4.6.3. (2S,4R)-2-Ethyl-5-\{[(R)-2-hydroxy-1-phenylethyl]-amino\}-2,4-dimethyl-1-pentanol (24). Following the general procedure, from lactam $12(491 \mathrm{mg}, 1.8 \mathrm{mmol})$ in THF (2.25 mL), n - BuLi (4.83 mL of a 1.6 M solution in hexanes, 7.74 $\mathrm{mmol})$, and $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(246 \mathrm{mg}, 7.74 \mathrm{mmol})$ in THF $(4.4 \mathrm{~mL})$, 1,5-aminodiol 24 ($246 \mathrm{mg}, 49 \%$) was obtained as a colorless oil after flash chromatography ($1: 1$ hexane-EtOAc to EtOAc). IR (film) $\nu 3315 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, gHSQC) $\delta 0.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$), $0.86\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}-4\right), 1.01(\mathrm{dd}, J=$ $14.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.24-1.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.35-$ $1.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.50-1.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4), 2.16$ (dd, $J=12.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.52(\mathrm{dd}, J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, H-5), $3.24(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.40(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1), 3.65-3.77$ (m, 3H, $\mathrm{CH}_{2} \mathrm{CHO}$), 7.27-7.38 (m, 5H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.5$ $\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3} \mathrm{CH}\right), 28.8(\mathrm{C}-4), 31.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 38.0(\mathrm{C}-$ 2), 41.8 (C-3), 55.7 (C-5), 65.6 (C-Ar), $66.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 66.6$ (C-1), 127.3 (C-Ar), 128.6 (C-Ar), 127.5 (C-Ar), 140.2 (CAr); $[\alpha]_{\mathrm{D}}^{22}-44.9$ (c 1.02, CHCl_{3}); HRMS (ESI-TOF) m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{2}$ 280.2271; found 280.2276 .
4.6.4. (2S,4S)-2-Benzyl-4-ethyl-5-\{[(R)-2-hydroxy-1-phenylethyl]amino\}-2-methyl-1-pentanol (25). Following the general procedure, from lactam 15 ($248 \mathrm{mg}, 0.71 \mathrm{mmol}$) in THF (1 mL), n-BuLi (1.22 mL of a 2.5 M solution in hexane, 3.05 mmol), and $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(97.1 \mathrm{mg}, 3.05 \mathrm{mmol})$ in THF (1.7 mL), aminodiol 25 ($119 \mathrm{mg}, 47 \%$) was obtained as a colorless oil after flash chromatography ($1: 1$ hexane-EtOAc to EtOAc). IR (film) $\nu 3283 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g-HSQC) $\delta 0.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$), $0.99(\mathrm{dd}, J=14.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.11(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.35($ brs, $1 \mathrm{H}, \mathrm{H}-4), 1.53$ (dd, $J=14.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.02(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, $2.43\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.64(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5), $2.78\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.14(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1), 3.38(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$, 3.82 (dd, $J=9.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHAr}), 7.16-7.40(\mathrm{~m}, 10 \mathrm{H}$, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.6$ $\left(\mathrm{CH}_{3}\right), 29.1(\mathrm{C}-2), 34.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 39.4(\mathrm{C}-4), 41.7(\mathrm{C}-3)$, $45.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 53.0$ (C-5), 64.9 (C-1), 65.4 (CHAr), 66.9 $\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.7$ (C-Ar), 127.9 (C-Ar), 128.7 (C-Ar), 130.9 (C$\mathrm{Ar}), 127.6$ (C-Ar), 127.7 (C-Ar), 138.8 (C-Ar), 139.5 (C-Ar); $[\alpha]^{22}{ }_{D}-33.7$ (c 1.25, CHCl_{3}); HRMS calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 356.2584$; found 356.2594 .
4.7. General Procedure for the Protection of the Secondary Amino Group. Di-tert-butyl dicarbonate (1.6 or 2.1 mmol) was added at room temperature to a stirring solution of the aminodiol (23, 2-epi-23, or 24; 1 mmol) in anhydrous MeOH , and the resulting mixture was stirred for 20 h. The solution was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated to give the N Boc derivative, which was purified by flash chromatography.
