
1Scientific REPOrtS | 7: 6289 | DOI:10.1038/s41598-017-06615-z

www.nature.com/scientificreports

Universality of maximum-work 
efficiency of a cyclic heat engine 
based on a finite system of 
ultracold atoms
Zhuolin Ye1, Yingying Hu1, Jizhou He1 & Jianhui Wang1,2,3

We study the performance of a cyclic heat engine which uses a small system with a finite number of 
ultracold atoms as its working substance and works between two heat reservoirs at constant 
temperatures Th and Tc(<Th). Starting from the expression of heat capacity which includes finite-size 
effects, the work output is optimized with respect to the temperature of the working substance at a 
special instant along the cycle. The maximum-work efficiency ηmw at small relative temperature 
difference can be expanded in terms of the Carnot value η T T1= − /C c h, η η η a2 1 8 …= / + ( / + ) +m

C C
w 2

0 , 
where a0 is a function depending on the particle number N and becomes vanishing in the symmetric 
case. Moreover, we prove using the relationship between the temperatures of the working substance 
and heat reservoirs that the maximum-work efficiency, when accurate to the first order of ηC, reads 
η η O= +m

CA
w (ΔT2). Within the framework of linear irreversible thermodynamics, the maximum-power 

efficiency is obtained as η η O= +mp
CA

(ΔT2) through appropriate identification of thermodynamic 
fluxes and forces, thereby showing that this kind of cyclic heat engines satisfy the tight-coupling 
condition.

Heat engines (pumps) and refrigerators, converting thermal energy into mechanical work and vice versa, play an 
excellent platform for studying the thermodynamics of the systems driven out of equilibrium due to the inter-
action with work sources or heat baths, in addition to their potential energy applications in society. The work-
ing fluid for a macroscopic thermal engine is typically a system which contains on the order of 1024 particles. 
Advanced experimental techniques in recent years have led to miniaturization of heat devices where the working 
fluid is a mesoscopic or microscale system with quite a few number of particles (or with even one single parti-
cle)1–3. Among them, one prominent example is a heat engine based on an ultracold atom system2. Meanwhile, 
theoretical descriptions of thermodynamics of a thermal engine based on an ideal or interacting small system far 
away from the thermodynamic limit have been intensively studied4–13.

One of the most important issues on the topic of thermodynamics of heat engines is the study of their perfor-
mance characteristics within the context of finite-time thermodynamics14–20, which began with a seminal paper 
by Curzon and Ahlborn14. Based on the endoreversible assumption, Curzon and Ahlborn found using the 
Newton’s heat transfer law that the maximum-power efficiency ηmp of a finite-time Carnot-like cycle, working 
between a hot and a cold reservoir at constant temperatures Th and Tc(<Th), is given by the following 
Curzon-Ahlborn (CA) efficiency: η = − T T1 /CA c h , with universality at small differences of relative temperature 
(linear response regime),

η
η η

η= + +
2 8

( ), (1)CA
C C

C

2
3

where η = − T T1 /C c h is the Carnot efficiency. Intensive studies have been subsequently presented on the 
finite-power performance of various types of classical or quantum heat engines, with particular emphasis on the 
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possibly universal bounds of the maximum-power efficiency4, 11, 21–42. Among them, the issue of how microscale 
and macroscale heat devices behave in their performance23, 25, 29, 30, 32, 34, 38–40 has been extensively addressed, which 
demonstrates that for some heat engine models there exist certain sort of universality of the CA efficiency. On the 
other hand, the issue of maximum-work efficiency in reversible heat engines such as the Otto, Brayton, Diesel, 
and Atkinson cycle, has also attracted much attention43–46, with special emphasis of comparison with the CA 
efficiency ηCA [cf. Eq. (1)]. While working in the maximum-work regime, a reversible cyclic heat engine can be 
mapped into a cycle in which the working substance interacts with an infinite number of auxiliary reservoirs, and 
it necessarily has efficiency below the Carnot efficiency ηC. The CA efficiency was also observed for a certain class 
of reversible heat engines performing at maximum-work regime43–46.

