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Extracellular vesicles are a heterogeneous and dynamic group of lipid bilayer membrane

nanoparticles that can be classified into three different groups depending on their cellular

origin: exosomes, microvesicles, and apoptotic bodies. They are produced by different

cell types and can be isolated from almost all body fluids. EVs contain a variety of

proteins, lipids, nucleic acids, and metabolites which regulate a number of biological

and pathological scenarios both locally and systemically. Different techniques have been

described in order to determine EV isolation, release, uptake, and cargo. Although

standard techniques such as immunoblotting, fluorescent microscopy, and electron

microscopy are still being used to characterize and visualize EVs, in the last years,

more fine-tuned techniques are emerging. For example, EV uptake can be specifically

determined at a single cell level using the Cre reporter methodology and bioluminescence

based-methods reports have been employed to determine both EV release and uptake.

In addition, techniques for cargo identification have also enormously evolved during these

years. Classical mass spectrometry and next generation sequencing have been used

in the past, but nowadays, advances in these tools have facilitated a more in depth

characterization of the EV content. In this review, we aim to assess the standard and

latest technical advances for studying EV biology in different biological systems.

Keywords: extracellular vesicles (EVs), exosomes, microvesicles (MVs), technique, methods, novel

During the past decades, extracellular vesicles (EVs) have been recognized as potent vehicles of
non-cell autonomous intercellular communication in different model systems compared to cell-
to-cell communication (Kramer-Albers and Hill, 2016; Tkach and Thery, 2016; O’Loghlen, 2017).
The term EVs comprises a highly heterogeneous and dynamic group of lipid bilayer membrane
vesicles that can be classified into threemain groups: exosomes, microvesicles (MVs), and apoptotic
bodies. Exosomes range in size from 30 to 120 nm in diameter and are generated via activation of
the endocytic pathway forming multivesicular bodies (MBV), which can later fuse with the plasma
membrane and be released to the extracellular environment. Microvesicles (MVs) are larger vesicles
with a size between 100 and 1,000 nm and they are formed as the result of the outward budding
of the plasma membrane. The third category of EVs are apoptotic bodies that are formed as a
result of the induction of cellular apoptosis and comprise a size ranging between 100 and 5,000 nm
(Colombo et al., 2013).

It is nowadays well documented that EVs are involved in numerous physiological and
pathophysiological processes (Tkach and Thery, 2016). The fact that they are lipid particles
involved in signaling during the progression of several diseases forms an attractive basis to use
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them as potential disease progression biomarkers (Skog et al.,
2008; Cocucci and Meldolesi, 2015). Due to that, in the last years
different techniques have been developed in order to identify
the cellular origin, molecular composition, cargo and uptake
of EVs.

In this review, we aim to provide a brief review of the standard
and technical advances used to study MVs and exosomes. Thus,
we will use the general term EVs to cover both exosomes and
MVs in the text.

ADVANCES IN TECHNIQUES TO IDENTIFY
AND STUDY EVS

EV Isolation Techniques
Almost all cell types in culture release EVs and, as a matter
of fact, EVs can be isolated from many types of body fluids
including blood, urine, saliva, and milk (Tkach and Thery,
2016). EVs contain a variety of different biomolecules in their
lumen such as proteins, nucleic acids (both RNAs and DNA),
metabolites, and lipids that play important roles in cell-to-
cell communication (Kramer-Albers and Hill, 2016). Whereas,
nowadays many research groups are focused on defining EV
composition we have to take into account that the isolation
process is one of the most challenging approaches (Mateescu
et al., 2017). Differential centrifugation, ultrafiltration, size
exclusion chromatography (SEC), immuno-affinity, and density
gradient isolation are frequent methods used for EVs isolation
(Figure 1A). However, each of these methods have their own
limitations ranging from co-isolating contaminants—comprising

FIGURE 1 | Schematic representation of established and new evolving techniques used for the study of EV biology organized across the biogenesis and uptake of

EVs. (A) Techniques to isolate EVs. (B) Methods to visualize and characterize purified EVs. (C) Techniques to allow for the EVs labeling and uptake visualization. (D)

Identification of EV cargo. GA, Golgi Apparatus; RER, Rough Endoplasmic Reticulum; SEC, Size Exclusion Chromatography; EM, Electron Microscopy; SEM,

Scanning Electron Microscopy; TEM, Transmission Electron Microscopy; Cryo-EM, Cryo-Electron Microscopy; NTA, Nanoparticle Tracking Analysis; TRSP, Tunable

resistive pulse-sensing; AFM, Atomic Force Microscopy.

non-vesicular proteins, lipids, and nucleic acids—to low EV
recovery. Nowadays, most groups use a combination of some
of the above isolation techniques to overcome the pitfalls
of individual isolation techniques (Gardiner et al., 2016). An
additional setback of the previously described isolation methods
is the lack of a specific tool to isolate and determine particular EV
subpopulations. It’s been recently shown that the functionality of
EVs can highly vary depending on their heterogeneity (Tkach
et al., 2017), therefore novel techniques that allow the user
to isolate particular EV subpopulations would be extremely
advantageous.