4.7.1. (2R,4R)-2-Allyl-5-\{N-[(tert-butoxycarbonyl)]-N-[(R)-2-hydroxy-1-phenylethyl]amino\}-2,4-dimethyl-1-pentanol (26). Following the general procedure, from aminodiol 23 (87 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and $\mathrm{Boc}_{2} \mathrm{O}(104 \mathrm{mg}, 0.48 \mathrm{mmol})$ in MeOH $(12 \mathrm{~mL}), N$-Boc derivative $26(88 \mathrm{mg}, 75 \%)$ was obtained as a yellowish oil after flash chromatography ($9: 1$ to $1: 1$ hexaneEtOAc). IR (film) $\nu 3423,1670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CDCl}_{3}, \mathrm{COSY}, g$-HSQC) $\delta 0.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}-2\right), 0.89(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}_{3}$), 0.96 (dd, $J=14.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $1.19-1.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.48\left[\mathrm{~s}, 9 \mathrm{H}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.73(\mathrm{~m}, 1 \mathrm{H}$, H-4) 1.93 (d, $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{2}\right), 2.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, 2.49 (m, 2H, OH), 2.77 (dd, $J=13.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.13$ (dd, $J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.24(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)$, $3.31(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.07(\mathrm{dd}, J=11.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), 4.21 (dd, $J=11.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 4.86 (dd, $J=$ $8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-\mathrm{Ar}), 5.00-5.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.72-5.83$ (m, 1H, CH=), 7.27-7.36 (m, 5H, ArH); ${ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.1\left(\mathrm{C} 4-\mathrm{CH}_{3}\right), 22.2\left(\mathrm{C} 2-\mathrm{CH}_{3}\right), 28.2(\mathrm{C}-4)$, $28.4\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 38.3(\mathrm{C}-2), 40.9(\mathrm{C}-3), 41.8\left(\mathrm{C} 2-\mathrm{CH}_{2}\right), 54.2$ (C-5), $63.5(\mathrm{C}-\mathrm{Ar}), 63.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 69.4(\mathrm{C}-1), 80.4\left[\mathrm{C}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right]$ $117.3\left(\mathrm{CH}_{2}=\right), 127.6$ (C-Ar), 128.5 (C-Ar), 127.6 (C-Ar), $135.0(\mathrm{CH}=), 138.3(\mathrm{C}-\mathrm{Ar}), 157.3(\mathrm{C}=\mathrm{O}) ;[\alpha]_{\mathrm{D}}^{22}+0.9(c$ $0.85, \mathrm{CHCl}_{3}$); HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{NO}_{4} 392.2795$; found 392.2800.
4.7.2. (2S,4R)-2-Allyl-5-\{N-[(tert-Butoxycarbonyl)]-N-[(R)-2-hydroxy-1-phenylethyl]amino\}-2,4-dimethyl-1-pentanol (2-Epi-26). Following the general procedure, from aminodiol 2-epi-23 ($367 \mathrm{mg}, 1.26 \mathrm{mmol}$) and $\mathrm{Boc}_{2} \mathrm{O}(578 \mathrm{mg}, 2.65$ mmol) in MeOH (57 mL), N -Boc derivative 2-epi-26 (345 $\mathrm{mg}, 70 \%$) was obtained after flash chromatography ($9: 1$ to $1: 1$ hexane-EtOAc). IR (film) $\nu 3418,2973 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{g}$-HSQC) $\delta 0.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 0.88$ (d, $\left.J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{3}\right), 0.94(\mathrm{dd}, J=14.0,7.6, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 3), $1.48\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.99\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4, \mathrm{CH}_{2}\right), 2.79(\mathrm{dd}, J$ $=14.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.09(\mathrm{dd}, J=14.0,7.8 \mathrm{~Hz}, \mathrm{~Hz}, 1 \mathrm{H}$, H-5), $3.26(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.05(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1), 4.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.89(\mathrm{dd}, J=8.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}$, CHAr), $5.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=), 7.30(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.4\left(\mathrm{C} 2-\mathrm{CH}_{3}\right)$, $21.6\left(\mathrm{C} 4-\mathrm{CH}_{3}\right), 28.4\left[\left(\mathrm{CH}_{3}\right)_{3}\right](\mathrm{C}-4), 38.4(\mathrm{C}-2), 40.6(\mathrm{C}-3)$, $54.3\left(\mathrm{C} 2-\mathrm{CH}_{2}\right), 63.8(\mathrm{C}-5), 68.9(\mathrm{CHAr}), 80.5\left(\mathrm{CH}_{2} \mathrm{O}\right), 117.3$ $(\mathrm{C}-1), 127.5\left(=\mathrm{CH}_{2}\right), 127.6(=\mathrm{CH}), 128.6(\mathrm{C}-\mathrm{Ar}), 135.1$ (C-Ar), 138.2 (C-Ar); $[\alpha]^{22}{ }_{\mathrm{D}}-18.6\left(c\right.$ 1.05, $\left.\mathrm{CHCl}_{3}\right)$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{NO}_{4}, 392.2795$; found, 392.2798.