Despite much progress in this research field, so far, no unified thermodynamic description of the performance 
of general two-heat-source engines working in the maximum-work regime, particularly microscale or mesoscale 
heat engines, is available. Here we raise several questions: (1) are there any finite-size effects on the 
maximum-work efficiency? what the effects if there are? (2) Is there a certain sort of universality for the 
maximum-work efficiency in a reversible cycle (like maximum-power efficiency in an irreversible cycle)? if yes, 
to what extent the bounds of the maximum-work efficiency are universal? (3) what is the connection between the 
maximum-work efficiency for a reversible heat engine and the maximum-power efficiency for an irreversible one? 
To answer these questions, we analyze the maximum-work efficiency of a cyclic heat engine whose working sub-
stance consists of an arbitrary number of ultracold atoms confined in a trapping potential. We find that the 
maximum-work efficiency can be expanded as a N – dependent function: η η η= + + + a/2 (1/8 )mw

C C0
2 , 

with a0 being N – dependent parameter, which reduces to the size-independent universality η η+/2 /8C C
2  in the 

symmetric case. By establishing the linkage between the temperatures of the working substance and heat reser-
voirs, we prove that the maximum-work efficiency is given by η η η= +/2 ( )m

C C
w 2  in the linear response regime. 

Employing the linear irreversible thermodynamics, we show that the maximum-power efficiency is of the form 
η η= + ∆T( )mp

CA
2  as the cyclic heat engines satisfy the strong-coupling condition.

Results
Cyclic heat engine based on a small system.  Heat capacity for a small system.  The density of states 
ρ(ε) for a system with its energy ε can be determined according to the number of states ν(ε), for which the energy 
is bounded from above by a given energy ε. The number of states ν(ε) in a d – dimensional system is exactly equal 
to the sum of the number of points of a d – dimensional lattice with lattice constants ω = …i d( 1, 2, , )i  involved 
both inside the volume and on the surface area of the simplex described by ε≥ ∑ ≤=x x{ 0, }i i

d
i1 , with ω=xi i

47–51. For a finite system of Bosons, which was also used to experimentally realize Bose-Einstein condensation52–54, 
the number of the sates on the surface of the simplex can not be neglected, thereby indicating that the term 
depicting the states on the surface could be included in the expression of ν(ε). Accordingly, one can parameterize 
the density of states48–51 by ( ≡ 1)

ρ ε φ ε
ω

φ ε
ω

= +
− −

−
( ) ,

(2)

d

d

d

d1

1

2

2

1

where we have defined ω ω≡ ∏ = ( )i
d

i
d

1
1/ , and the coefficients φ1 and φ2 depend on the nature of the trapping 

potential. The second term in Eq. (2) arises from the contribution of the surface states and φ2 tends to be vanish-
ing for a macroscopic system approaching the thermodynamic limit.

For a Bose system, the average particle occupation n(ε) for a system in contact with a heat reservoir at temper-
ature T is given by ( ≡k 1B ), ε = −ε µ− −

n e( ) [ 1]T( )/ 1
, where μ is the chemical potential. The total number of 

ultracold atoms N and the total system energy E can be expressed as, ∫ ρ ε ε ε=N n d( ) ( )  and ∫ ρ ε ε ε ε=E n d( ) ( ) , 
respectively. Without going through a detailed derivation, one can find combining these two expressions of N and 
E that, the heat capacity 





=






ι

ι

∂
∂ =

C N( ) E N
T

{ } ( )

const
 for a Bose system at low temperatures below transition temper-

ature undergoing an isochoric (ι = volume) or an isobaric (..) process, can be expressed in the form of refs 49 and 
50

ξ ξ= +ι α γ α−C N T N T( ) , (3){ } 0 1

where ξ and ξ0 are constants independent of system size (or particle number N). Here both the parameter α and 
the negative parameter γ(<0) depend on the nature of the trapping potential and the process the system under-
goes. It is clear that the second term in Eq. (3) is the correction accounting for the effects induced by finite size of 
the system and it must be vanishing when the particle number N approaches infinity. As a very simple example, 
we consider an ideal Bose gas confined in a three-dimesional isotropic harmonic trap whose frequey 
ω ω ω ω= = =1 2 3 scales as ω ∼ −V 1/3 with V being the volume of the trap. Then the density of states49, 50 reads 
ρ ε ε φε= +( ) /22 , where the paramter φ depends on the form of the potential. Then the direct calcuation of 

