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ABSTRACT

Development of an accurate protein–DNA recog-
nition code that can predict DNA specificity from
protein sequence is a central problem in biology.
C2H2 zinc fingers constitute by far the largest fam-
ily of DNA binding domains and their binding speci-
ficity has been studied intensively. However, de-
spite decades of research, accurate prediction of
DNA specificity remains elusive. A major obstacle
is thought to be the inability of current methods to
account for the influence of neighbouring domains.
Here we show that this problem can be addressed
using a structural approach: we build structural mod-
els for all C2H2-ZF–DNA complexes with known bind-
ing motifs and find six distinct binding modes. Each
mode changes the orientation of specificity residues
with respect to the DNA, thereby modulating base
preference. Most importantly, the structural analysis
shows that residues at the domain interface strongly
and predictably influence the binding mode, and
hence specificity. Accounting for predicted binding
mode significantly improves prediction accuracy of
predicted motifs. This new insight into the funda-
mental behaviour of C2H2-ZFs has implications for
both improving the prediction of natural zinc finger-
binding sites, and for prioritizing further experiments
to complete the code. It also provides a new design
feature for zinc finger engineering.

INTRODUCTION

As the most common protein domain in the human genome,
C2H2 zinc fingers (C2H2-ZF) are known to espouse a wide
variety of roles (1–3), involving the recognition and bind-
ing of both nucleic acids and proteins (4–6). DNA binding
is likely the most common because auxiliary DNA interact-
ing domains including the potent transcriptional repressors

KRAB and BTB (7–9) are often present, and accordingly,
most C2H2 proteins tested by ChIP-seq bind specific DNA
sequences (10). C2H2-ZFs are modular and are connected
via short unstructured linkers to form arrays of up to 40
fingers in length. Each finger typically recognizes a triplet
of nucleic acid bases (11) and often recognition is limited
to a subset of the fingers of an array. The C2H2-ZF DNA
binding residues are most commonly defined as four canon-
ical ‘specificity residues’ +6, +3, −1 and +2 located on the
�-helix* (although in reality binding is not always limited
to these four) (12). Virtually any amino acid can be found
at any of the specificity residue positions, and the combi-
nation of multiple fingers can achieve remarkable diversity
and specificity. Functional description remains elusive for a
great majority of the expansive C2H2 family, although the
presence of a KRAB domain in ∼50% of human C2H2 pro-
teins suggests they are frequently employed in silencing ex-
ogenous retroviruses and endogenous retro-elements (13–
15).

Determining the DNA binding motif is an important
step toward functional characterization and currently only
∼20% of C2H2-ZF motifs are known (16–18). This is a con-
sequence of the considerable effort required, and unavoid-
ably high rate of experiment failure when trying to deter-
mine each motif using methods such as ChIP-seq or protein
binding microarrays (PBM). A beguiling alternative is to di-
rectly predict DNA sequence preferences from the C2H2-ZF
amino acid sequence (12,19). The challenge to create such
a comprehensive ‘recognition code’ is still far from realized
despite two decades of research, and the most recent ad-
vances allow individual nucleotide prediction with ∼50%
accuracy (20,21). Obstacles include: incomplete mapping
between specificity residues and base preferences; contribu-
tion from amino acids outside of the four specificity residues
(22); and the influence of neighbouring C2H2 domains (23).
We recently addressed the first of these issues (10) by deter-
mining the DNA sequence preferences of 8138 distinct nat-
ural C2H2-ZFs, sampled from all eukaryotes, using a mod-
ified bacterial one-hybrid (B1H) system (24,25). A random
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forest trained on these data allowed motif prediction that
outperformed other recent methods (10). However, many
domains still consistently yield poor prediction accuracy re-
gardless of the recognition code used.

