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Abstract

The host factor and interferon (IFN)-stimulated gene (ISG) product, zinc-finger antiviral pro-
tein (ZAP), inhibits a number of diverse viruses by usurping and intersecting with multiple
cellular pathways. To elucidate its antiviral mechanism, we perform a loss-of-function
genome-wide RNAI screen to identify cellular cofactors required for ZAP antiviral activity
against the prototype alphavirus, Sindbis virus (SINV). In order to exclude off-target effects,
we carry out stringent confirmatory assays to verify the top hits. Important ZAP-liaising part-
ners identified include proteins involved in membrane ion permeability, type | IFN signaling,
and post-translational protein modification. The factor contributing most to the antiviral func-
tion of ZAP is TRIM25, an E3 ubiquitin and ISG15 ligase. We demonstrate here that
TRIM25 interacts with ZAP through the SPRY domain, and TRIM25 mutants lacking the
RING or coiled coil domain fail to stimulate ZAP’s antiviral activity, suggesting that both
TRIM25 ligase activity and its ability to form oligomers are critical for its cofactor function.
TRIM25 increases the modification of both the short and long ZAP isoforms by K48- and
K63-linked polyubiquitin, although ubiquitination of ZAP does not directly affect its antiviral
activity. However, TRIM25 is critical for ZAP’s ability to inhibit translation of the incoming
SINV genome. Taken together, these data uncover TRIM25 as a bona fide ZAP cofactor
that leads to increased ZAP modification enhancing its translational inhibition activity.

Author Summary

Organisms have evolved various innate strategies to defend against pathogens. During
virus infection, the cell senses the viral nucleic acid and produces type I interferon, which
alerts the neighboring cells. Signaling of type I interferon triggers expression of a wide
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array of genes, some of which encode proteins that inhibit the replication of diverse virus
families. It is not clear what determines the broad yet specific activity of these interferon-
induced gene products. Identification of cellular cofactors and pathways required for the
function of these broadly antiviral proteins would help elucidate their mechanisms. Here,
we perform a genome wide knockdown screen to identify host factors important for the
antiviral action of zinc finger antiviral protein (ZAP), a broad-spectrum inhibitory protein
induced by interferon. We find that ZAP synergizes with host proteins with divergent
functions and identify TRIM25 as a bona fide ZAP cofactor. TRIM25 binds to both splice
isoforms of ZAP, and stimulates their ubiquitination and function by facilitating the abil-
ity of ZAP to block viral translation. Our data sheds light on the antiviral mechanism of
ZAP and advances our understanding of host factor contributions to innate immune
responses against viral infections.

Introduction

The recent re-emergence and spread of viruses beyond their normal geographic distribution
have affected countries worldwide. Understanding the biology of host factors with broad anti-
viral activity is crucial to vaccine and drug development efforts to counteract existing and
emerging viral infections.

As a first line of defense against viruses, the host produces type I interferons (IFNs), which
signal through the JAK/STAT pathway to induce hundreds of IFN-stimulated genes (ISGs)
that block various steps of the viral life cycle (reviewed in [1]). Among the ISGs, zinc finger
antiviral protein (ZAP), encoded by the ZC3HAV1 gene, inhibits alphaviruses, filoviruses, hep-
atitis B virus, retroviruses, and the LINE-1 and Alu retroelements [2-8]. However, ZAP does
not inhibit yellow fever virus, vesicular stomatitis virus, and herpes simplex virus 1 (HSV-1)
[3]. It is not well understood what determines the broad yet specific antiviral activity of ZAP.

ZAP, also called PARP13, is a member of the poly(ADP-ribose) polymerase (PARP) family
and is alternatively spliced. The long isoform of ZAP (ZAPL) contains a PARP-like domain on
the C-terminus that is missing in the short isoform (ZAPS). This PARP-like domain is not
enzymatically active [9], although exchange of the inactive catalytic triad in ZAPL to that of
the active PARPs completely abolishes its antiviral activity [10], suggesting an important yet
unknown role of the PARP-like domain in the antiviral function of ZAP. Several studies have
demonstrated distinct activities for the two isoforms. ZAPL is more active against alphaviruses,
such as SINV and Semliki Forest virus, than ZAPS, and carries signatures of positive selection
[11, 12]. While both isoforms are induced by IFN, ZAPS is upregulated more than ZAPL by
virus infection and type I IFN [5, 13, 14].

Diverse cellular pathways have been implicated in ZAP’s function (reviewed in [15]), but its
precise mechanism is unknown. It is possible that ZAP interacts with multiple host factors,
and the involvement of those factors in the viral life cycle is what provides the specificity. For
example, ZAP binds RNA and recruits the exosome complex to target viral RN As for degrada-
tion [5-7, 16-18]. ZAP also directly inhibits translation of the incoming alphaviral genome
[3], with interference in the interaction between eIF4A and eIF4G [19] implicated as one
mechanism. In addition, ZAP synergizes with other ISGs for its maximal activity and upregu-
lates RIG-I-mediated IFN- production [14, 20]. These studies support a model in which ZAP
interacts with various host factors and cellular complexes to achieve an optimal antiviral state
against diverse viruses.
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In an attempt to unify the divergent pathways in which ZAP is involved and to uncover
novel cofactors that are important for ZAP’s inhibitory activity, we performed a genome-wide
siRNA screen in a cell line inducible for ZAP expression. Large-scale RNAi screens allow us to
take an unbiased approach to interrogate every gene in the genome. However, off-target effects
lead to false positive hits and severely limit the value of genome-wide screens [21, 22]. To
address this we performed a rigorous set of confirmatory assays to verify the top hits and
exclude off-target effects. We identified several genes that synergize with ZAP to target SINV
or inhibit SINV independently of ZAP. Among the hits, TRIM25 was validated to be a cofactor
of ZAP. TRIM25 is an E3 ubiquitin and ISG15 ligase, and is responsible for the polyubiquitina-
tion and activation of RIG-I [23-25]. We generated CRISPR clones in ZC3HAV1-knockout
293T cells where TRIM25 expression is significantly reduced and further confirmed that
TRIM25 synergizes with both ZAPS and ZAPL to block SINV replication. Our data demon-
strates that TRIM25 triggers ubiquitination of ZAP and enhances its antiviral activity through
inhibition of viral translation, highlighting the importance of cofactors in the mechanisms of
broadly antiviral proteins.

Results

A genome-wide siRNA screen reveals novel host factors that synergize
with ZAP or exhibit ZAP-independent antiviral activity

We performed a genome-wide screen with pooled siRNAs from Dharmacon to identify genes
that are required for ZAP’s antiviral activity (see Fig 1A for screen workflow). Viral replication
is low in T-REx-hZAP cells when ZAP expression is induced, and silencing of ZC3HAV1
increases replication of a luciferase-encoding SINV, Toto1101/Luc, by 2 logs. The premise of
the screen is as follows: should knockdown of an essential cofactor render ZAP nonfunctional,
viral replication will be restored, resulting in increased luciferase activity (refer to “ZAP cofac-
tor siRNA” column in Fig 1A). The screen was performed in triplicate to improve robustness,
and we identified 480 genes, whose silencing significantly elevated SINV Toto1101/Luc repli-
cation with an average robust Z score of >3 (Fig 1B). As expected, ZC3HAV1 was the top hit
with an average robust Z score of 582.65; this was followed by BAI3 (165.56), TRIM25 (116.52)
and RICS (100.42) (see S1 Table for the entire results).