4.7.3. (2S,4R)-5-\{N-[(tert-Butoxycarbonyl]-N-[(R)-2-hy-droxy-1-phenylethyl]amino\}-2-ethyl-2,4-dimethyl-1-pentanol (27). Following the general procedure, from aminodiol 24 ($98 \mathrm{mg}, 0.35 \mathrm{mmol}$) and $\mathrm{Boc}_{2} \mathrm{O}$ ($115 \mathrm{mg}, 0.53 \mathrm{mmol}$) in $\mathrm{MeOH}(14 \mathrm{~mL}), N$-Boc derivative 27 ($84 \mathrm{mg}, 63 \%$) was obtained after flash chromatography ($9: 1$ to $1: 1$ hexaneEtOAc). IR (film) $\nu 3417,1668 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, \mathrm{COSY}, g$-HSQC) $\delta 0.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{3}\right), 0.79(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), $0.87\left(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 0.93$
(m, 1H, H-3), 1.18-1.32 (m, 3H, CH2 CH3, H-3), $1.48[\mathrm{~s}, 9 \mathrm{H}$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 1.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.80(\mathrm{dd}, J=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 1), 3.07 (dd, $J=14.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5)$, 4.07 (dd, $\left.J=11.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.22(\mathrm{t}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 4.91 (dd, $J=8.8,4.4 \mathrm{~Hz}, \mathrm{CH}-\mathrm{Ar}$), $7.26-7.30$ (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.32-7.36 (m, 2H, ArH); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 20.3\left(\mathrm{C} 4-\mathrm{CH}_{3}\right), 21.2\left(\mathrm{C} 2-\mathrm{CH}_{3}\right)$, $28.3\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 28.4(\mathrm{C}-4), 30.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 37.7(\mathrm{C}-2), 40.1$ (C-3), $54.2(\mathrm{C}-1), 63.5(\mathrm{C}-\mathrm{Ar}), 63.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 68.6(\mathrm{C}-5)$, $80.3\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 127.5(\mathrm{C}-\mathrm{Ar}), 128.5(\mathrm{C}-\mathrm{Ar}), 138.3(\mathrm{C}-\mathrm{Ar}) \text {, }}\right.$ 157.3 (CO); $[\alpha]_{\mathrm{D}}^{22}-2.41$ (c 2.83, CHCl_{3}); HRMS (ESITOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{NO}_{4}$ 380.2795; found 380.2794 .
4.8. General Procedure for the Reductive Removal of the Benzylic Substituent (Warning: Ammonia Is Extremely Corrosive to the Skin, Eyes, and Mucous Membranes). Liquid ammonia was condensed at $-78{ }^{\circ} \mathrm{C}$ in a three-necked flask equipped with a cold finger condenser charged with dry ice-acetone, and then a solution of the N-Boc derivative (26, 2-epi-26, or 27 ; 1 mmol) in anhydrous THF was added. The temperature was raised to $-33^{\circ} \mathrm{C}$, and sodium metal was added in small portions until the blue color persisted. The mixture was briefly stirred at $-33{ }^{\circ} \mathrm{C}$. The reaction was quenched by the addition of solid $\mathrm{NH}_{4} \mathrm{Cl}$ until the blue color disappeared, and the mixture was stirred at room temperature for 4 h . The residue was digested at RT with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the resulting suspension was filtered through Celite. The solution was concentrated under reduced pressure, and the residue was purified by flash chromatography.
4.8.1. (2S,4R)-5-[(tert-Butoxycarbonyl)amino]-2-ethyl-2,4-dimethyl-1-pentanol (28). Following the general procedure, from the N-Boc derivative 26 ($54 \mathrm{mg}, 0.14 \mathrm{mmol}$) in THF (5 mL), liquid ammonia (20 mL), and sodium (stirring the blue mixture for 20 s), alcohol $28(34 \mathrm{mg}, 91 \%)$ was obtained as a yellowish oil after flash chromatography (hexane to 8:2 hexane-EtOAc). IR (film) ν 3364, $1693 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, ~ g$-HSQC) $\delta 0.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{3}\right)$, $0.94\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 1.05(\mathrm{dd}, J=14.5,6.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3$), 1.33 (dd, $J=14.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 1.43 [$\mathrm{s}, 9 \mathrm{H}$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 1.71-1.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.02-2.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2-$ CH_{2}), 2.94-3.02 (m, 2H, H-5), 3.33 (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 1), $3.37(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1) 5.03-5.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right)$, 5.77-5.88 (m, 1H, CH=); ${ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $20.6\left(\mathrm{C} 4-\mathrm{CH}_{3}\right), 22.3\left(\mathrm{C} 2-\mathrm{CH}_{3}\right), 28.4\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 28.9(\mathrm{C}-4)$, 38.4 (C-2), 40.5 (C-3), $41.6\left(\mathrm{C}_{2}-\mathrm{CH}_{2}\right), 47.9$ (C-5), 69.3 (C1), $79.1\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 117.4\left(\mathrm{CH}_{2}=\right), 135.0(\mathrm{CH}=), 156.3$ (CO); $[\alpha]_{\mathrm{D}}^{22}+7.7\left(c 0.97, \mathrm{CHCl}_{3}\right)$; HRMS (ESI-TOF) m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{NO}_{3}$ 272.2220; found 272.2223.