∫ ρ ε ε ε=
∞N n d( ) ( )

0
 and ∫ ρ ε ε ε ε=

∞E n d( ) ( )
0

, where ε = −ε µ−n e( ) 1/[ 1]T( )/ , yields the particle number 
φ= + +N N T g z T g z( ) ( )0

3
3

2
2  and the total energy φ= + +E E T g z T g z3 ( ) 2 ( )0

4
4

3
3 . Here the Bose-Einstein 

function gj(z) is determined by ∫=
Γ

∞

−

−

−g z( )j j
x

z e
1
( ) 0 1

j

x

1

1 , where µ=z Texp( / ) denotes the fugacity. At the crtical 

point N0 = 0 and μ = 0 (z = 1), one can obtain the transition temperature φ= 



− 



ζ

ζ
−T N T N( ) 1c 0

(2)

3 (3)
1/3

2/3
, where 

the use of ζ ≡j g( ) (1)j  has been made. Here the transition temperature in the thermodynamic limit, 
ω ζ=T N[ / (3)]0

1/3 , as a reference value can be assumed to be T0 = 1, since the density of paritcles is kept constant 
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(as realized in the experiment52, 53). Combining these two expressions of N and E gives rise to the values T and μ. 
Throughout the paper we use the fugacity z = 1 by assuming the temperature to be lower than its transition value. 
Using the definition = ∂ ∂ιC N E T( ) /{ } , we then arrive at a special form of Eq. (3) in which ξ ζ ζ= 12 (4)/ (3), 
ξ φζ= 6 (3)0 1/3, α = 3, and γ = −1/3.

Work and efficiency.  We now consider a general two-heat-source heat engine, which may be Carnot cycle, 
Brayton cycle, Diesel Cycle, or Otto cycle, etc55. The diagram of such a heat engine is illustrated in Fig. 1. The 
cyclic heat engine gets the working subsystem back to its original state at the end of each cycle.

By integrating heat capacity ιC { } (we will use C instead of ιC { } for simplicity) in Eq. (3) over the temperature T, 
we find that the heats absorbed and released by the working substance in the hot and cold thermodynamic pro-
cesses are respectively given by

∫ ∫ ∫ξ ξ= = +α γ α−Q C dT T dT N T dT ,
(4)h

T

T
h h T

T

h T

T0 1

hw

h

hw

h

hw

h

∫ ∫ ∫ξ ξ= = +α γ α−Q C dT T dT N T dT ,
(5)c

T

T
c c T

T

c T

T0 1

cw

c

cw

c

cw

c

where Th,c is the temperature of the hot or cold reservoir, and Thw cw,  is the minimum (maximum) value of the 
temperature of the working substance along the heat-transfer process. Direct calculation of Eqs (4) and (5) yields

ξ

α

ξ

α
=

+
− + −α α

γ
α α+ +Q T T

N
T T

1
( ) ( ),

(6)h
h

h hw
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+
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1
( ) ( )

(7)c
c

c cw
c
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0

Figure 1.  Graphic sketch of a two-heat-source machine.
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As there is no net change in the internal energy after every single cycle, the work produced by the heat engine in 
a cycle, = +W Q Qh c, and the efficiency η = + Q Q1 /c h are, respectively, given by

ξ

α

ξ

α

ξ

α

ξ

α
=

+
− + − +

+
− + −α α

γ
α α α α

γ
α α+ + + +W T T

N
T T T T

N
T T

1
( ) ( )

1
( ) ( ),

(8)
h

h hw
h

h hw
c
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c
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1 1

0
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0

η
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= +

− + + −

− + + −
.
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+ +

T T N T T
T T N T T

1
( ) ( 1)( )
( ) ( 1)( ) (9)

c c cw c c cw

h h hw h h hw

1 1 0

1 1 0

Maximum-work efficiency.  Optimization on the work under the reversible assumption.  The average 
entropy change per cycle stems solely from heat exchange between the system and the baths. The total change in 
the entropy after a single cycle must be vanishing, i.e.,

∆ = ∆ + ∆ =S S S 0, (10)cycle h c

where ΔSh,c is the change in entropy along the hot or cold process. Assuming that the cycle is reversible, Eq. (10) 
can be re-expressed as

∫ ∫∆ = + =S C
T

dT C
T

dT 0,
(11)cycle

T

T
h

T

T
c
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c

leading to the equation,

ξ

α

ξ

α
ξ

α

ξ

α

= ∆ = − +
−
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+ − +
−

− .