Normalized percent activation (NPA) and robust Z score were utilized for hit selection
[26]. The genes with the highest NPA and robust Z score >3 in all three replicate wells were
chosen for validation in a secondary screen (91 genes). Since siRNAs can act as microRNAs
and target genes non-specifically through their seed sequences [27], we included 4 genes that
were potential off-target candidates from Haystack analysis (PDIKIL, SNAP25, FOXKI,
DGAT2L3). In addition, we included 1 gene based on overlap with ISGs that we previously
found as synergistic with ZAP in an overexpression screen (MAP3K14;[20]), and 6 genes from
pathways that were significantly enriched but were not on the top 91 list (APC, FZD2, GFRA1,
JAK1, SP1,and WNT8B).

We re-screened the candidate genes with a library of single siRNAs obtained from a dif-
ferent company (Ambion) to exclude hits that are mediated by off-target effects from further
characterization. Knockdown of 5 genes by 6.25 nM siRNA (Fig 2A) and knockdown of 13
genes by 25 nM siRNA (Fig 2B) significantly increased SINV Toto1101/Luc replication (see
S2 Table for the entire results). Among them, ZC3HAV1 was identified as the top hit.
TRIM25, KCNH5, GCS1 and JAK1 were also hits at both siRNA concentrations. In addition
to the T-REx-hZAP cells used for the primary screen, a 293 clone that is inducible for the
expression of rat ZAP C88R mutant, a dominant negative inhibitor of ZAP function [28],
was also tested in parallel. Since endogenously expressed ZAP is antiviral, this cell line
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Fig 1. A loss-of-function RNAi screen uncovers many genes that significantly reduce the antiviral
activity of ZAP when silenced. (A) The experimental outline of the genome-wide siRNA screen is shown.
T-REx-hZAP cells transfected with control or gene-specific sSiRNA were treated with doxycycline to induce
ZAPS overexpression one day post-transfection and infected with SINV Toto1101/Luc two days post-
transfection. Cell lysates were harvested for measurement of luciferase activity at 24 h post-infection (p.i.).
Relative luciferase units represent the level of SINV replication. Cells treated with the control non-targeting
(NT) pooled siRNA have low SINV replication while ZAP knockdown by ZC3HAV1-specific pooled siRNA
rescues viral replication by 2 logs. The large dynamic range in which hypothetical hits (ZAP cofactors) were
identified is plotted on the right side of the graph. (B) Pooled siRNAs targeting the entire human genome
(Dharmacon) were tested in triplicate and genes with an average robust Z score of greater than 3 are plotted.
ZC3HAVT1 is highlighted in red while the top hits immediately following ZC3HAV1 are highlighted in blue.

doi:10.1371/journal.ppat.1006145.9001

inhibited for ZAP function allowed us to identify hits with a ZAP-independent antiviral role.
Silencing of GCS1 and GPRC5D by 6.25 nM (Fig 2C) and 25 nM (Fig 2D) siRNAs signifi-
cantly increased SINV Toto1101/Luc replication in these cells where ZAP is not functional
(see S2 Table for the entire results), suggesting that they might inhibit SINV in a ZAP-inde-
pendent manner.
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Fig 2. Secondary screen confirms the ZAP-dependent and -independent antiviral effects of hits. A customized library of individual siRNAs
(Ambion) targeting 102 hits from the primary screen was tested in triplicate in two different cell lines. Distribution of average Z scores for each of
the 3 siRNAs targeting a candidate gene in the secondary screen is shown here. The screen was performed with (A) 6.25 nM or (B) 25 nM
individual siRNAs in 293 cells induced to express ZAPS (T-REx-hZAP), and with (C) 6.25 nM or (D) 25 nM individual siRNAs in 293 cells induced
to express the rZAPC88R dominant negative mutant (T-REx-rZAPC88R). Each dot represents the average Z score of an individual siRNA tested
in triplicate. Silenced genes with an average Z score of >3 for at least 2 out of 3 siRNAs are identified and the siRNAs are labeled in color. (C and
D) The average Z scores of TRIM25and ZC3HAV1 are also plotted to indicate that TRIM25 does not have ZAP-independent antiviral effects.

doi:10.1371/journal.ppat.1006145.g002
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TRIM25 is a bona fide cofactor of ZAP

Next, we validated the candidate ZAP cofactors in a lower throughput assay. Silencing of
TRIM?25, KCNH5, JAK1, and ZC3HAV1 led to increased virus replication for at least 2 of the 3
siRNAs (Fig 3A), which was consistent with reduced protein levels of TRIM25 (S1A Fig) and
ZAP (S1B Fig), and reduced mRNA levels of KCNH5 and JAK1 (S1C Fig). Among the candi-
dates, 3 independent siRNAs targeting TRIM?25 significantly increased SINV Toto1101/Luc
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Fig 3. TRIM25 synergizes with ZAP to block SINV replication. (A) Candidate genes that significantly increased SINV replication in the secondary
screen when silenced by individual siRNAs at both concentrations were validated in a larger scale 24-well plate format. Triplicate wells of T-REx-
hZAP cells were transfected with the indicated siRNA, induced to express ZAPS, and infected with SINV Toto1101/Luc at a MOI of 10. Each symbol
represents the value obtained from a single well after 24 h of infection. White circles represent results using pooled siRNA controls that were either NT
or ZC3HAV 1-specific. The data is representative of 3 independent experiments. Asterisks indicate statistically significant differences (Student's t-test,
** p<0.005; *** p<0.0005; **** p<0.0001). (B) Triplicate wells of T-REx-hZAP cells were transfected with the indicated siRNA, induced to express
ZAPS, and infected with SINV Toto1101/Luc at a MOI of 10. Protein expression levels of TRIM25 and ZAP for the same transfections in a duplicate
well were determined by immunoblotting. $-actin was used as a loading control. The data is representative of 4 independent experiments. The p-
value from Student’s t-test is shown. (C) SINV replication in infected 293T cells in which ZC3HAV1 (left) or TRIM25 (middle) were silenced, and in
ZC3HAV1-null 293T cells in which TRIM25 was silenced (right) is plotted. At 48 h post-transfection with siRNA, cells were infected with SINV
Toto1101/Luc at a MOl of 0.01, and lysed at 6, 12, 24, and 40 h p.i. for measurement of luciferase activity. The data is representative of 3 independent
experiments. Asterisks indicate statistically significant differences (two-way ANOVA, *, p<0.05; **, p<0.01; **** p<0.0001).