4.8.2. (2R,4R)-5-[(tert-Butoxycarbonyl)amino]-2-ethyl-2,4-dimethyl-1-pentanol (2-Epi-28). Following the general procedure, from N -Boc derivative 2-epi-26 ($144 \mathrm{mg}, 0.37$ mmol) in THF (2.5 mL), liquid ammonia (9 mL), and sodium (stirring the blue mixture for 20 s), alcohol 2-epi-28 (78 mg , 78%) was obtained after flash chromatography ($9: 1$ to $8: 2$ hexane-EtOAc). IR (film) $\nu 3363,1693 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, g$-HSQC) $\delta 0.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 0.84$ $\left(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{3}\right), 0.90(\mathrm{ddd}, J=10.0,8.8,6.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3$), $1.50(\mathrm{dd}, J=14.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.56(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-4), 2.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{2}\right), 2.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{C} 2-\mathrm{CH}_{2}\right)$, $2.50(\mathrm{dd}, J=11.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.22(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1), 3.46(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.01-5.06(\mathrm{~m}, 2 \mathrm{H},=$ $\left.\mathrm{CH}_{2}\right), 5.79-5.90(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $(100.6 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 19.8\left(\mathrm{CH}_{3} \mathrm{C}-2\right), 22.2\left(\mathrm{CH}_{3} \mathrm{C}-4\right), 28.3(\mathrm{C}-4), 38.6$
(C-2), $42.3(\mathrm{C}-3), 44.0\left(\mathrm{CH}_{2} \mathrm{C}-2\right), 55.6(\mathrm{C}-5), 67.0(\mathrm{C}-1)$, $117.2\left(=\mathrm{CH}_{2}\right), 135.3(=\mathrm{CH}) ;[\alpha]_{\mathrm{D}}^{22}+7.74\left(c 0.9, \mathrm{CHCl}_{3}\right)$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NaNO}_{3}$, 294.2117; found, 294.2149.
4.8.3. (2S,4R)-5-[(tert-Butoxycarbonyl)amino]-2-ethyl-2,4-dimethyl-1-pentanol (29). Following the general procedure, from N-Boc derivative $27(56 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF (5 mL), liquid ammonia (20 mL), and sodium (stirring the blue mixture for 90 s), alcohol $29(28 \mathrm{mg}, 73 \%)$ was obtained as a yellowish oil after flash chromatography (9:1 to 7:3 hexaneEtOAc). IR (film) $\nu 3365,1691 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{g}$-HSQC) $\delta 0.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{3}\right), 0.82(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), $0.93\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 1.00$ (dd, $J=14.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.43\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.65-$ $1.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.32(\mathrm{~s}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.37(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)$; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.9$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 18.4\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 20.9\left(\mathrm{C} 2-\mathrm{CH}_{3}\right), 20.9\left(\mathrm{C} 4-\mathrm{CH}_{3}\right)$, $28.8(\mathrm{C}-4), 30.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 37.9(\mathrm{C}-2), 40.2(\mathrm{C}-3), 48.2(\mathrm{C}-$ 5), $68.4(\mathrm{C}-1), 79.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 156.4(\mathrm{CO}) ;[\alpha]_{\mathrm{D}}^{22}+8.04(c$ 1.17, CHCl_{3}); HRMS calcd. for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 260.2220; found 260.2222 .
4.9. General Procedure for the Protection of Hydroxy Groups as TBDPS Ethers. tert-Butyldiphenylsilyl chloride (2.5 mmol) was added to a stirring solution of the aminodiol (24 or 25 ; 1 mmol) and imidazole (2.5 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the mixture was stirred overnight. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography gave the bis-TBDPS ether.