α α
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α α
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α α

− −

− −

S T T
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c
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0
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0
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We now turn to the optimization on the heat engine by maximizing the work output. As the total change in the 
entropy of the system must be vanishing after a full cycle, maximizing the work output equivalent to maximizing 
the Lagrangian function:

λ= − ∆L W S , (13)cycle

where λ is the Lagrange multiplier. Substituting Eqs (8) and (12) into Eq. (13), and setting =∂
∂

0L
Thw

 and =∂
∂

0L
Tcw

, 
we can readily obtain

= .⁎ ⁎T T (14)hw cw

On substitution of Eq. (14) into Eq. (12), we obtain the equation

α ξ ξ
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+
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+
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+
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α
γ α α α α

−
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c c h h
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Equation (15) shows that the optimal values of ⁎Thw
⁎T( )cw  at maximum work depends on the ratio parameters 

ξ ξ=r /c h1 , ξ ξ=r /c h2
0 0, and ξ ξ=r T/( )h h c3

0 , dimensionality d (described by α), and particle number N. In principle, 
we can determine numerically the efficiency at maximum work, ηe

m
x

w, by inserting Eq. (15) into Eq. (9). However, 
mathematically, it is not likely to find an exact analytical expression for the maximum-work efficiency in Eq. (9) 
for α ≥ 5 according to Abel-Ruffini theorem. That means, in order to consider the general case, we have to resort 
to an approximation method for finding the analytical solution to Eq. (15).

In order to derive an analytic result, we substitute = − ∆⁎ ⁎T T Thw h w
h  into Eq. (15) and expand that with respect 

to ∆ ⁎Tw
h  to obtain



ξ

ξ ξ
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ξ ξ α

α
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N
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which yields the optimal values of ⁎Thw
⁎T( )cw
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When we combine the identity − =
ξ α ξ α

ξ α ξ α

− − + −

− − + −

α α γ α α

α α γ α α

− −

− − 1
T T N T T

T T N T T

( 1) ( ) ( )

( 1) ( ) ( )
h h hw h h hw

c c cw c c cw

0 1 1

0 1 1
, which was derived from Eq. (12), and 

the expression of efficiency η given by Eq. (9), we find that the efficiency can be rewritten as

η
ξ α ξ α
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ξ α ξ α
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− + + −

− + + −
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− − + −
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.
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A result of substituting Eq. (17) into Eq. (18) is that the maximum-work efficiency output turns out to be

η
ξ α ξ α

ξ α ξ α

ξ α ξ α

ξ α ξ α
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− Λ + + − Λ

− Λ + + − Λ

×
− − Λ + − Λ
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where Λ ≡





+
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

ξ α ξ α
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− − + −

− 
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
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( ) ( )
T 1h

T T T N T T

N T

( 1) ( 1) ( 1)

( 1)
c h c h c c h

c h h c h

0 1 1

0 0
 has been adopted.

To compare with the approximate formula Eq. (19), for instance, we calculate the exact values .. for the heat 
engine working with a Bose system with N = 100 particles confined in a three-dimensional isotropic harmonic 
trap where α = 3 and γ = −3. In Fig. 2 we compare the approximate result η m

ap
w obtained from Eq. (19), red solid 

line, with the exact values values η m
ex

w , blue dashed line, and the CA efficiency, black dotted line. We see from 
Fig. 2 that the approximate result is in nice agreement with the exact one, providing a strong argument in favor of 
our approach. Another point we note from Fig. 2 is that our result coincides with the CA efficiency at very small 
relative temperature difference (or at small values of ηC).