doi:10.1371/journal.ppat.1006145.g003
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replication by 10- to 26-fold compared to the NT control (Fig 3A). Since TRIM25-targeting
siRNA #3 was most efficient at rescuing SINV Toto1101/Luc replication, we designed and
tested an additional C911 control. The 9™ to 11™ nucleotides of the siRNA were mutated to
their complementary sequence, hence the designation C911, to rule out the possibility that the
knockdown phenotype was due to the off-target effects of the siRNA [29, 30]. The C911 con-
trol should lose its siRNA activity but still maintain its off-target effects as a microRNA. While
TRIM25-targeting siRNA #3 rescued SINV Toto1101/Luc replication by about 1 log compared
to the NT control, #3-C911 did not lead to increased viral replication and did not reduce the
protein level of TRIM25 (Fig 3B), suggesting that the phenotype of siRNA #3 is due to specific
silencing of TRIM25 and not inhibition of an off-target gene. Furthermore, TRIM25 was
silenced in ZC3HAV1-knockout 293T cells [14], which were then infected by SINV Toto1101/
Luc to determine whether endogenously expressed TRIM25 has a ZAP-independent antiviral
role. As controls, ZC3HAV1 and TRIM?25 were silenced in 293T cells. While ZC3HAV1 (Fig
3G; left) and TRIM25 (Fig 3C; middle) silencing in 293T cells restored SINV Toto1101/Luc
replication by 1-3 logs by 40 h p.i,, silencing of TRIM25 in ZC3HAV1-knockout cells did not
further increase SINV Toto1101/Luc replication compared to the NT control (Fig 3C; right).
These data suggest that TRIM25 requires ZAP for its anti-SINV activity.

TRIM25 interacts with ZAP through its SPRY domain

Next, we asked whether TRIM25 physically interacts with ZAP. We infected 293T with endog-
enous TRIM25 and ZAP expression with SINV, and immunoprecipitated TRIM25 to look for
ZAP association at various time points following infection. We found that endogenous ZAP
co-immunoprecipitated with endogenous TRIM25 over the course of SINV infection (Fig 4A).
There were less TRIM25 and ZAP proteins present at 24 h p.i., which is consistent with the
cytopathic effects observed at that time point, leading to less TRIM25 and ZAP pulldown. Pre-
viously, TRIM25 was found to interact with ZAP in the presence of RNA although only ZAPL
was investigated [8]. To determine the interaction of TRIM25 and different ZAP isoforms,
ZAPS or ZAPL, and/or TRIM25 were co-expressed in ZC3HAV1-knockout 293T cells, which
were harvested for co-immunoprecipitation. Immunoprecipitation of both ZAPS and ZAPL
by a monoclonal antibody recognizing the N-terminal portion of human ZAP (NZAP) pulled
down TRIM25, although more TRIM25 is associated with ZAPL (Fig 4B). TRIM25 was dra-
matically modified in the presence of ZAPS, evident by the presence in the whole cell lysates
(WCL) of a ladder of bands larger than the molecular weight of TRIM25 (Fig 4B; WCL).
TRIM25 consists of a RING domain, two B box domains, a coiled coil (CCD) domain, and a
SPRY domain. The RING domain encodes the ubiquitin ligase activity while the CCD domain
is required for oligomerization of TRIM proteins and the SPRY domain is important for medi-
ating protein interactions and substrate specificity [31]. Next, we asked which domain in
TRIM25 was responsible for interaction with ZAP. Since more ZAPL associates with TRIM25,
we co-expressed similar levels of individual TRIM25 domains with ZAPL and immunoprecipi-
tated ZAPL. We found that the SPRY domain of TRIM25 but not its RING and B box/CCD
domains co-immunoprecipitated with ZAPL (Fig 4C). These data suggest that both ZAP iso-
forms form a complex with TRIM25, likely through interaction with the SPRY domain of
TRIM25.

Both the E3 ubiquitin ligase activity and oligomerization of TRIM25 are
required for its functional interaction with ZAP

Since TRIM?25 is an E3 ubiquitin ligase and has been shown to be important for ubiquitinating
RIG-I and upregulating RIG-I-mediated IFN-B production, we hypothesized that TRIM25
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Fig 4. The SPRY domain of TRIM25 associates with ZAP. (A) 293T cells were infected with the SINV strain Toto1101 (MOI = 10), and lysates
were harvested at 0, 6, 12 and 24 h p.i. for co-immunoprecipitation with an anti-TRIM25 antibody and immunoblotting. The data is representative
of 2 independent experiments. (B) Human ZAP short (S) and long (L) isoforms are shown, with the CCCH fingers, TIPARP, WWE and PARP-like
domains indicated. Light green shading indicates sequences shared by the two isoforms whereas the hatched region containing the PARP-like
domain is unique to the L isoform. WCL of ZC3HAV1-knockout 293T cells transfected with V5-tagged TRIM25 and/or ZAPS or ZAPL were used
for co-immunoprecipitation with an anti-NZAP antibody and immunoblotting. (C) Full-length (FL) TRIM25 is shown, with the RING, B box, CCD,
and SPRY domains indicated. WCL of ZC3HAV 1-knockout 293T cells transfected with V5-tagged FL or truncated TRIM25 (RING, B box/CCD,
SPRY only) and ZAPL were used for co-immunoprecipitation with an anti-NZAP antibody and immunoblotting. Different amounts of TRIM25
domain-expressing constructs were used for transfection in order to achieve similar RING, B box/CCD, and SPRY expression. The asterisk
indicates a non-specific band. (B and C) The data is representative of 3 independent experiments.

doi:10.1371/journal.ppat.1006145.g004

also ubiquitinates ZAP and/or other proteins that complex with ZAP in order to stimulate
ZAP’s antiviral activity. To test this, we targeted TRIM25 by CRISPR in ZC3HAV1-knockout
293T cells to interrogate the functional interaction between ZAP isoforms and TRIM25.
CRISPR targeting led to either in-frame deletions in all three chromosomal copies of TRIM25
(clone D) or frameshift insertions in two chromosomal copies and an in-frame deletion in one
(clone F), consistent with the almost undetectable protein expression of TRIM25 (S2 Fig).
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Fig 5. CRISPR targeting of TRIM25leads to increased virus replication and both the RING and CCD domains of TRIM25 are required for
ZAP activation. (A) Wild type (clone E) and TRIM25'° ZC3HAV1-knockout 293T cells (clones D and F) were transfected with empty vector or vector
expressing ZAPS or ZAPL and infected with Toto1101/Luc (MOI = 0.01) 2 days post-transfection. (B) TRIM25'® ZC3HAV1-knockout 293T cells
(clones D and F) were reconstituted with expression of FL or truncated TRIM25 (ARING, ACCD) and/or ZAPS or ZAPL, and infected with Toto1101/
Luc (MOI = 10) 2 days post-transfection. (A and B) The data is representative of 2 independent experiments performed on both clones D and F. Cell
lysates were harvested for measurement of luciferase activity at 24 h p.i. Relative luciferase units represent the level of SINV replication. Asterisks
indicate statistically significant differences (Student’s t-test, *, p<0.05; **, p<0.005; ***, p<0.0005).