To date, there is no ideal single isolation technique and the
development of novel methodologies to increase EV recovery
and purity, including the possibility to identify individual
particular subpopulations will highly benefit not only the
scientific community but also the clinical application of EVs as
disease biomarkers.

Techniques to Determine EV Visualization
and Characterization
EVs are released from cells by diverse mechanisms depending
on their mode of cellular biogenesis and can be taken up by

almost all cells (Colombo et al., 2014). It is known that EVs can

either bind to the plasma membrane, activating specific signaling
pathways or enter into recipient cells by either membrane fusion
or by different mechanisms of endocytosis (Thery et al., 2009).
The merging of the EV’s cargo with the cellular cytoplasmic
compartment influences the behavior of the cells taking up
the EVs. Therefore, it is important to determine cargo uptake
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by the recipient cell in order to associate EV uptake with
functionality.

The most frequently used techniques to characterize EVs
are immunoblotting and antibody specific enzyme-linked
immunosorbent assay (ELISA). However, none of these methods
give any information on the EV structure, concentration or
heterogeneity. Furthermore, immuno-affinity beads capture and
detection by fluorescence-activated cell sorting (FACS) allows
the detection of individual EV subpopulations but does not give
an overall view of the EV heterogeneous population (Ostrowski
et al., 2010).

In order to advance our understanding of EV biology, accurate
methods that allow us to quantify and visualize single EV
particles are needed. Several methods are currently used to
determine EV concentration in a sample. Nanoparticle Tracking
Analysis (NTA) and Tunable Resistive Pulse Sensing (TRSP)
are the most commonly used methods to estimate particle
size and concentration. However, these methods are unable
to differentiate between EV and non-EV particles, therefore,
additional techniques that allow to identify EV structural
properties and single particle EV visualization should be used in
conjunction with these techniques.

All types of EVs can be detected and characterized at the level
of a single EV using electron microscopy (EM). Transmission
electron microscopy (TEM) and scanning electron microscopy
(SEM) are considered a standard tool for characterizing EV
morphology. The additional immuno-labeling using nanogold
particles allows the detection of one or more EV surface
proteins, which can be differentiated by varying the size of the
nanogold particle, thus allowing for multiplex labeling. However,
to visualize EVs within cells or tissues with EM techniques
requires a high level of manipulation of the sample, while isolated
EVs need to be dehydrated and stained, affecting the overall
structure of the EV. Nevertheless, the emergence and fine-
tuning of the cryo-electronmicroscopy (Cryo-EM) technique has
emerged in order to reveal detailed structural features in EVs
allowing to determine morphological heterogeneity. Thus, cryo-
EM identifies EVs by their lipid bilayer and allows to differentiate
them from non-vesicular bodies with little sample manipulation.
EVs can be visualized either dried or hydrated or unstained
using a thin film of frozen liquid with cryo-EM (Coumans
et al., 2017). Interestingly, this technique has allowed to identify
a percentage of exosomes derived from human melanocytes
presenting a cap structure consisting of a stack of horizontal
layers, unveiling novel EV morphology (Van Niel et al., 2015). In
fact, the use of cryo-electron tomography has allowed to obtain
enhanced imaging of EV as it generates 3D images showing the
spherical morphology of exosomes (Peters et al., 2006; Van Niel
et al., 2015). An additional technique that minimizes sample
preparation is Atomic force microscopy (AFM), which allows to
obtain surface topographic 3D images (Whitehead et al., 2015;
Figure 1B).

EV Labeling and Uptake Visualization
EV uptake relies mainly on scoring fluorescent or bioluminescent
signals in cells or tissues treated with labeled purified EVs.
Different membrane-specific fluorescent dyes are being used for

this purpose such as PKH67, PKH26, DiI, DiR, and rhodamine
B (Hoshino et al., 2015; Szempruch et al., 2016; Kamerkar
et al., 2017; Ying et al., 2017; Figure 1C). Anyhow, the use of
these compounds has some limitations as: (i) they can affect
normal EV behavior, (ii) they label all EV aside from their
origin making it difficult to discern a specific EV population,
(iii) they are not suitable for long term studies due to their
short half-life, and (iv) they can label not only EVs but can
also stain aggregates and/or form micelles giving false positive
results (Lai et al., 2015). The uptake of EVs can also be measured
using fluorescence microscopy, flow cytometry or more advance
single-cell cytometry techniques such as the ImageStream R© Flow
Cytometer (Clark, 2015). It is important to consider, that some
cells may not internalize EVs and signal through EV-plasma
membrane receptor cascades. To confirm that EVs are not simply
attached to the cell surface and that they are binding the plasma
membrane, trypsin or acid treatments of the recipient cells
must be applied, although these methods will influence EV-cell
functionality (Franzen et al., 2014).