Equation (19) can be expanded to be valid up to quadratic order in ηC by using ξ ξ=r /c h1 , ξ ξ=r /c h2
0 0, and 

ξ ξ=r T/( )h h c3
0  as

η
η

η η= +


 +



 +a

2
1
8

( ),
(20)

m C
C C

w
0

2 3

where

α α

α

α

α α

= + + + −

+ − − − − + +

− + − + +

+ + − −

+ + + + + .

γ γ

γ γ γ γ γ

γ γ γ

γ

γ γ γ γ

a r r r r N r N
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3
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2

Here the parameter a0 is dependent on the particle number (which corresponds to the system size). While the 
universality of the coefficient 1/2 in the linear term is recovered, the value of the coefficient for the quadratic term 

Figure 2.  The maximum-work efficiency ηmw or the CA efficiency ηCA as a function of the Carnot efficiency ηC. 
The approximate and exact results of the optimal efficiency, η m

ap
w and η m

ex
w are denoted by a blue dashed line and 

a red solid line, respectively, while the CA efficiency ηCA is represented by a black dotted line. Here the 
parameters are N = 100, α = 3, γ = −3, and = = =r r r 11 2 3 .
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is dependent on the model parameters, such as the dimensionality, the system size (particle number), and the 
form of trapping potential, etc. To estimate the finite-size effects on the efficiency at maximum work, we consider 
two limits of system size, i.e., the particle number N = 1 and → ∞N , which are as follows:

	(1)	 In the thermodynamic limit where → ∞N  and thus Nγ → 0, the parameter a0 simplifies to = −a r( 1)0 1
α + +r(2 1)/[24( 1)]1 , whose upper and lower bounds satisfy α≤ +a (2 1) /240 . As expected, the 

expression of a0 is completely independent of r2 and r3, since the term in Eq. (3), the correction to finite size 
of system, must be vanishing for the macroscopic system.

	(2)	 The minimization limit where N = 1 is considered to determine which range a0 should be situated in. For 
r1 → 0, while r2 → 0 leads to α= −a (1 2 )/240 , → ∞r2  results in α α= − + − +a r r r(2 2 1)/(24 24)0 3 3 3 , 
which simplifies to α= +a (2 1)/240  [ α= −a (2 1)/240 ] as r3 → 0 ( → ∞r3 ). It is therefore shown that, 
when r1 → 0, the value of a0 should satisfy α α− ≤ ≤ +a(1 2 )/24 (2 1)/240  for α > 0 or α − ≤(2 1)/24

α≤ −a (1 2 )/240  for α < 0. For → ∞r1 , a0 is independent of r2 and becomes α α= + − +a r r(2 20 3 3
α + +r2 1)/(24 24)3 , which simplifies to α= −a (2 1)/240  [ α= +a (2 1)/240 ] when → ∞r3  (r3 → 0). In 

a word, the minimization limit leads to α α α− ≤ ≤ +(1 2 )/24 (2 1)/24 for α > 0 and 
α α α− ≤ ≤ −(2 1)/24 (1 2 )/24 for α < 0.

Comparison between the two limits above shows the insensitive independence of the maximum-work effi-
ciency on the particle number N, though the universality of the maximum-work efficiency is only valid up to the 
first order of ηC. Quite interestingly, the symmetric scenario when r1 = r2 = 1 leads to vanishing a0 in Eq. (20), 
thereby showing that the universality of maximum-work efficiency is recovered,

η
η η

η= + +
2 8 ( ), (21)

m C C
C

w
2

3

which is independent of the parameters r3, α and γ, and particle number N. Hence, the universality, η η+/2 /8C C
2 , 

holds completely independently of the system size, the form and dimensionality of the trapping potential, and the 
system temperature, and of the interaction strength between particles56, as long as r1 = r2 = 1 which implies that 
the heat transfer coefficients in two heat-transfer processes are equal. We recover the coefficient of the second 
order term 1/8, which was derived from the heat engine model based on Newton’s heat transfer law22. It is, how-
ever, more general and indicating greater validity, because it was derived without a given heat-transfer law. The 
symmetric scenario we discussed here is similar to the symmetric fluxes for a steady heat engine32 and the sym-
metric dissipation for a cyclic heat engine24, as they share the same universal value of the quadratic coefficient for 
the efficiency at maximum power.