4.9.1. (2R,4S)-5-[(tert-Butyldiphenylsilyl)oxy]-N-\{(R)-2-[(tert-butyldiphenylsilyl)oxy]-1-phenylethyl\}-4-ethyl-2,4-di-methyl-1-pentanamine (30). Following the general procedure, from aminodiol $24(136 \mathrm{mg}, 0.49 \mathrm{mmol})$, tertbutyldiphenylsilyl chloride ($0.32 \mathrm{~mL}, 1.22 \mathrm{mmol}$), and imidazole ($83.1 \mathrm{mg}, 1.22 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, bisTBDPS ether 30 ($226 \mathrm{mg}, 61 \%$) was obtained as a colorless oil after flash chromatography (99:1 to 90:10 hexane-EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, g$-HSQC) $\delta 0.76(\mathrm{t}, J=$ $\left.6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 1.06(\mathrm{~d}, J=6.8$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{3}\right), 1.11\left[\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 3), $1.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.24(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-1), 2.45$ (dd, $J=10.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.29(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-5)$, $3.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHAr}), 7.23-7.28(\mathrm{~m}, 5 \mathrm{H}$, ArH), 7.37-7.45 (m, 12H, ArH), 7.66-7.71 (m, 8H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.2$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 19.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 20.8\left(\mathrm{C} 2-\mathrm{CH}_{3}\right), 22.2\left(\mathrm{C} 4-\mathrm{CH}_{3}\right)$, $26.8\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 26.9\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 28.3(\mathrm{C}-2), 28.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \text {, }}^{\text {, }}\right.$ 38.5 (C-4), 41.1 (C-3), 55.5 (C-1), 64.4 (C-Ar), 69.1 $\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.1$ (C-5), 127.1 (C-Ar), 127.5 (C-Ar), 127.6 (CAr), 127.7 (C-Ar), 128.8 (C-Ar), 129.5(C-Ar), 129.6 (C-Ar), 129.7 (C-Ar), 133.3 (C-Ar), (C-Ar), 133.9 (C-Ar), 135.5 (CAr), 135.6 (C-Ar), 135.7 (C-Ar); $[\alpha]_{\mathrm{D}}^{22}-16.2$ (c 2.3, MeOH); HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{49} \mathrm{H}_{66} \mathrm{NO}_{2} \mathrm{Si}_{2} 756.4627$; found 756.4637.
4.9.2. (2S,4S)-5-[(tert-Butyldiphenylsilyl)oxy]-N-\{(R)-2-[(tert-butyldiphenylsilyl)oxy]-1-phenylethyl\}-4-benzyl-2-ethyl-4-methyl-1-pentanamine (31). Following the general procedure, from aminodiol 25 ($66 \mathrm{mg}, 0.18 \mathrm{mmol}$), tertbutyldiphenylsilyl chloride ($0.12 \mathrm{~mL}, 0.45 \mathrm{mmol}$), and imidazole ($31.4 \mathrm{mg}, 0.45 \mathrm{mmol}$) in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL), bis-TBDPS derivative 31 ($113 \mathrm{mg}, 73 \%$) was obtained as a colorless oil after flash chromatography (99:1 to $90: 10$
hexane-EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g HSQC) $\delta 0.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.83(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.06\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.08(\mathrm{~ms}, 1 \mathrm{H}, \mathrm{H}-3) 1.12[\mathrm{~s}$, $9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}$], $1.37-1.51\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.53-1.59$ (m, 1H, H-2), 2.26-2.36 (m, 2H, H-1), $2.59(\mathrm{~d}, J=13.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.68\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.23(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.33(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.65(\mathrm{~m}, 3 \mathrm{H}$, CHAr, $\mathrm{CH}_{2} \mathrm{O}$), $7.06-7.67(\mathrm{~m}, 30 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 19.4$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 21.3\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 26.8\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 27.1$ $\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 35.0(\mathrm{C}-2), 39.8(\mathrm{C}-3), 39.9(\mathrm{C}-4), 42.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, 52.4 (C-1), 65.8 (C-Ar), $69.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 69.4$ (C-5), 125.6 (CAr), 127.1 (C-Ar), 127.5 (C-Ar), 127.6 (C-Ar), 128.1 (C-Ar), 129.5 (C-Ar), 129.6 (C-Ar), 130.7 (C-Ar), 135.6(C-Ar), 135.8 (C-Ar), 133.3 (C-Ar), 133.5 (C-Ar), 133.7 (C-Ar), 133.9(CAr), 138.8 (C-Ar), 140.1 (C-Ar); $[\alpha]^{22}{ }_{\mathrm{D}}-6.6$ (c 1.1, CHCl_{3}); HRMS calcd. for $\mathrm{C}_{55} \mathrm{H}_{70} \mathrm{NO}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$832.4940; found 832.4941 .
4.10. General Procedure for the Oxidative Removal of the Benzylic Substituent. A 20\% aqueous solution of NH_{3} and iodine (8 mmol) were added to a solution of the bisTBDPS ether ($\mathbf{3 0}$ or $\mathbf{3 1}$; 1 mmol) in anhydrous THF at room temperature, and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 16 h . The mixture was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried, filtered, and concentrated to give the nitrile derivative after flash chromatography.