A potential shortcoming in the derivation and use of
most recognition codes is that the influence of native context
adjacent domains is not accounted for. Influencing factors
are thought to include domains sharing a base pair––known
as the subsite overlap (23,26,27), and different combinations
of specificity residues on neighbouring domains (28–30).
The precise nature of neighbour influence remains enig-
matic however, highlighted most recently by investigation
of yeast C2H2-ZF, which reported widespread differences
in DNA binding preferences among fingers with identical
DNA specificity residues (31). Examples illustrating conse-
quences of the neighbour context problem are shown in Fig-
ure 1A. Motifs preferred by the second finger of SQZ, sec-
ond finger of CGB-G3610W and eighth finger of REST––in
their native context––are very different from those preferred
by the same domain fused to fingers one and two of the
classic Zif268 array (as was the context in B1H experi-
ments(10)).

To investigate the problem of neighbour influence from a
structural perspective, we examine different binding confor-
mations among the available PDB C2H2 structures and ex-
pand these using molecular modelling to access all binding
conformations extant in a gold standard C2H2-ZF––DNA
dataset (see ‘Materials and Methods’ section). Surprisingly,
our analysis indicates that residues at the protein–protein
interface between adjacent domains appear to constrain the
relative orientation of adjacent domains. We propose that
these constraints in orientation allow or disallow certain
residue––base contacts, giving rise to the neighbour effect
problem. The resulting set of ‘binding modes’ informs a so-
lution to the problem of neighbour effects across a large
proportion of putative DNA binding C2H2-ZFs.

MATERIALS AND METHODS

Protein database analysis

All 39 C2H2-ZF protein DNA complexes were retrieved
from the protein database (PDB). Redundant structures,
or those with <3 Å resolution were discarded reducing the
number to 11 (2DRP, 2I13, 2KMK, 4F6M, 1A1F, 1G2F,
2PRT, 4M9E, 4GZN, 4M9V, 1F2I, 1MEY). Every possi-
ble two-finger array was extracted from these 12 structures
and after removing those disassociated from their nucleic
acid (shortest ZF––DNA distance >10 Å), a set of 22 struc-
tures remained. Structures were visualized using Chimera
and aligned using the first finger of each two-finger set to
highlight relative differences in finger 2 position. Sequence
alignments performed using ClustalX.

Molecular modelling

Structural models were generated with the Jackal (32) pro-
gram using PDB file 1AAY as the template. The DNA was
elongated by 4 bp at each end using X3DNA (33) such that
any end effects (termini melting) would not affect the pro-
tein bound nucleotides. Zinc 2+ ions were approximated us-
ing four mass-less dummy atoms in addition to the core

zinc, each with a 1/2 positive charge, in a tetrahedral ar-
rangement, for correctly orientated coordination of the four
C2H2-ZF side-chains (34). One model was made for every
possible three-finger array using a 36-member subset of the
gold standard set. The DNA component was mutated in
each case using Chimera (35) to produce the sequence de-
termined by experiment (B1H, PBM or ChIP-seq) for that
C2H2-ZF array. All models were prepared for Amber MD
simulation using the WHATIF web interface (36) to build
in any missing atoms and identify protonation states. They
were then explicitly solvated in a 10 nm3 box of TIP3P
water using TLEAP in AMBER 10 (37). Sodium counter-
ions were added for overall charge neutrality and periodic
boundary conditions were applied. Bonds to hydrogen were
constrained using SHAKE (38) to permit a 2 fs time step
and the particle mesh Ewald (39) algorithm was used to
treat long-range electrostatic interactions. The non-bonded
cut-off was set at 12.0 Å. Systems were energy minimized
using a combination of steepest descent and conjugate gra-
dient methods. MD calculations were carried out with the
PMEMD module of AMBER 10 in conjunction with the
FF99 Barcelona forcefield (40), which is specifically cus-
tomized for nucleic acids. The FF99 Stony Brook forcefield
(41) was used for the protein. Each system was equilibrated
and heated over 100 ps to 300K and positional restraints
were gradually removed. A Berendsen thermostat and baro-
stat was used throughout for both temperature and pressure
regulation (42). A total of 20 ns of conformational space ex-
ploration was obtained for each array. During calculations,
a snapshot was saved every 2 ps. Root mean square devia-
tion (RMSD) was evaluated to assess the equilibration of
each run. RMS clustering of the trajectory frames was car-
ried out using the MMTSB toolset (43) kclust, with the ra-
dius set to 2.5 Å and maxerr to 1. This produced a set of
45 representative conformations. Further Jackal modelling
was then carried out using these conformations as the tem-
plates. Every possible three-fingered array in the full gold
standard set, together with their cognate motifs, were com-
mitted to each template, producing 90 models. The exact
register of fingers and specificity residues with respect to the
known motifs––where not obvious––was determined using
ChIP-seq enrichment data and recognition code predictions
where agreement allowed.