doi:10.1371/journal.ppat.1006145.9005

Clones D and F are designated TRIM25". Clone E is wild type and has similar TRIM25 protein
expression as the parental ZC3HAV1-knockout 293T cells (S2 Fig). Both TRIM25' clones (D
and F) were tested in the subsequent experiments and showed similar results. We transfected
TRIM25' cells with ZAP-expressing constructs and infected them with SINV Toto1101/Luc.
TRIM25 knockdown significantly enhanced SINV Toto1101/Luc replication in the presence
of ZAPS and ZAPL overexpression (Fig 5A). Furthermore, we co-transfected TRIM25% cells
with TRIM25- and ZAP-expressing constructs to determine the antiviral effect of the different
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TRIM25 and ZAP combinations. FL TRIM25 alone inhibited SINV replication, likely due to
overexpression (Fig 5B). We found that FL TRIM25 enhanced the activity of ZAPS more than
the RING- and CCD-deficient TRIM25 mutants at both high MOI (Fig 5B) and low MOI
(S3A Fig), in the context of similar expression levels of FL and mutant TRIM25 proteins (S3B
Fig). This data suggests that both the E3 ligase activity and oligomerization of TRIM25 are
important for the activation of ZAP. However, FL TRIM25 does not significantly enhance
SINV inhibition by ZAPL (Fig 5B and S3A Fig), which hints at potential isoform-specific dif-
ferences in the ZAP-TRIM25 synergy.

TRIM25 mediates ubiquitination of ZAPS and ZAPL

Since the E3 ligase-defective TRIM25 (ARING) failed to stimulate the activity of ZAPS (Fig
5B), we hypothesized that TRIM25 might act by ubiquitinating ZAP and/or other host pro-
teins. First, we asked whether ZAP is ubiquitinated. 293T cells transfected with a construct
expressing HA-tagged ubiquitin were lysed under denaturing conditions to disrupt protein-
protein interactions, and endogenous ZAP was immunoprecipitated with an anti-ZAP poly-
clonal antibody and probed with an anti-HA antibody. A control anti-GFP antibody of the
same species as the anti-ZAP antibody was used to check for non-specific pulldown. We
found that ZAP was modified by ubiquitination at baseline and upon SINV infection (Fig
6A). When ZAPS and ZAPL were overexpressed in the ZC3HAVI-knockout 293T cells in
the presence of HA-tagged ubiquitin and subject to immunoprecipitation, both ZAP iso-
forms were found to be modified by ubiquitin, suggesting that the modified lysine(s) are
likely shared by both isoforms and located in ZAPS (Fig 6B). However, ZAPL is more polyu-
biquitinated than ZAPS, which hints to additional ubiquitination sites in the PARP-like
domain. In addition, we asked whether TRIM25 is implicated in the ubiquitination of ZAP
and determined the effect of both endogenous and overexpressed TRIM25 on ZAP ubiquiti-
nation level. Both ZAPS and ZAPL ubiquitination in the TRIM25'° cells was reduced com-
pared to that in the parental TRIM25 sufficient ZC3HAV1-knockout cells (Fig 6C).
Consistent with that, overexpressed TRIM25 dramatically increased the level of modifica-
tion of ZAP isoforms by both endogenous (Fig 6D) and overexpressed ubiquitin (Fig 6E).
Furthermore, we determined which linkage type of polyubiquitin TRIM25 induces on ZAP
by overexpressing ubiquitin mutants, in which all the lysine residues are mutated except for
K48 or K63. We immunoprecipitated ZAP isoforms that were co-expressed with TRIM25,
and HA-tagged wild type or mutant (K48, K63) ubiquitin, and found that both ZAPS and
ZAPL were ubiquitinated by both K48- and K63-linked polyubiquitin (Fig 6F). Together,
these data suggest that TRIM25 is responsible for ZAP modification.

Next, the lysine residues in ZAPS that were predicted to be ubiquitinated with medium to
high confidence by UbPred and CKSAAP_UbSite were changed to arginine residues individu-
ally (K226R, K296R, K314R, K401R, K416R, K448R, and K629R) or in combination (K296R/
K448R, 7UbA) to determine whether potential ubiquitination at any of these sites affects ZAP’s
antiviral activity. Moreover, a previous study, in which a global approach was taken to identify
all the ubiquitinated proteins in the cell, reported a tryptic peptide with a ubiquitinated lysine
in ZAPL (EEGKg5(glygly)LLEYATSR) [32]. We confirmed that this residue is ubiquitinated
using a targeted mass spectrometry approach and the lysine was mutated to arginine in ZAPL
(K783R). When we co-expressed the panel of ZAP ubiquitination site mutants with TRIM25
and immunoprecipitated ZAP to determine the level of modification, we found that the muta-
tions diminished the level of ZAP ubiquitination to various degrees (S4A Fig). Most impor-
tantly, introduction of all 7 mutations at the same time almost completely abrogated ZAP
ubiquitination (refer to “S 7UbA” in S4A Fig). However, the ZAPS 7UbA mutant was still
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Fig 6. Both ZAPS and ZAPL are ubiquitinated by TRIM25. Cells were lysed in denaturing conditions to ensure pulldown of ZAP only and not ZAP-
associated proteins. (A) WCL of 293T cells transfected with vector expressing HA-tagged ubiquitin (Ub), and mock infected or infected with the SINV
Toto1101 strain (MOI = 1) for 18 hours were used for immunoprecipitation of endogenous ZAP with an anti-ZAP antibody and immunoblotting. The
level of HA-tagged Ub in the ZAP pulldown is shown. The data is representative of 3 independent experiments. (B) WCL of ZC3HAV 1-knockout 293T
cells transfected with vectors expressing HA-tagged Ub, and ZAPS or ZAPL were used for immunoprecipitation of overexpressed ZAP with an anti-
ZAP antibody and immunoblotting. The level of HA-tagged Ub in the ZAP pulldown is shown. The data is representative of 3 independent experiments.
(C) WCL of wild type and TRIM25'° ZC3HAV 1-knockout 293T cells transfected with vectors expressing HA-tagged Ub, and ZAPS or ZAPL were used
forimmunoprecipitation with an anti-ZAP antibody and immunoblotting. The data is representative of 2 independent experiments performed on both
clones D and F. Only data for clone D is shown here. (D) WCL of ZC3HAV 1-knockout 293T cells transfected with vectors expressing ZAPS or ZAPL,
and/or V5-tagged TRIM25 were used for immunoprecipitation with an anti-ZAP antibody and immunoblotting. The level of endogenous Ub in the ZAP
pulldown is shown. The data is representative of 3 independent experiments. (E) WCL of ZC3HAV 1-knockout 293T cells transfected with vector
expressing HA-tagged Ub, ZAPS or ZAPL, and/or V5-tagged TRIM25 were used for immunoprecipitation with an anti-ZAP antibody and
immunoblotting. The level of HA-tagged Ub in the ZAP pulldown is shown. The data is representative of 2 independent experiments. (F) WCL of
ZC3HAV1-knockout 293T cells transfected with vector expressing HA-tagged wild type (WT), K48 or K63 Ub, ZAPS or ZAPL, and/or V5-tagged
TRIM25 were used for immunoprecipitation with an anti-ZAP antibody and immunoblotting. The level of HA-tagged WT or mutant Ub in the ZAP
pulldown is shown. The data is representative of 2 independent experiments.

doi:10.1371/journal.ppat.1006145.g006
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capable of inhibiting SINV replication (S4B Fig). Our data suggests that TRIM25 upregulates
ZAP’s antiviral function not by modifying ZAP, but potentially other host factors.