4.10.1. (2R,4S)-5-[(tert-Butyldiphenylsilyl)oxy]-4-ethyl-2,4dimethylpentanenitrile (32). Following the general procedure, from amine $30(115 \mathrm{mg}, 0.152 \mathrm{mmol})$ in THF (1 mL), aqueous solution of $\mathrm{NH}_{3}(5.27 \mathrm{~mL})$, and iodine ($309 \mathrm{mg}, 1.22$ mmol), nitrile 32 ($39 \mathrm{mg}, 65 \%$) was obtained after flash chromatography ($95: 5$ hexane-EtOAc). IR (film) $\nu 2238$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g-HSQC) $\delta 0.78$ $\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}_{3}\right), 1.07[\mathrm{~s}$, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.31\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{3}\right), 1.31(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.44-1.53 (m, 2H, CH2 CH3, $\mathrm{H}-3$), 1.73 (dd, $J=$ $14.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.35(\mathrm{~d}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.40(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.37-7.46(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{ArH}$), $7.63-7.65(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 20.3(\mathrm{C}-2), 20.6$ $\left(\mathrm{C} 2-\mathrm{CH}_{3}\right) 22.1\left(\mathrm{C} 4-\mathrm{CH}_{3}\right), 26.9\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 27.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 38.4 (C-4), 40.8 (C-3), 69.7 (C-5), 124.2 (CN), 127.6 (C-Ar), 129.7 (C-Ar), 129.7 (C-Ar), 133.3 (C-Ar), 133.4 (C-Ar), 135.6 (C-Ar), 135.7 (C-Ar); $[\alpha]_{\mathrm{D}}^{22}-4.0$ (c 1.3, CHCl_{3}); HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NNaOSi}$ 416.238; found 416.2383.
4.10.2. (2S,4S)-4-Benzyl-5-[(tert-butyldiphenylsilyl)oxy]-2-ethyl-4-methyl-1-pentanenitrile (33). Following the general procedure, from amine $31(110 \mathrm{mg}, 0.13 \mathrm{mmol})$ in THF (0.5 mL), aqueous solution of $\mathrm{NH}_{3}(8 \mathrm{~mL})$, and iodine (269 mg , 1.06 mmol), nitrile 33 ($38 \mathrm{mg}, 61 \%$) was obtained after flash chromatography (99:1 to $95: 5$ hexane-EtOAc). IR (film) ν $2242 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g-HSQC) δ $0.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.13[\mathrm{~s}$, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.49(\mathrm{dd}, J=14.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.56(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.65 (dd, $J=14.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 2.48 (m, $1 \mathrm{H}, \mathrm{H}-2), 2.63\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.73(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $3.34\left(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.41(\mathrm{~d}, J$ $\left.=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.09-7.67(\mathrm{~m}, 15 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.3(\mathrm{C}-4), 21.8$ $\left(\mathrm{CH}_{3}\right), 27.1\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 27.9(\mathrm{C}-2), 39.3(\mathrm{C}-$ 3), $41.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 69.6(\mathrm{C}-5), 123.5(\mathrm{CN}), 126.2127 .6,127.7$
(C-Ar), 127.9 (C-Ar), 129.7 (C-Ar), 130.5 (C-Ar), 133.3 (C$\mathrm{Ar}), 133.7$ (C-Ar), 135.7 (C-Ar), 135.8 (C-Ar); $[\alpha]^{22}{ }_{\mathrm{D}}-3.8$ (c $0.9, \mathrm{CHCl}_{3}$); HRMS calcd. for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{NaNOSi}[\mathrm{M}+\mathrm{Na}]^{+}$ 493.2698; found 493.2699.

- ASSOCIATED CONTENT

si Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.3c03580.

Experimental procedure for $\mathbf{1 b}$ and 16, spectroscopic data for the compounds not included in the Experimental Section, copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all new compounds, and complete X-ray crystallographic data for 5 and 19 (PDF)

AUTHOR INFORMATION

Corresponding Author

Mercedes Amat - Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona 08028, Spain; © orcid.org/0000-0002-9551-4690; Email: amat@ub.edu

Authors

Núria Llor - Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona 08028, Spain
Peter Peršolja - Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; © orcid.org/0000-0002-69870448
Arnau Calbó - Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain
Sergi Ordeix - Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain
Nicolás Ramírez - Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain
Joan Bosch - Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona 08028, Spain; © orcid.org/0000-0001-5974-1733
Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.3c03580

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the MINECO/FEDER (project RTI2018-093974-B-I00) is gratefully acknowledged.

REFERENCES

(1) For reviews, see: (a) Prakash, J.; Marek, I. Enantioselective Synthesis of All-Carbon Quaternary Stereogenic Centers in Acyclic Systems. Chem. Commun. 2011, 47, 4593-4623. (b) Quasdorf, K. W.; Overman, L. E. Catalytic Enantioselective Synthesis of Quaternary Carbon Stereocentres. Nature 2014, 516, 181-191. (c) Das, J. P.; Marek, I. Enantioselective Synthesis of All-Carbon Quaternary Stereogenic Centers in Acyclic Systems. Chem. Commun. 2014, 50, 12579-12611. (d) Ling, T.; Rivas, F. All-Carbon Quaternary Centers in Natural Products and Medicinal Chemistry: Recent Advances.