Gold standard set compilation

We compiled a set of 64 ‘gold standard’ motifs from
the literature and available databases for natural C2H2-
ZF proteins from different organisms. We used the col-
lection of motifs reported for C2H2-ZF proteins in the
CisBP database (44), including only C2H2-ZF proteins with
canonical linker lengths (4–6 amino acids). A single motif
for each model was selected––to obtain a manageable num-
ber of models for MD simulation––by removing redundant
motifs. For each protein with multiple motifs, we first se-
lected a single representative motif as follows: if the protein
had more than two motifs, we selected the motif that had
the largest ‘sum of similarities’ to other motifs. The similar-
ity of a pair of motifs was defined as the Pearson correla-
tion of their affinity scores across 50 000 random sequences
of length 100 bp, with affinity scores calculated as described
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Figure 1. Context-dependent sequence preferences and PDB structural alignments. (A) Aligned PWMs showing that the second finger of SQZ, second
finger of CGB-G3610W and eighth finger of REST recognize different DNA motifs depending on whether they are in their native context or fused to
fingers 1 and 2 of Egr1. (B) Alignment of 22 two-finger arrays extracted from 12 non-redundant PDB structures. Showing considerable conformational
variation between subgroups and close structural similarity within subgroups. Coloured boxes list the different protein types contributing to structurally
similar subgroups together with the identity of residues +9 and −2 that exist at the finger–finger boundary of that group. H-4-H has four rather than the
typical three residues separating the two Histidines (C) Alignment of all eight 2-finger arrays extracted from the PDB, where residues +9 and −2 are Arg
and Ser respectively. Structural similarity between any two arrays is <1.0 Å C� RMSD despite seven different proteins contributing to this subgroup.

previously (45). If the protein had only two motifs but also
had a characterized homolog, we selected the motif that was
most similar to the homologue motif (reasoning that this
motif was supported by an independent experiment from a
similar protein). If the protein had only two motifs and no
homologues, we selected one motif randomly. We further re-
moved similar motifs from different proteins by performing
Affinity Propagation clustering of the motifs (46), selecting
only the ‘exemplar’ motif from each cluster. In some cases
the precise residue––base register was difficult to determine,
for instance, where an experimentally determined motif is
longer than necessary to accommodate an array. Such cases
were excluded to optimize accuracy, leaving a high accuracy
subset of 36 cases for modelling and preference profile de-
termination. The 28 remaining cases were retained as a test
set for motif prediction using a random forest.

Preference profiles

Preference profiles were produced using the high accuracy
subset of 36 arrays discussed in the previous section. These
36 arrays were split into their constituent fingers and each
finger associated with its boundary pair identifier, compris-
ing residue +9 of the previous finger and −2 of the sub-
ject finger. Fingers were further associated with a posi-
tion weight matrix (PWM) delineating experimentally de-
termined nucleotide preferences for that domain. Precise
residue––base associations could be determined because all
36 PWMs contained the same number of consecutive base
triplets as the fingers of their associated array. Mean fre-
quencies were calculated for each of the four specificity
residues (+6 +3 −1 +2) across the entire gold standard set

to produce a preference profile that does not account for
binding mode influence. Fingers were then grouped accord-
ing to their boundary pair association with one of six struc-
tural modes determined from the crystal structures and MD
models. Mean frequencies were calculated for each of the
four specificity residues across each of the six separated
groups to produce preference profiles that reflect the influ-
ence of binding modes. Amino acids present in the gold
standard set for each specificity position were ordered from
left to right according to decreasing incidence. The fre-
quency information for each amino acid was used to cal-
culate the statistical significance of these differences and p-
values reflecting this were plotted above each profile.