Maximum-work efficiency when accurate to the first order of ηC.  To study the nature of the universality of the 
maximum-work efficiency, we consider the linkage between the temperatures of the working substance and heat 
reservoirs in advance. We substitute = + ∆T Th

T
2

, = − ∆T Tc
T

2
, = + ∆T Thw w

T
2

w  and = − ∆T Tcw w
T
2

w , with 
∆ = −T T Tw hw cw and = +Tw

T T
2

hw cw , into Eq. (12), yielding

α

α

α

α





−
∆ 
















+
∆ 


 −





+
∆ 












+




−
∆ 
















−
∆ 


 −





−
∆ 












+ −









−
∆ 


 −





−
∆ 










+ −









+
∆ 


 −





+
∆ 








 =

γ
α α

γ
α α

α α

α α

− −

− −

r N T T T T T T

r r N T T T T T T

r T T T T

T T T T

2 2 2

2 2 2

( 1)
2 2

( 1)
2 2

0,
(22)

w
w

w
w

w
w

w
w

3

1 1

2 3

1 1

1

where ri with i = 1, 2, 3 were defined above Eq. (20). Here it can be observed from Eq. (22) that Tw is determined 
by T, ΔT and ΔTw for given ri(i = 1, 2, 3), N, γ, and α. Without loss of generality, for the heat engine running in 
the linear response regime, we can therefore express Tw as the form:

χ χ χ= + ∆ + ∆ .T T T (23)w w1 2 3

Inserting Eq. (23) into Eq. (22) and expanding it with respect to ΔT and ΔTw, we then arrive at
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

α χ α χ α α

α χ α α χ χ

χ α α χ χ

χ χ χ

+ − + + + − −

× − + − − + − − −

× + + + ∆ − − +

×


 +



 + +



 −



 ∆ + ∆ ∆ ∆ ∆ = .

γ α α α α α

γ γ α α α

γ α γ

γ

− − −

− − −

−

r N T r T r T T

r N r r r N r T

r N T r r T r N T

r r r N T T T T T T

(1 ) ( ) ( 1) (1 ) ( ) {1
2

( 1)

[ (1 ) 1 ] 1
2

(1 ) ( ) ( 1)

[ (1 ) (1 )]} { ( 1) [( )
1
2

( ) 1
2

]} ( , , ) 0
(24)w w w

3 2
1

1
1

1 1
1

3 2 1 3 2
1

1
1

2 1
2

3 2 1 1 1
2

1 3

3 1 1 2 3 3
2 2

Because ∆ = −T T Th c and ∆ = −T T Tw hw cw are positive numbers, the corresponding coefficients must be equal 
to zero, which gives

χ

χ χ

χ χ

=

= ≡
− + −
+ + +

= − = −
− + −
+ + +

γ

γ

γ

γ

T
r N r r
r N r r

r N r r
r N r r

,
1
2

(1 ) 1
(1 ) 1

,

1
2

(1 ) 1
(1 ) 1

,
(25)

1

2
3 2 1

3 2 1

3
3 2 1

3 2 1

yielding the simple form of Eq. (23),

χ χ= + ∆ − ∆ .T T T T (26)w w

This, with equations = + ∆T Thw w
T
2

w  and = − ∆T Tcw w
T
2

w , gives rise to

χ χ= + ∆ +


 −



∆T T T T1

2
,

(27)hw w

χ χ= + ∆ −


 +



∆ .T T T T1

2 (28)cw w

Substituting = − ∆T T Thw h w
h, = + ∆T Th

T
2

 and = − ∆T Tc
T

2
, with ∆ = −T T Th c and = +T T T

2
h c , into Eq. (6), 

we find Qh by expanding Eq. (6) with respect to ∆Tw
h and ΔT to be


ξ

=
+

∆ + ∆ ∆ ∆ .
α γ

Q
T r N

r
T T T T

(1 )
( , ) (29)h

c
w
h

w
h

w
h3

1

2

Similarly, directly inserting = + ∆T T Tcw c w
c , = + ∆T Th

T
2

 and = − ∆T Tc
T

2
 into Eq. (7), we expand Eq. (7) with 

respect to ∆Tw
c  and ΔT to obtain

ξ
= −

+
∆ + ∆ ∆ ∆ .