It is possible that ZAP changes the interactome of TRIM25, which ubiquitinates and func-
tionally modulates these interacting partners resulting in an antiviral state. To test this hypoth-
esis, we co-immunoprecipitated TRIM25 in the absence or presence of ZAPS, of which the
antiviral activity was more affected by the E3 ligase function of TRIM25 (Fig 5B), and identi-
fied by mass spectrometry proteins that interacted significantly more or less with TRIM25
upon ZAPS expression (S5 Fig). We found that most of these ZAP-mediated TRIM25 interact-
ing partners are involved in mRNA metabolism and translation (S3 Table), which are cellular
processes known to be affected by ZAP. However, the change in abundance of most of these
proteins is not dramatic (S5 Fig), suggesting that the ZAP-mediated effects on TRIM25 targets
might lie in their ubiquitination status. Taken together, we have shown that TRIM25 ubiquiti-
nates ZAP, and that ZAP changes the interactions of TRIM25 with other host proteins that
might contribute to the antiviral effects of the ZAP-TRIM25 synergy. Further work is required
to determine whether these TRIM25 interacting partners are ubiquitinated and the functional
consequences of their modification by TRIM25.

TRIM25 plays a critical role in ZAP inhibition of viral translation

In order to further elucidate the mechanism by which TRIM25 synergizes with ZAP, we inves-
tigated the effects of TRIM25 on different ZAP activities that were previously reported
(reviewed in [15]). We knocked down TRIM25 in T-REx-hZAP cells and infected them with a
temperature sensitive SINV that is unable to replicate at the non-permissive temperature.
Since the antiviral mechanisms of ZAP include targeting of viral RNAs for degradation by the
exosome complex and translational inhibition, we measured the level of SINV RNA and trans-
lation of the incoming viral genome over the course of infection. We found that the kinetics of
viral RNA degradation was similar in the presence or absence of TRIM25 (Fig 7A). However,
ZAP’s ability to block SINV translation was significantly reduced by about 1 log in the absence
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Fig 7. ZAP synergizes with TRIM25 to block SINV translation. T-REx-hZAP cells were transfected with TRIM25-targeting or NT pool siRNA,
induced for ZAPS expression, and infected with a temperature-sensitive SINV that expresses luciferase and is unable to replicate at 40°C
(Toto1101/Luc:ts6; MOI = 10). Following 1 hour of adsorption with virus at 37°C, cells were moved to 40°C, washed, and lysed at 0, 2, 4 and 6 h p.i.
for measurement of (A) viral RNA by RT-gPCR, and (B) luciferase activity, which represents translation of the incoming viral genome. The data is
representative of 2 independent experiments.

doi:10.1371/journal.ppat.1006145.g007
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of TRIM25 (Fig 7B; two-way ANOVA: p<0.0001), mirroring the magnitude of SINV inhibi-
tion upon TRIM25 knockdown in the same cells (Fig 3A). This data suggests that the mecha-
nism by which TRIM25 enhances ZAP activity is through viral translational inhibition.

Discussion

We reported in this study that ZAP requires multiple host factors for its maximal antiviral
activity. We identified novel partners of ZAP that are normally important for a range of cellu-
lar processes, such as membrane ion permeability, innate immune signaling, and post-transla-
tional protein modification. Among the hits, JAKI is a kinase important for signaling of the
type I IFN receptor and can potentially act by augmenting the stimulatory effects of ZAP on
the RIG-I pathway. On the other hand, KCNHS5 is an outward rectifying potassium channel
and it is not clear how it can stimulate ZAP’s function. It has been shown that reduction of the
intracellular K+ concentration can activate the NLRP3 inflammasome, linking ion efflux to
innate immunity [33]. It is interesting to note that known interacting partners of ZAP, such as
RIG-I or components of the exosome complex, were not hits in the screen, although that is
likely largely dependent on the type of assay used and the basal expression levels of genes that
are knocked down. Moreover, although MAP3K14 was previously found to be synergistic with
ZAP in an ISG overexpression screen [20], it was not a hit in our confirmatory screen. It is
likely that synergistic effects are less pronounced in our screen where endogenous levels of
proteins are being interrogated and the effect from silencing of one gene might be compen-
sated by a homologous gene or another ZAP partner.

Our study shows for the first time that both ZAP isoforms are ubiquitinated, adding to the
existing body of work on post-translational modifications of ZAP. Previous studies have
shown that in addition to being post-translationally modified itself, ZAP is implicated in the
modifications of other cellular and viral proteins. In some of these cases the modification regu-
lates the function of ZAP or other proteins. For example, the C-terminal end of ZAPL is preny-
lated, and mutation of this prenylation site reduces the anti-SINV activity of ZAPL to a level
similar to that of ZAPS, which is normally not prenylated [12]. It is possible that prenylation
positions ZAPL in membrane compartments, allowing it to target viruses with an endocytic
life cycle step. In addition, phosphorylation of ZAP by glycogen synthase kinase 3 positively
modulates ZAP activity potentially by enhancing its ability to inhibit mRNA translation [34].
Moreover, when cells are stressed, ZAP localizes to cytoplasmic stress granules and is modified
by poly-ADP-ribosylation [35]. Modified ZAP is implicated in the poly-ADP-ribosylation of
Ago2, which correlates with derepression of miRNA-mediated translational silencing of cellu-
lar transcripts [13, 35]. In particular, derepression of ISG transcripts results in viral inhibition,
as demonstrated for HSV-1 and influenza A virus [13]. ZAP, specifically the long isoform, is
also implicated in the poly-ADP-ribosylation and ubiquitination of influenza viral PB2 and PA
polymerase proteins and their subsequent degradation [36]. Interestingly, another study
reports that ZAPS inhibits influenza protein expression and is antagonized by the viral NS1
protein [37]. A NS1 mutant that lacks the ability to suppress the E3 ligase activity of TRIM25
[38] also loses the ability to antagonize ZAPS [37], suggesting that ZAPS could inhibit influ-
enza virus through a mechanism that requires TRIM25-mediated ubiquitination, which is
antagonized by NS1.

Although we clearly demonstrate here that TRIM25 is implicated in ZAP modification (Fig
6C-6F), mutagenesis of ZAP ubiquitination sites does not impact its antiviral function (5S4
Fig). One plausible explanation is that the E3 ligase activity of TRIM25 enhances ZAP function
(Fig 5B) by ubiquitinating other host factors. It is likely that ZAP affects the interactions of
TRIM25 with other proteins, resulting in changes of their modification and function and
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hence remodeling of the antiviral proteome in the cell. Since ZAP and TRIM25 synergize to
block viral translation (Fig 7B), it is intriguing yet not unexpected to find that most of the
TRIM25 interacting partners affected by ZAP are involved in mRNA metabolism and transla-
tion (S3 Table). Future work determining the ubiquitination status of these proteins will shed
light on the impact of TRIM25 E3 ligase activity on the antiviral effects of ZAP.