Introducing modes into the specificity code

Machine learning calculations were carried out using the
RandomForest R package with a model composed of 2000
decision trees. The random forest was trained on binding
preferences from the gold standard 36-member subset (see
above). Predictions with response type output were made
using 10-fold cross validation and also of the 28-member
gold standard subset. Predictions were aligned to known
motifs to identify the register for the 28-member subset.
Training was carried out without mode information using
all 100 fingers with four specificity residues as covariates and
correction bias applied. This was repeated 16 times to get
each of the 16 (4 × ACGT) base preferences and capture
all specificity residue influence for the full set. To involve
modes, the process was repeated including residue +9 from
the previous finger and −2 of the subject finger as covari-
ates, making six features in total. Where amino acids did
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not exist in the training set (i.e. empty positions in Figure 3)
recognition code (10) predictions were inserted. Both sets
of predictions were aligned to experimental motifs (10-fold
cross validation and the 28-member test set) and similarities
were calculated using Pearson correlation.

Correlating structural similarity with boundary pairs and
modes

All 108 structures from the PDB and modelling were
aligned with every other to produce a matrix of 11 664
RMSD measurements. To avoid cases where conserved
boundary pairs simply reflected the close overall sequence
identity of an array, pairs of structures with a sequence iden-
tity of >50% were removed. Remaining measurements were
grouped according to whether or not the pair of structures
had matching +9/−2 boundary pair residues. Conforma-
tional difference is strongly correlated with boundary pair
match/mismatch.

RESULTS

PDB structures reveal boundary residue-specific conforma-
tions

To investigate the influence of immediately neighbouring
finger domains on a particular C2H2-ZF, we first exam-
ined all available crystal and nuclear magnetic resonance
(NMR) structures extant in the PDB. After discarding
structures with low resolution (>3.0 Å) and poor DNA as-
sociation (shortest �-helix––DNA distance >10.0 Å), we
extracted and examined 22 non-redundant pairs of adja-
cent zinc fingers from these structures. In the process of
this analysis, we noted that any two adjacent fingers ap-
pear to adopt one of a small number of relative orienta-
tions. Figure 1B shows that there is significant conforma-
tional variation between these arrays but that some clus-
ter very closely, with C� RMSD <1.0 Å. This similar-
ity is despite the structures originating from different pro-
teins and involving considerable sequence difference (Sup-
plementary Figure S1). Remarkably, we found that when
grouped according to structural similarity (defined as C�
RMSD of <1.0 Å), arrays within each group often have
conserved residues at positions +9 from ‘finger 1’ and −2
from ‘finger 2’ (fingers are oriented from N to C termini).
These are residues that interact at the finger––finger bound-
ary. Other residues that could potentially be involved in
boundary interactions––including those involved in DNA
readout at the sub-site overlap(25,26)––were not conserved
within these conformational groups. Conservation can’t be
explained by common ancestry as in many cases the pro-
teins within structural groups are not homologues. An il-
lustration is shown in Figure 1C where a group of nine dif-
ferent two fingered arrays from seven different proteins all
align with an RMSD of 0.6 Å. In this case conserved residue
positions +9 and −2 are Arginine and Serine, and this com-
bination is not seen in any other group. Thus, while forma-
tion of energetically favourable finger-DNA contacts during
the binding process undoubtedly influences domain orien-
tation to a certain extent, specific residues at the interface
between the two domains appear to play a dominant role.