In order to overcome the limitations of the short half-life
that lipid-membrane fluorescent dyes have, Lai et al. developed a
fluorescent EV labeling strategy to achieve live-cell imaging of EV
release, uptake, and exchange between different cell populations,
as well as microscopic quantification and flow cytometry analysis
(Lai et al., 2015). For the generation of fluorescent EV reporters,
a palmitoylation signal is genetically fused in-frame to the N-
terminus of enhanced green fluorescence protein (EGFP) and
tandem dimer Tomato (tdTomato), generating PalmGFP, and
PalmtdTomato labeled EVs. Cells are then transduced with
a vector encoding either PalmGFP or PalmtdTomato. This
approach allows to: (i) label multiple EV types irrespective
of their biogenesis, (ii) evaluate time-lapse live-cell imaging
of EV release and uptake, and (iii) determine EV exchange
between different populations (Lai et al., 2015). Furthermore,
the authors also fluorescently labeled mRNA and quantified
mRNA EV transfer between cells (Lai et al., 2015). Another clever
strategy this group used is to fuse luciferase to a transmembrane
protein, allowing to determine EV transfer by measurement of
the luciferase activity in the recipient cells (Lai et al., 2014).
Alternatively, tetraspanins such as CD63, have been fused to
fluorescent proteins originating fluorescently labeled EVs (Lo
Cicero et al., 2015; Sung et al., 2015). The EV concentration
can then be determined by fluorescence correlation spectroscopy
to enable quantification at the single vesicle level (Heusermann
et al., 2016), confocal, or stimulated emission depletion (STED)
super-resolution microscopy to determine the rapid binding
and incorporation of EVs in the target cell (Cossetti et al.,
2014). Besides, and in the same direction as this, bioluminescent
reports have been used to label EVs for in vivo studies. As an
example, Baglio et al. developed a bioluminescent orthotopic
xenographt mouse model to investigate whether osteosarcoma
EVs alter the physiology of mesenchymal stem cells (MSCs)
such that they promote tumor progression. Briefly, luciferase-
positive metastatic osteosarcoma cells were inoculated in a tibia
of immunocompromised mice; human GFP-positive MSCs were
educated with osteosarcoma-released EVs for 48 h, and educated
or non-educated MSCs were systematically injected in the
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osteosarcoma-bearing mice. Tumor growth was later monitored
by bioluminescence imaging (BLI) (Baglio et al., 2017).

However, there is a need to develop methods that allow
discriminating between the cells that have taken up EVs and the
ones that have not, in the same microenvironment. The Cre-
loxP method was designed to specifically identify cells taking up
EVs (Figure 1C). The Cre-loxP system induces a color switch
in reporter-expressing cells that take up EVs released from cells
expressing the recombinase Cre; i.e., the recipient cells that do
not take up exosomes express a DsRed reporter, while the cells
that take up EVs start expressing GFP (recombined reporter as
they have taken up Cre expressing EVs). Importantly, this system
has been proven to efficiently determine EV uptake not only
in vitro but also in vivo (Zomer et al., 2015, 2016). Furthermore,
mRNA transfer of Cre recombinase has also been similarly shown
by a different group in the context of inflammation (Ridder et al.,
2014, 2015).

EV Cargo Identification
Different studies have focused on providing a comprehensive
characterization of the content of EVs. It has been published
that EV cargo includes nucleic acids, lipids, proteins and, more
recently, metabolites from donor cells (Figure 1D). Different
techniques have been used in the last years in order to identify
their content and several public datasets have been created to
share with the scientific community (Kalra et al., 2012; Kim et al.,
2015).