Alternatively, TRIM25 and ZAPS can synergize to positively modulate the activity of RIG-I,
leading to heightened innate immune signaling. About half of the TRIM family members have
been shown to enhance innate immune responses and both ZAPS and TRIM25 physically
interact with RIG-I to stimulate type I IFN response [14, 23, 39]. However, whether there is a
requirement for RIG-I in ZAP function and vice versa are not settled. Inhibition of the RIG-I
pathway and knockdown of RIG-I fail to abrogate ZAP-mediated HBV and XMRYV inhibition,
respectively [5, 7]. Furthermore, RIG-I-dependent production of type I IFN and cytokines are
not reduced in ZAP-deficient primary mouse cells [40]. Hence, the contribution of TRIM25
and ZAP synergy to innate immunity warrants further investigation.

Our data also suggest differences in the interaction between TRIM25 and ZAPS and ZAPL,
consistent with previous studies demonstrating distinct activities for the ZAP isoforms.
TRIM25 was dramatically modified in the presence of ZAPS, although these modified forms
were not associated with ZAPS (Fig 4B). On the other hand, ZAPL expression did not result in
extensive modification of TRIM25 and more TRIM25 was found to associate with ZAPL (Fig
4B). This suggests that in addition to the shared domains in ZAPS and ZAPL, ZAPL might
interact with TRIM25 through its PARP-like domain. These observations argue that ZAP
interacts primarily with unmodified TRIM25, although the expression of the ZAP isoforms
differentially regulates TRIM25 post-translational modification. Based on these observations,
we postulate that ZAP might affect the ubiquitination status of TRIM25 and as a result modu-
late the innate immune response. It has been shown that ubiquitin-specific peptidase 15 deubi-
quitinates TRIM25, leading to its stabilization and sustained RIG-I signaling [41]. However,
when we performed mass spectrometry on the immunoprecipitates of TRIM25, we did not see
a significant increase in ubiquitinated TRIM25 peptides in the presence of overexpressed
ZAPS. It is possible that the increased modification of TRIM25 is due to something other than
ubiquitin. Future studies are needed to determine the impact of ZAP isoforms on post-transla-
tional modification of TRIM25. In addition, even though endogenous TRIM25 is required for
the function of both ZAPS and ZAPL (Fig 5A), overexpressed TRIM25 stimulates the antiviral
activity of ZAPS to a greater extent than that of ZAPL (Fig 5B), which is likely due to ZAPL’s
greater baseline inhibitory effect compared to ZAPS in the absence of TRIM25.

In conclusion, our study has uncovered a novel requirement for TRIM25 in ZAP function
and elucidated the mechanism of this synergy. Recent outbreaks, such as chikungunya virus
(Alphavirus) in the Caribbean and U.S., Ebola virus (Filovirus) in West Africa, and Zika virus
(Flavivirus) in South and Central America, prompts the development of therapeutic strategies
for disruption of crucial virus-host interactions. Given that the replication of these viruses
greatly depend on the host factor repertoire of the target cells, our study is highly relevant and
advances our understanding of host factor contributions to innate immune responses.

Materials and Methods
Cells, plasmids, viruses, and infections

T-REx-rZAPCB88R cells with tetracycline-inducible protein expression of the rat ZAP C88R
mutant were previously described [18, 28]. To generate the T-REx-hZAP cell line, the short
isoform of human ZC3HAV1 was amplified from the ATCC clone 7521231 (deposited by The
L.M.A.G.E. Consortium) and restriction sites HindIII and SacII were added using primers (5’-
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GGGAAGCTTGCCACCATGGCGGACCCGGAGGTGTGCTGCTTC-3 and 5-GCGGAT
CCGCGGCTCTGGCCCTCTCTTCATCTGCTGCAC-3’). The HindIII/SaclI digested PCR
product was then cloned into pcDNA4/TO/myc-hisB to generate pcDNA4/TO/hZAP-myc-
hisB. We stably transfected T-REx-293 cells (Thermo Fisher Scientific) with pcDNA4/TO/
hZAP-myc-hisB and selected for Zeocin resistance. A single clone with good induction of
hZAP expression (6C5) was selected and expanded. T-REx-rZAPC88R and T-REx-hZAP were
cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine
serum (FBS), 5 pg/ml blasticidin, and 200 pg/ml Zeocin. ZC3HAV1-knockout 293T (clone 89)
was obtained from Dr. Akinori Takaoka at Hokkaido University [14]. Wild type and TRIM25'
ZC3HAV1-knockout clones (see below for details), ZC3HAV1-knockout clone, and 293T cells
were cultured in DMEM supplemented with 10% FBS.

Total RNA was isolated from 293T cells by RNeasy Mini Kit (Qiagen), and reverse tran-
scribed using SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen) and spe-
cific primers targeting the 3’UTR regions of the short and long isoforms of human ZAP (ZAPS
3’'UTR: 5-ACTTGATGAGCCCAGGGCATG-3’; ZAPL 3’'UTR: 5-GTCTGCGGCAATTTAG
TTCTG-3’). ZAPS and ZAPL were amplified from 293T cDNA using primers (ZAPS: 5-
GTTTTGTACAGCCACCATGGCGGACCCGGAGGTG-3’ and 5-GGTAGCGGCCGCTTA
CTCTGGCCCTCTCTTCATC-3’; ZAPL: 5-GTTTTGTACAGCCACCATGGCGGACCCG
GAGGTG-3’ and 5-GGTA GCGGCCGCCTAACTAATCACGCAGGCTTTG-3’) and cloned
into the BsrGI and NotlI sites of a modified pTRIPZ construct (Open Biosystems) under the
control of the CMV promoter. The 3’ ends of ZAPS and ZAPL were swapped into Smal and
Xhol sites of pTRIP-RFP-NZAP [42] to generate pTRIP constructs expressing N-terminally
RFP-fused ZAPS and ZAPL. V5-tagged FL TRIM25 and derivatives (domains alone: RING, B
box/CCD and SPRY; domain deletion mutants: ARING and ACCD) were expressed from a
modified pIRES-puro vector encoding a C-terminal V5 tag as previously described and were
gifts from Jae U. Jung [23, 38]. pcDNA3.1(HA-Ub)s was previously described [43].
pRK5-HA-Ubiquitin-K48 (all the lysines in ubiquitin are mutated except K48), pRK5-HA-U-
biquitin-K63 (all the lysines in ubiquitin are mutated except K63) and pRK5-HA-Ubiquitin-
WT were gifts from Ted Dawson (Addgene plasmid #17605, 17606 and 17608) [44]. pSpCas9
(BB)-2A-Puro (PX459) was a gift from Feng Zhang (Addgene plasmid # 48139) [31].

SINV (Toto1101), and SINV expressing firefly luciferase (Toto1101/Luc and Toto1101/Luc:
ts6) or EGFP (TE/5°2]/GFP) have been previously described [3, 45, 46]. Stocks were generated
in baby hamster kidney 21 (BHK-21; ATCC) cells as previously described [3]. The Toto1101/
Luc stock used for the screen was concentrated using polyethylene glycol with an average
molecular weight of 6,000 (Fluka) as described [47]. Viral titers for multiplicity of infection
(MOI) calculations were determined in BHK-21 cells. Viral infections were performed as pre-
viously described [3].