Expanding the structure set using MD simulation

The paucity of C2H2 structures makes it unlikely that all
possible conformational variants have been captured. We
therefore next employed molecular modelling to expand
structural space to include all C2H2–DNA complex con-
formations where the motif has been experimentally deter-
mined with high confidence. Models were constructed for
every possible three-finger sub-array in a gold standard set
subset (see ‘Materials and Methods’ section) of 36 C2H2-
ZFs that had varying lengths of 3–10 zinc fingers, adding up
to a total of 90 three-finger sub-arrays. Each was in complex
with an 18 bp DNA fragment bearing the experimentally
determined base sequence motif for that array. MD simula-
tion in explicit solvent, followed by clustering of the output
equilibrated trajectories produced representative conforma-
tions for each complex. RMSD alignment of the conforma-
tions revealed extensive conformational redundancy. When
grouped along with PDB structures, six distinct conforma-
tional clusters were observed, which we refer to hereafter
as binding ‘modes’. Figure 2A shows a structural align-
ment of the representative structures for each mode. Struc-
tural similarity within each mode was <1.5 Å C� RMSD,
while each mode was distinguished from the others by con-
taining no member with <2.0 Å similarity to any member
of another mode. Alignment between the modelled struc-
tures and MD relaxed PDB structures, showed they adopt
the same modes and intra-mode conformational variation.
For example, Figure 2B shows that the mode 1 representa-
tive structure aligns closely (<1.0 Å C� RMSD) with PDB
structure Group 1 from Figure 1. Other PDB–mode align-
ments are shown in Supplementary Figure S2. In a simi-
lar manner to the PDB structures, each structurally simi-
lar group had residues at position +9 of finger 1 and −2 of
finger 2 that were exclusive to––and repeated within––each
group. It should be emphasized at this point that modes 5
and 6 are not represented in the PDB and thus do not yet
have experimental confirmation for their existence. These
results support the notion that, to a first approximation,
these residues specify one of six binding modes.

Each mode has a distinctive base preference profile

We hypothesized that these discrete conformational differ-
ences may influence DNA sequence preference. Because
each binding mode exhibits a different �-helix orientation
in the DNA major groove, the six modes each produce
characteristically different canonical residue angles and dis-
tances with respect to DNA bases (Figure 2C). Some of
this variation can be compensated for by changes in DNA
morphology (double helix bending and twisting), however
the comparative rigidity of DNA precludes full compen-
sation. Consequently, optimal interacting group geometry
varies––allowing for the prospect that a different base could
be more energetically favourable to binding by the same
side-chain type. An example of this may be found by com-
paring the solved structures 1a1f and 2kmk (Supplemen-
tary Figure S3), where a threonine at the +6 position in
both structures associates with thymine on opposite DNA
strands, according to the different helix orientation engen-
dered by Arg-Ser and Phe-Ser respectively.
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Figure 2. Binding modes with associated boundary pairs and specificity residue orientations. (A) Alignment of structures representing six binding modes
identified by clustering MD trajectory snapshots. Superimposing produces a minimum of 2.0 Å C� RMSD between any two structures. (B) Representative
structure for mode 1, aligned with two structures from the PDB (1A1F and 1MEY) that are representative of the RA and RS boundary pair contribution
to the most highly populated structural group from PDB analysis (C) Differences in orientation of finger 2 and its canonical specificity residues with respect
to the major groove for each mode. Variation in optimal hydrogen bond geometry influences base preference. Boundary pairs relating to each mode are
shown inset, with those captured by PDB structures colour-coded according to Figure 1.
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Figure 3. Residue––base preference profiling. (A–D) Base preferences of each specificity residue at each of the specificity positions +6 +3 −2 +1. Res
+2 preferences are shown as the complement base to the actual contact (which is typically cross-stranded). Preferences are shown for all fingers in the
36-member gold standard subset (labelled ALL) and also for fingers grouped into each of their six modes. Empty squares reflect interactions not captured
in the gold standard set.
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To ask whether residue–base preferences are modulated
by neighbouring domains, base preferences were gleaned
from the 36-member gold standard subset for the four
canonical C2H2-ZF DNA binding residues of each finger.
A profile for each mode was produced (see ‘Materials and
Methods’ section) that details the nucleic acid base prefer-
ence for each of the 20 amino acids at each of the canonical
positions: +6, +3, +2 and −1 (Figure 3A–D). Known in-
dividual specificity residue preferences from the gold stan-
dard set were grouped according to the mode of the finger
bearing them. A profile was also generated for the entire set
without mode separation (labelled ‘ALL’). Amino acid in-
cidence in the gold standard set is shown above each profile
as an indicator of reliability. Gold standard set cases where
the precise residue––base register was difficult to determine,
were not used, to promote accuracy (e.g., where an exper-
imentally determined motif is longer than necessary to ac-
commodate an array).