Tetrahedron 2016, 72, 6729-6777. (e) Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis; Christoffers, J.; Baro, A., Eds.; Wiley-VCH: Weinheim, 2016. (f) Feng, J.; Holmes, M.; Krische, M. J. Acyclic Quaternary Carbon Stereocenters via Enantioselective Transition Metal Catalysis. Chem. Rev. 2017, 117, 12564-12580. (g) Pierrot, D.; Marek, I. Synthesis of Enantioenriched Vicinal Tertiary and Quaternary Carbon Stereogenic Centers within an Acyclic Chain. Angew. Chem., Int. Ed. 2020, 59, 36-49. (h) Pandey, G.; Mishra, A.; Khamrai, J. Generation of All Carbon Quaternary Stereocenters at the C-3 Carbon of Piperidinones and Pyrrolidinones and its Application in Natural Product Total Synthesis. Tetrahedron 2018, 74, 4903-4915. For recent work, see: (i) Yuan, S.-P.; Bao, Q.; Sun, T.-J.; Zhao, J.-Q.; Wang, Z.-H.; You, Y.; Zhang, Y.-P.; Zhou, M.Q.; Yuan, W.-C. Catalytic Enantioselective α-Allylation of Deconjugated Butenolides with Aza- π-allylpalladium 1,4-Dipoles: Access to Optically Pure 2-Piperidones Bearing an All-Carbon Quaternary Stereocenter. Org. Lett. 2022, 24, 8348-8353.
(2) Jagt, R. B. C.; Imbos, R.; Naasz, R.; Minnaard, A. J.; Feringa, B. L. A Catalytic Route to Acyclic Chiral Building Blocks: Applications of the Catalytic Asymmetric Conjugate Addition of Organozinc Reagents to Cyclic Enones. Isr. J. Chem. 2001, 41, 221-230.
(3) For reviews, see: (a) Romo, D.; Meyers, A. I. Chiral nonRacemic Bicyclic Lactams. Vehicles for the Construction of Natural and Unnatural Products Containing Quaternary Carbon Centers. Tetrahedron 1991, 47, 9503-9569. (b) Meyers, A. I.; Brengel, G. P. Chiral Bicyclic Lactams: Useful Precursors and Templates for Asymmetric Syntheses. Chem. Commun. 1997, 1-8. (c) Groaning, M. D.; Meyers, A. I. Chiral Non-Racemic Bicyclic Lactams. AuxiliaryBased Asymmetric Reactions. Tetrahedron 2000, 56, 9843-9873. (d) Escolano, C.; Amat, M.; Bosch, J. Chiral Oxazolopiperidone Lactams: Versatile Intermediates for the Enantioselective Synthesis of Piperidine-Containing Natural Products. Chem. - Eur. J. 2006, 12, 8198-8207. (e) Amat, M.; Pérez, M.; Bosch, J. Stereoselective Conjugate Addition Reactions to Phenylglycinol-Derived Unsaturated Oxazolopiperidone Lactams. Chem. - Eur. J. 2011, 17, 7724-7732.
(4) Amat, M.; Lozano, O.; Escolano, C.; Molins, E.; Bosch, J. Enantioselective Synthesis of 3,3-Disubstituted Piperidine Derivatives by Enolate Dialkylation of Phenylglycinol-Derived Oxazolopiperidone Lactams. J. Org. Chem. 2007, 72, 4431-4439.
(5) For reviews, see: (a) Amat, M.; Pérez, M.; Bosch, J. Enantioselective Synthesis of Indole Alkaloids from Chiral Lactams. Synlett 2011, 143-160. (b) Amat, M.; Llor, N.; Griera, R.; Pérez, M.; Bosch, J. Enantioselective Synthesis of Alkaloids from PhenylglycinolDerived Lactams. Nat. Prod. Commun. 2011, 6, 515-526. See also: (c) Mizutani, M.; Inagaki, F.; Nakanishi, T.; Yanagihara, C.; Tamai, I.; Mukai, C. Total Syntheses of (-)- and (+)-Goniomitine. Org. Lett. 2011, 13, 1796-1799. (d) Ballette, R.; Pérez, M.; Proto, S.; Amat, M.; Bosch, J. Total Synthesis of (+)-Madangamine D. Angew. Chem., Int. Ed. 2014, 53, 6202-6205.