Genome-wide siRNA screen

For the primary ZAP cofactor screen, siRNAs from the iGENOME library targeting the
whole human genome (Dharmacon; pools of 4 siRNAs per gene) were pre-arrayed in fifty-
eight 384-well plates, mixed with DharmaFECT 1 Transfection Reagent (diluted 1:100), and
transferred to 384-well assay plates (5 pl/well; 25 nM final) with a Janus automated workstation
(PerkinElmer). The entire screen was carried out in triplicate by reverse transfection. siGEN-
OME NT and ZC3HAV1-targeting siRNA smartpools were used as negative and positive con-
trols (5 wells per control per plate; see the position of the controls in S1 Table). A total of 7500
T-REx-hZAP cells were seeded in DMEM with 3% FBS, 5 ug/ml blasticidin, and 200 pug/ml
Zeocin (25 ul/well) with a MultiDrop Combi liquid dispenser (Thermo Fisher Scientific). One
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day post-plating, ZAP expression was induced by addition of 1 ug/ml doxycycline (5 pl/well).
Since removing the media from 384-well plates and adding virus inoculum in a minimal vol-
ume to allow adsorption was not feasible, cells were infected with a highly concentrated PEG-
precipitated SINV stock at a MOI of ~200 (5 pl/well) two days following siRNA treatment. The
MOI was calculated based on titration of the viral stock under standard infection conditions,
and due to dilution was likely much lower under the conditions used in the screen. Twenty-
four hours p.i., cells were lysed with Steady-Glo Luciferase Assay Substrate (Promega; 20 ul/
well) and luminescence measured on an EnVision plate reader (PerkinElmer). For each well,
the raw luciferase value reflects the level of SINV infection. The raw luciferase values and the
plate median from each of the 384-well plates were used to calculate the median absolute devi-
ation (MAD): 1.4826 x MEDIAN (each raw value — plate median). The robust Z score was
then calculated by dividing the difference between each raw luciferase value and the plate
median by MAD [26]. Normalized percent activation (NPA) was also calculated for each well
as follows: 100* (X;—pe.)/(Uer—He.), where X; = raw luciferase value, |1, = mean positive con-
trols and .. = mean negative controls. The entire screen was performed in triplicate and the
Z’ and strictly standardized mean difference (SSMD) were calculated for every plate [26]. A Z’
factor of >0.5 and a SSMD of >3 were used as cutoffs for assay validation [26, 48, 49]. Those
wells with the highest NPA and robust Z score >3 in all three replicates were considered ‘hits’.

For the secondary screen, Silencer siRNAs (Ambion; 3 individual siRNAs per gene) were
tested in 384-well plates in triplicate at two different concentrations: 6.25 nM (the concentra-
tion of each single siRNAs in the original Dharmacon pools) and 25 nM (the concentration of
the original Dharmacon pools used in the primary screen). In order to rule out ZAP-indepen-
dent effects of the top hits, the secondary screen was carried out in two different cells lines:
T-REx-hZAP and T-REx-rZAPC88R. Genes with an average Z score of >3 for at least two out
of the three siRNA sequences were considered ‘hits’.

Bioinformatics and statistical analyses

Pathway analysis was performed using Enrichr [50]. All genes with an average robust Z score
>3 were normalized using -5 as the minimum (essentially the value of the negative controls)
and the mean value for ZC3HAVI as the maximum, scaled between 0 and 1, and exported as a
comma-separated table with the normalized score and gene symbol, a format recognized by
Enrichr. Genes belonging to pathways that were significantly enriched and overlapping with
the list of genes with the highest NPA and robust Z score >3 in at least 1 out of 3 replicates
were validated in the secondary screen. Haystack analysis was performed to identify the most
statistically significant genes whose predicted knockdown via off-target effects was correlated
with the phenotypes observed in the primary screen [27]. Differences between experimental
conditions during the course of infection were determined using two-way ANOVA. Differ-
ences between experimental conditions at a single time point were determined using an
unpaired, two-tailed Student’s t-test with a 95% confidence interval.

Validation of candidate ZAP cofactors

For our validation studies, mammalian cells (T-REx-hZAP, 293T and ZC3HAV1-knockout
293T cells) were reverse transfected with 25 nM Silencer siRNAs targeting TRIM25, KCNH5,
JAKI1, ZC3HAV1 (Ambion) that were used in the secondary screen or a C911 control for
TRIM?25 (Ambion) using DharmaFECT 1 Transfection Reagent (diluted 1:100). siGENOME
NT and ZC3HAVI-targeting siRNA smartpools (Dharmacon) were used as negative and posi-
tive controls. Sequences for TRIM25-targeting Ambion Silencer and the corresponding C911
control siRNAs were as follows: TRIM25 siRNA #3 (5-CCCUGAGGCACAAACUAACtt-3
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and 5-GUUAGUUUGUGCCUCAGGGtg-3’); and TRIM25 #3-C911 (5-CCCUGAGGGU
GAAACUAACtt-3’ and 5-GUUAGUUUCACCCUCAGGGtg-3’). One day post-transfection,
ZAP expression was induced in T-REx-hZAP cells by 1 pg/ml doxycycline. Two days post-
transfection, the media was removed and T-REx293-hZAP, 293T and ZC3HAV1-knockout
293T cells were infected with SINV Toto1101/Luc at a MOI of 0.01 or 10 in a minimal inocu-
lum volume. 24 hours p.i., cells were lysed with 1x Cell Culture Lysis Reagent (Promega) and
luminescence measured on a Synergy Neo plate reader. For time course experiments, cells
were lysed at 6, 12, 24, and 40 hours p.i. and luciferase activity measured.

Plasmid transfection

Cells were transfected in different combinations with constructs expressing V5-tagged
TRIM25 (FL) or derivatives (RING, B box/CCD, SPRY, ARING, and ACCD), ZAPS or ZAPL,
and HA-tagged wild type ubiquitin or mutants with X-tremeGENE 9 DNA Transfection
Reagent (Roche Life Science) at a ratio of 3 ul reagent to 1 pg DNA. Total plasmid amount in
co-transfections was kept constant by transfecting cells with empty vectors (pIRES-puro,
pTRIPZ and pcDNA3.1).