Without mode separation, the base preference informa-
tion of a given specificity residue often includes two or more
base types of indistinguishable preference (as observed in
the original specificity code (47)). Once the information is
separated into modes, however, distinct preference for one
specific base can be attributed to many residues and ac-
cordingly preferences often differed between modes. There
are many specificity residues for which the preference be-
tween two bases remains unclear. This is largely resolved
by considering both 3′ and 5′ adjacent fingers and there-
fore four boundary pair residues. There is little benefit from
this however, because requiring a combination of 2 modes/4
residues for each finger vastly reduces the information at
each specificity position. The influence of more distant
neighbour effects may also affect an ability to resolve in-
dividual base preferences, as some mode effects may prop-
agate along an array. Some residue––base preferences are
less sensitive to change in domain orientation. For example
Arginine almost always recognizes Guanine irrespective of
mode or position. Long flexible residues such as Arginine
can adopt a myriad of rotamers allowing them preserve op-
timal residue––base geometry.

Predicting binding mode from sequence using boundary
residues +9 and −2

We reasoned that knowledge of different binding modes
could be exploited for motif prediction purposes if the
modes could be determined from amino acid sequence
alone. In essence, the results in Figure 3 suggest that a sep-
arate recognition code could be derived for each of the
six modes. Because the most preferred motif sequence is
unknown a priori, MD cannot easily determine binding
modes. Predicted motifs could perhaps be used, although
the high computational cost for each MD simulation makes
it impractical for large-scale investigation, especially given
the C2H2 family size.

A priori, of particular interest for prediction were the
non-linker residues of one finger that interact with non-
linker residues of a neighbouring finger, especially given the
observed sequence conservation of positions +9 and −2.
Figure 4A shows four residues (coloured green) that com-
monly interact at the boundary (finger 1 positions +6 and

+9 with finger 2 positions −1 and −2). Finger 1 position
+9 also interacts with a linker residue. Modulation of the
mode may involve all of these residues and thus be depen-
dent on thousands of combinations in human zinc fingers
alone. Gold standard set coverage currently only extends to
∼100 of these combinations, and for this reason, prediction
using the minimum possible number of residues is desirable
to boost coverage. We explored predicting binding modes
by sequence similarity clustering using: full-length finger-
linker-finger sequence, all boundary residues, and various
other subsets. Neither full sequences nor any of the subsets
improved on simply using +9 and −2 to determine modes.

The power of using +9/−2 for prediction is demonstrated
by aligning all of the 108 structures produced by MD re-
laxation of structures from the PDB and modelling with
each other, to produce a matrix of 11 664 RMSD measure-
ments. To avoid cases where conserved boundary pairs sim-
ply reflected the close overall sequence identity of an array,
pairs of structures with a sequence identity of >50% were
removed. By plotting each remaining measurement accord-
ing to whether or not it derived from a pair of structures
with matching +9/−2 boundary pair residues (Figure 4B),
it can be seen that conformational difference is strongly cor-
related with boundary pair match/mismatch. Each mode
contains different boundary pairs and these are exclusive to
that mode––yet often observed multiple times within it (Fig-
ure 4C). Plotting structural similarity according to whether
or not the pair of structures are included in the same bound-
ary pair determined mode, confirms the power to predict
modes using +9/−2 residues.