(6) (a) Guignard, G.; Llor, N.; Urbina, A.; Bosch, J.; Amat, M. A General Methodology for the Synthesis of Enantiopure 1,5-Aminoalcohols. Eur. J. Org. Chem. 2016, 693-703. (b) Guignard, G.; Llor, N.; Molins, E.; Bosch, J.; Amat, M. Enantioselective Total Synthesis of Fluvirucinin B_{1}. Org. Lett. 2016, 18, 1788-1791.
(7) (a) Amat, M.; Guignard, G.; Llor, N.; Bosch, J. Access to Enantiopure 4-Substituted 1,5-Aminoalcohols from Phenylglycinolderived δ-Lactams: Synthesis of Haliclona Alkaloids. J. Org. Chem. 2014, 79, 2792-2802. (b) Ordeix, S.; Alcaraz, M.; Llor, N.; Calbó, A.; Bosch, J.; Amat, M. Generation of Acyclic Chiral Building Blocks Containing a Quaternary Stereocenter. Formal Synthesis of Alkaloids of the Leuconolam-Leuconoxine-Mersicarpine Group. Tetrahedron 2020, 76, No. 131017.
(8) Minor amounts of the corresponding 6,6-diallyl derivative were also isolated (see the Supporting Information).
(9) Soteras, I.; Lozano, O.; Gómez-Esqué, A.; Escolano, C.; Orozco, M.; Amat, M.; Bosch, J.; Luque, F. J. On the Origin of the Stereoselectivity in the Alkylation of Oxazolopiperidone Enolates. J. Am. Chem. Soc. 2006, 128, 6581-6588.
(10) Variable amounts of a 6-hydroxy derivative of 4 were also isolated (see the Supporting Information).
(11) Amat, M.; Escolano, C.; Lozano, O.; Gómez-Esqué, A.; Griera, R.; Molins, E.; Bosch, J. Alkylation of Phenylglycinol-Derived Oxazolopiperidone Lactams. Enantioselective Synthesis of β-Substituted Piperidines. J. Org Chem. 2006, 71, 3804-3815.
(12) In some runs, minor amounts of the epimeric 6-hydroxy derivatives of 11 were also isolated (see the Supporting Information).
(13) Amat, M.; Escolano, C.; Gómez-Esqué, A.; Lozano, O.; Llor, N.; Griera, R.; Molins, E.; Bosch, J. Stereoselective α-Amidoalkylation of Phenylglycinol-Derived lactams. Synthesis of enantiopure 5,6disubstituted 2-piperidones. Tetrahedron: Asymmetry 2006, 17, 15811588.
(14) For a review, see: Ghosh, A. K.; Fidanze, S.; Senanayake, C. H. cis-1-Aminoindan-2-ol in Asymmetric Syntheses. Synthesis 1998, 937961.
(15) The diastereoselectivity of the alkylation when using allyl bromide was lower: 55:45 exo/endo ratio (71% yield).
(16) The corresponding 3,3-diallyl (10\% yield) and 3-allyl-3-hydroxy (2% yield) derivatives were also isolated (see the Supporting Information).
(17) Minor amounts (11\%) of the corresponding 3-allyl-3-hydroxy derivative were also isolated (see the Supporting Information).
(18) The absolute configuration of 19 was unambiguously determined by X-ray crystallographic analysis.
(19) Variable amounts of a 3-hydroxy derivative of 19 were isolated (see the Supporting Information).
(20) (a) Myers, A. G.; Yang, B. H.; Kopecky, D. J. Lithium Amidotrihydroborate, a Powerful New Reductant. Transformation of Tertiary Amides to Primary Alcohols. Tetrahedron Lett. 1996, 37, 3623-3626. (b) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. Pseudofephedrine as a Practical Chiral Auxiliary for the Synthesis of Highly Enantiomerically Enriched Carboxylic Acids, Alcohols, Aldehydes, and Ketones. J. Am. Chem. Soc. 1997, 119, 6496-6511.
(21) (a) Iida, S.; Togo, H. Direct Oxidative Conversion of Alcohols and Amines to Nitriles with Molecular Iodine and DIH in aq. NH_{3}. Tetrahedron 2007, 63, 8274-8281. See also: (b) Veisi, H. Direct Oxidative Conversion of Alcohols, Amines, Aldehydes, and Benzyl Halides into the Corresponding Nitriles with Trichloroisocyanuric Acid in Aqueous Ammonia. Synthesis 2010, 2631-2635. (c) Zhu, C.; Sun, C.; Wei, Y. Direct Oxidative Conversion of Alcohols, Aldehydes and Amines intro Nitriles Using Hypervalent Iodine (III) Reagent. Synthesis 2010, 4235-4241.

[^0]: Received: May 22, 2023
 Accepted: July 10, 2023
 Published: September 11, 2023