TRIMZ25 targeting by CRISPR

Guide RNAs (gRNAs) targeting exon 1 of the human TRIM25 gene were designed by the MIT
Optimized CRISPR Design portal (http://crispr.mit.edu/), and two with the least predicted off-
target effects (SRNA #1: GTCGCGCCTGGTAGACGGCG; gRNA #3: GAGCCGGTCACCA
CTCCGTG) were selected for cloning into the Cas9-expressing PX459 vector. Oligos contain-
ing the gRNA sequences (gRNA #1: 5-CACCGGTCGCGCCTGGTAGACGGCG-3’ and 5’-
AAACCGCCGTCTACCAGGCGCGACC-3% gRNA #3: 5-CACCGGAGCCGGTCACCAC
TCCGTG-3 and 5-AAACCACGGAGTGGTGACCGGCTCC-3’) were ligated and cloned
into PX459 linearized with Bbsl. ZC3HAVI-knockout 293T cells were transiently transfected
with PX459 expressing gRNA #1 or 3, and one day after transfection selected under 1 pg/ml
puromycin for 2 days to eliminate cells that were not transfected. Surviving cells were then
counted, diluted to 0.5 cell/well in a 96-well plate and seeded in 10% FBS DMEM. Single cell
clones were marked and allowed to expand. Several clones per gRNA #1 were treated with or
without puromycin and the ones that were sensitive to puromycin, suggesting that the clones
had not integrated the gRNA-expressing vector, were harvested for immunoblot analysis to
evaluate TRIM25 expression. Two knockdown clones (D and F) and one wild type clone (E)
were selected (see S2 Fig). Genomic DNA was isolated from these clones, and a 600bp
sequence flanking the gRNA targeting site was amplified by PCR and cloned into TOPO vector
(Thermo Fisher Scientific). Sequencing of TOPO clones confirmed that all three chromosomes
were targeted in clones D and F resulting in insertions and/or deletions in exon 1 of TRIM25,
while clone E is wild type.

Immunoprecipitation (IP) assay

Transfected or untransfected cells in 6-well plates were collected and then lysed in 0.5% NP40
buffer (for co-IP; 10 mM HEPES, pH 7.5, 150 mM KCIl, 3 mM MgCl,, 0.5% NP-40) or 0.5%
SDS buffer (for denaturing ZAP IP; 0.5% SDS, 50 mM Tris-HCI, pH 7.5, 200 mM NaCl, 1 mM
EDTA) supplemented with a complete protease inhibitor cocktail (Roche) and 0.1 mM PMSF
(Sigma). For co-IP of endogenous TRIM25 and ZAP, 300 pl of WCL were incubated with 1 pg
of anti-TRIM25 antibody overnight at 4 °C, and then with 40 pl Protein A Dynabeads (Invitro-
gen) for 2 h at 4°C. For co-IP of overexpressed TRIM25 and ZAP, 5.25 pg of anti-NZAP anti-
body was covalently crosslinked to 70 ul Protein A Dynabeads by BS® (Thermo Fisher
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Scientific) and incubated with 300 pl of cell lysate at 4 °C for 4h. Immunoprecipitates were
washed 3 times with 0.5% NP40 bulffer, followed by two washes with 0.05% NP40 buffer. For
denaturing IP, 300 ul WCL were diluted into 1X TNA buffer (0.25% Triton, 50 mM Tris-HCI,
pH 7.5,200 mM NaCl, 1 mM EDTA) + 2 mg/ml BSA, incubated with 1 pg anti-ZAP, or anti-
GFP antibody overnight at 4°C, and then with 40 ul Protein A Dynabeads (Invitrogen) for 2 h
at 4°C. Immunoprecipitates were washed 3 times with 1X TNA buffer + 2 mg/ml BSA. Bound
proteins were eluted with SDS loading buffer and boiled for 5 min.

Immunoblot analysis

Polypeptides were resolved by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred to a nitrocellulose membrane (GE Healthcare). Immunodetection was achieved
with 1:5000 anti-ZAP (ab154680; Abcam), 1:5000 anti-NZAP (mouse monoclonal 23D1.1; see
below), 1:5000 anti-V5 (MA5-15253; Thermo Fisher Scientific), 1:5000 anti-TRIM25 (610570;
BD Biosciences), 1:1000 anti-HA (clone 3F10; Roche), 1:500 anti-ubiquitin (P4D1; Santa Cruz
Biotechnology), or 1:50,000 anti-actin-HRP (A3854; Sigma) antibodies. The primary antibod-
ies were detected with 1:20,000 goat anti-mouse HRP (115-035-146; Jackson ImmunoRe-
search), 1:20,000 goat anti-rabbit HRP (31462; Thermo Fisher Scientific), or 1:20,000 donkey
anti-rat HRP (712-035-153; Jackson ImmunoResearch). Mouse monoclonal antibodies to rat
NZAP previously generated [51] were screened for cross-reactivity to human NZAP. The
clone 23D1.1 was submitted for production and purification by Cell Essentials. Anti-GFP anti-
body (rabbit polyclonal) was generated previously [52]. The proteins were visualized by ECL
Prime Western Blotting Detection Reagent (GE Healthcare) or SuperSignal West Pico Chemi-
luminescent Substrate (Thermo Fisher Scientific).

Quantitative reverse transcription PCR (RT-qPCR)

Total RNA was isolated from siRNA-treated cells using the RNeasy mini kit (Qiagen). 1 pug of
input RNA was used as a template for reverse transcription using SuperScript III (Invitrogen,
Carlsbad, CA) and random hexamers. RT-qPCR was performed using 5 pl of 10-fold-diluted
cDNA and primers targeting JAK1 (5-CCACTACCGGATGAGGTTCTA-3’ and 5-GGGT
CTCGAATAGGAGCCAG-3’), KCNH5 (5-CCGTGTGGCTAGGAAACTGG-3’ and 5-
CAATGACCTCGTAGTCTCCGA-3’), and RPS11 (5-GCCGAGACTATCTGCACTAC-3’
and 5-ATGTCCAGCCTCAGAACTTC-3’ [53]) in a SYBR Green qPCR assay on the LightCy-
cler 480 Real-Time PCR System (Roche Applied Sciences, Indianapolis, IN). qPCR conditions
were as follows; initial denaturation step at 50°C for 2 min and 95°C for 10 min, then 45 cycles
0f 95°C for 15 sec, 56°C for 15 sec, and 72°C for 20 sec, and followed by a melting step of 95°C
for 10s, 65°C for 10s and a 0.07°C/s decrease from 95°C, and a cooling step of 50°C for 5s.
Transcript levels of JAK1 and KCNH5 were determined by normalizing the target transcript
CT value to the CT value of the endogenous housekeeping RPS11 transcript. This normalized
value was used to calculate the fold change relative to the average of cells treated with the NT
siRNA control (CT method).

To determine SINV RNA levels in TRIM25-targeting or NT siRNA treated T-REx-hZAP
cells over the course of infection with Toto1101/Luc:ts6, 1 ug of total cellular RNA was used in
a one-step quantitative real-time PCR assay using primers and a Taqman probe targeting the
nsP2 region of SINV. Primer pairs for SINV Tagman RT-qPCR are as follows: SINV nsP2 (for-
ward): 5-GGTAGCTCATTGGGACAACA-3’; SINV nsP2 (reverse): 5-GCTGGAACACCG
GAAATCTA-3’; SINV nsP2 Tagman probe (reverse): 5-TGGCGTGATCGTACCCATA
CTTGC-3". RNA was amplified using Lightcycler 480 RNA Master Hydrolysis Probes (Roche)
under the following thermal conditions: RT at 63°C for 3 min; denaturation at 95°C for 30 s;
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45 cycles of amplification at 95°C for 15 s, 60°C for 30 s, and 72°C 