The boundary pair effect makes sense structurally as dif-
ferent +9/−2 residue pairings are forced to adopt different
positions with respect to each other according to their bulk-
iness (VdW), electrostatic interactions and hydrophobic ef-
fects. These constraints can in turn impose characteristic
restrictions on the binding orientations an entire domain
can adopt––thus engendering different modes. The models
suggest that each pair uses either hydrophobic patch for-
mation or optimal positioning of polar groups to provide
significant variation in boundary geometry. Figure 5 shows
an example from the modelled set of two distinct pair in-
teractions and the ramifications for finger orientation and
hydrogen bond geometry. Compared to R-T residue pairs
at +9/−2 positions, the hydrophobic patch adopted by the
L-I pair is predicted by the model to induce a 3.1 Å shift and
15◦ change in angle of finger B with respect to the DNA ma-
jor groove. Crystal and NMR structures in Supplementary
Figure S3 show that threonine prefers thymine on opposite
strands, depending on �-helix orientation.

Using boundary pairs to improve motif prediction

A random forest was trained on a high accuracy subset
(see ‘Materials and Methods’ section) of the gold standard
set residue–base preferences. First with the four specificity
residues as covariates, followed by training on these––plus
the relevant boundary pair residues. Figure 6 shows that
preference prediction under 10-fold cross validation was im-
proved significantly by the involvement of boundary pairs
(P-value < 0.001) Test set prediction of the 28 gold stan-
dard set cases––originally discarded due to having indeter-
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Figure 4. Depiction of boundary residues, heatmap of the modes they are associated with, and correlation of these with structural similarity. (A) Zinc
finger array in complex with DNA showing the specificity residues +6, +3, −1 and +2. Residues that interact at the boundary between two adjacent fingers
are shown. (B) Heat map detailing which interacting boundary pairs are responsible for each of the six modes. No pair is associated with more than one
mode and intensity indicates the frequency of occurrence for each pair in the gold standard set. (C) RMSD alignment of 108 structures from the PDB and
modelling. Measurements grouped according to whether or not the pair of structures had matching +9/−2 boundary pair residues, or had the same or
different mode. Conformational difference is strongly correlated with boundary pair and mode match/mismatch.

minable register––also showed a significant improvement
with the inclusion of boundary pair information (P-value
< 0.001). To ensure that our structural approach is not just
fixing idiosyncratic errors in this particular RF model, we
used alternative recognition codes developed by Singh et al.
(20) and Stormo et al. (21). We find that our approach leads
to a significant improvement for the Singh code (P-value <
0.043) and moderate improvement for the Stormo code (P-
value < 0.09). This suggests that our approach indeed leads

to a general solution of this aspect of the neighbourhood
problem (Supplementary Figure S5). A very recently pub-
lished Caenorhabditis elegans dataset (48) containing 35 ar-
rays that are not homologous with any gold standard set
members was used as an additional benchmark. The inclu-
sion of boundary pair information to correctly predict the
PBM results was again beneficial (P-value: 0.0379).
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Figure 5. Example of boundary pair geometry differences. Hydrophobic pair (blue) LI and polar pair (green) RT have different spatial arrangements that
modulate finger two orientation with respect to DNA. Different finger orientation alters the way that specificity residues are positioned with respect their
cognate bases, accounting for differing preferences (circular inset).

DISCUSSION

We suggest a structural approach to the problem of context
dependence on C2H2-ZF DNA recognition. The existence
of a range of distinct C2H2-ZF binding modes, effected by
variation in protein sequence dependent inter–finger inter-
actions, engenders different specificity residue orientation
and consequently base preference. Such insight into the fun-
damental behaviour of this, the largest family of TFs, facili-
tates a significant improvement in prediction accuracy. The
modulating effect of binding modes may also contribute to
the explanation for DNA binding behaviour by yeast zinc
finger proteins, where widespread differences in specificity
were observed for 2-ZF proteins with identical DNA speci-
ficity residues (31). Siggers et al. proposed that these fin-
gers recognize diverse DNA motifs because the DNA se-
quence itself engenders different ZF conformational modes,
but they suggest that other mechanisms are also operating.
As these proteins bind to diverse DNA motifs according to
boundary pair mode binding preferences (Supplementary
Figure S6), it is likely that the full ZF specificity range is

achieved through a combination of influences both from
the DNA sequence and from inter-domain residue––residue
contacts.