Numerous groups have analyzed the presence of nucleic acids
in EVs (Valadi et al., 2007). The amount of RNA and DNA
varies depending on the cell of origin although some studies have
found little correlation between cellular and EV RNA content
(Nabet et al., 2017). Microarray assessment and next-generation
sequencing techniques (Eirin et al., 2014) have shown that EVs
contain messenger RNA, in addition to both short and long
RNAs. Interestingly, a recent study has found an enrichment
of non-coding RNAs in exosomes including miRNAs compared
to cellular RNA (Nabet et al., 2017). Many other RNAs are
also present in EV such as short ncRNAs (miRNAs, piRNAs,
and tiRNAs), mid-size ncRNAs (snoRNAs, PASRs, TSSs-RNAs,
and PROMPTs), and long ncRNAs (lincRNA, T-UCRs, and
others; Pegtel et al., 2010; Nolte-’t Hoen et al., 2012; Quek
et al., 2015; Tosar et al., 2015; Sharma et al., 2016; Lee et al.,
2017). Although, several studies have shown the presence of
different types of RNAs, the international society for extracellular
vesicles (ISEV) have reported a list of experimental details that
should be present in publications regarding the composition
and function of RNA associated to EVs. Particular emphasis
is made regarding the possibility that they are contaminants
and not within the EV, the challenges of dealing with low
amounts of material and further in vivo functional validation
and characterization (Mateescu et al., 2017). In addition to RNA,
also genomic DNA has been detected inside EVs (Balaj et al.,
2011; Thakur et al., 2014). A comparison made by Thakur et al.
showed that DNA extracted from intact EVs and EVs pre-
treated with DNase decrease in double-stranded DNA longer
than 2.5 kB in the fraction subject to enzymatic cleave. Therefore,
EV isolation for DNA analysis should, nowadays, include external

DNase digestion (Miranda et al., 2010). Furthermore, EVs
can contain pseudogenes and transposable elements such as
retrotransposons, although their biological relevance is still
unknown (Balaj et al., 2011; Lefebvre et al., 2016). The commonly
used techniques to determine nucleic acid cargo within EVs
are next-generation sequencing. However, several steps of the
process such as the RNA extraction, library preparation, cDNA
synthesis, adapter ligation and different sequencing platforms
used can bias the end point result (Goodwin et al., 2016;
Mateescu et al., 2017). Ideally, more sensitive techniques that
allow the detection of low abundance of certain nucleic acids
in EVs or the identification of nucleic acid content in single
EVs would prove extremely useful to improve our knowledge
of the relevance and functionality of nucleic acids as EV
cargo.

Protein and lipid cargo of EVs have been studied via
biochemical assay and mass spectrometry (MS) (Haraszti et al.,
2016). Protein content study can be performed using a number
of different antibody-based assays for the detection of specific
proteins but, in the last years, techniques based on advanced
mass spectrometry are used to reflect the complete proteome
(Raimondo et al., 2011; Colombo et al., 2014). The key step for the
development of a robust antibody-based assay is the availability
of highly specific antibodies that bind the target. In spite of the
antibody specificity limitation, these assays provide important
information concerning protein composition of the EVs. Here
we can include flow cytometry, EV array (Jorgensen et al.,
2015), surface plasmon resonance imaging (SPRi) combined
with antibody microarray (Zhu et al., 2014) or nanoplasmonic
exosome assay (nPLEX) (Im et al., 2014). Standard proteomic
approaches are employed to examine EV protein cargo, ranging
from two-dimensional gel electrophoresis to more sophisticated
MS techniques like electrospray ionization (ESI)-based liquid
chromatography and tandem MS methods such as LC-MS/MS
(Schey et al., 2015). Furthermore, the development of more
sensitive quantitation methods as the use of metabolic labeling
like stable-isotope labeling by amino acids in cell culture (SILAC)
or isobaric tags for relative and absolute quantitation (iTRAQ)
allow more fine-tuned analysis of the EV proteomic content
(Guenther et al., 2015).

Although, numerous proteomic studies reveal EV protein
content, only a few researchers have focused their work on
the lipid profiling of EVs (Del Boccio et al., 2012). Lipidomics
is defined by the characterization and quantification of lipid
species in biological samples (Kreimer et al., 2015). The
methods currently available to provide information about lipid
composition in EVs are high-sensitivity mass-spectrometry-
based approaches including liquid chromatography and gas
chromatography coupled to MS (Subra et al., 2010).

Recently, a new-omics approach has been linked to the field.
Metabolomics strategy provides the characterization of EVs
intrinsic metabolic activity applying state-of-the-art untargeted
and targeted metabolomics tracing analysis (Iraci et al., 2017;
Figure 1D). Indeed, Iraci et al. have found that EVs derived
from neural stem cells (NSC) are able to consume and produce
metabolites. In particular, this elegant study shows that EVs
contain L-asparaginase activity and function as independent
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metabolic units to alter the microenvironment (Iraci et al.,
2017).

CONCLUSIONS

Although, our advance in the understanding of EV biology
has impressively evolved in the last decades, we are still
far from acquiring a comprehensive knowledge of the basic
mechanisms regulating EV biology in both physiological
and pathophysiological contexts. Despite new technological
advances to study EV biology evolving regularly, further
high sensitive techniques will be required to complete our
knowledge of EV biology. For the moment, the use of a
variety and combination of different standard and novel
techniques will help improve our understanding of EVs

structure, cargo, function, and biological relevance in different
contexts.
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