One consequence of different modes may be that some
decrease the specificity of a finger. The data in Sup-
plementary Figure S6 shows possible examples of this,
where YPO22, CRZ11 and CRZ1 all appear to exhibit re-
duced specificity compared to others with the same speci-
ficity residues. Hypothetically, there might be instances
where this is evolutionarily favourable. Even if rendered
null––incapable of making productive DNA contacts––a
finger would still influence binding preference of the array
by controlling the orientation and register of its neighbours.
In theory, this might expand the accessible specificity space
of ZFs and be an explanation for any specificity variation
that has yet to be accounted for.

The importance of neighbour effects has been widely dis-
cussed (10,23). Despite this, relatively few structural stud-
ies(49) have probed further than the Zif268 model, and with
residue variation limited to finger 3, little difference in con-
formation was captured. Knowledge of the role of modu-



9156 Nucleic Acids Research, 2015, Vol. 43, No. 19

0.
2

0.
4

0.
6

0.
8

modes
excl.

modes
incl.

10-fold cross
validation

GS test set

S
im

ila
rit

y 
sc

or
e

C. elegans
test set

modes
excl.

modes
incl.

modes
excl.

modes
incl.

Figure 6. Using boundary pair information to improve random forest pre-
dictions. Plots showing the similarity of random forest predicted motifs
to those from experiment. Training on the 36 gold standard subset prefer-
ences with boundary pair information allows improved prediction under
both 10-fold cross validation (left) and a 28-member test set (right).

lating boundary pairs may be useful to guide future exper-
imental determination of motifs. By concentrating on the
most frequently occurring boundary pairs in nature that
are not yet represented or are under represented in the gold
standard set, they may––if determined for a few––facilitate
better predictions for many. A similar argument holds for
generating datasets with the aim of fully populating the ta-
bles shown in Figure 3. Most commercially available zinc
fingers are either mode 1 or 4 (50) so a complete set of pre-
dictions for these modes would be useful for zinc finger nu-
clease design.

The number of potential boundary pairs is large (400),
but only relatively few of them occur frequently. For exam-
ple, the 39 different boundary pair combinations available
in the gold standard set all together cover 73% of all of the
human zinc fingers (and their N-terminal neighbour). A to-
tal of 239 boundary pairs exist in the human set but the top
25 most frequently occurring account for ∼80% of fingers
(Supplementary Figure S4). While many of these are repre-
sented in the gold standard set, some are noticeably absent
and the future addition of arrays containing these bound-
ary pairs to the gold standard set would lead to significant
coverage increase. Coverage is also limited by non-complete
residue––base preference profiles for each mode (Figure 3),
meaning that in many cases individual base predictions are
missing. Our results hence guide future experiments for the
most effective completion of the recognition code.

The lack of access to complete coverage when using an
approach dependent on the information from limited pub-
lished motifs means that it is most effectively used to aug-
ment other recognition code methods. Replacement can oc-

cur when there is a lack of specificity at a given nucleotide
position in the motif (Supplementary Figure S7 for set of
improved logos selected at random). Making corrections
informed by mode preferences to predictions from the lat-
est recognition codes significantly improves prediction ac-
curacy. Combination allows full coverage and optimal ac-
curacy to be achieved.

Our results have implications for both predicting nat-
ural zinc finger-binding sites, and the rational design of
novel arrays to target motifs of therapeutic or other in-
terest. Further work is needed to clearly elucidate the
role––if any––these boundary residues played in the evolu-
tionary history of DNA binding diversification. Modulat-
ing boundary pairs may also be interesting from an evolu-
tionary perspective because a single substitution could po-
tentially alter all of the specificity residue base preferences
of a DNA binding domain at once, thus providing yet an-
other level of plasticity for the ubiquitous C2H2 domain.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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