α γ

Q
T r r r N

r
T T T T

( )
( , ) (30)c

c
w
c

w
c

w
c1 2 3

1

2


According to Eqs (27)–(30) as well as ∆ = −T T Tw
h

h hw and ∆ = −T T Tw
c

cw c, we can rewrite Eqs (29) and (30) as

ξ
χ=



 −



 + ∆ − ∆

α
γQ

T
r

r N T T1
2 (1 ) ( ),

(31)h
c

w
1

3

ξ
χ= −



 +



 + ∆ − ∆

α
γQ

T
r

r r r N T T1
2 ( ) ( ),

(32)c
c

w
1

1 2 3

respectively. Inserting = + ∆T Th
T

2
 and = − ∆T Tc

T
2

 as well as Eqs (27) and (28) into Eq. (18), and expanding it 
with respect to ΔT and ΔTw, Eq. (18) reduces to the simple form

η =



∆

+
∆ 


 + ∆ ∆ ∆ ∆ .

T
T

T
T

T T T T1
2

( , , )
(33)

w
w w

2 2

If we put together Eqs (31) and (33), we can obtain the work output W as

η
ξ

χ= =


 −








∆

+
∆ 


 + ∆ − ∆ .

α
γW Q

T
r

T
T

T
T

r N T T
2

1
2 (1 ) ( )

(34)h
c w

w
1

3

It follows, using the condition of .., that the maximum work is reached at

∆ = .⁎T 0 (35)w
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As expected, inserting ∆ =⁎T 0w  into Eqs (27) and (28) reproduces the optimal relation =⁎ ⁎T Thw cw [see Eq. (14)]. 
By instituting Eq. (35) into Eq. (33), one immediately obtains the maximum-work efficiency

η η=
∆

= + ∆
T
T

T
2

( ), (36)
m

CA
w 2

which is identical to a reported universal upper bound of the maximum-power efficiency from a strong-coupling 
Carnot-like heat engine34. This result derived from the reversible heat engine performing maximum work is quite 
general, as it is independent of the properties of the working substance and types of the engine model. It is also 
implied that the cyclic heat engine might satisfy the tight-coupling condition, which thus deserves our further 
study in the following subsection.

Maximum power efficiency based on linear irreversible thermodynamics.  To reveal the linkage between 
maximum-work-reversible cycles and maximum-power-irreversible ones, we now briefly discuss the 
maximum-power efficiency within the context of linear irreversible thermodynamics, mapping these cyclic 
engines into irreversible ones. Let us consider the entropy production rate σ  through appropriate identification of 
the thermodynamic fluxes and their corresponding forces. Since the entropy variation of working substance is 
vanishing after a whole cycle, the entropy production rate σ  can be expressed as the sum of the entropy increase 
rate of two heat reservoirs,

σ = −





+





= − +





−





− +
∆

.�
� � � � �

� �Q
T

Q
T

W
T

Q
T T

W
T

Q T
T

1 1
(37)

h

h

c

c c
h

c h
h 2

It follows, considering Eqs (31) and (34), that Eq. (37) can be re-expressed as

σ = −



∆

+
∆ 


 +

∆
= +







Q
T

T
T

T
T

Q T
T

J X J X
2

,
(38)

h w
h s s t t2

where the entropy and thermal fluxes are defined as

= =


J Q
T

J Q, , (39)s
h

t h

with the affinities = − +∆ ∆( )Xs
T

T
T
T

1
2

w , = ∆Xt
T

T 2 . The two fluxes are proportional to each other, namely,

= .J TJ (40)t s

These fluxes and affinities satisfy the linear constitutive relations:

= + = +J L X L X J L X L X, , (41)s ss s sq t t st s tt t

where the Onsager coefficients satisfy = ≥L L L L, , 0st ts tt ss , and ≥L L L Lss tt st ts. Introducing the coupling strength 
parameter =q L L L/st tt ss  with ≤q 1 into Eq. (41), the thermal flux can be expressed in terms of the parameter 
q,

= + − .J L
L

J L q X(1 )
(42)t

ts

ss
s tt t

2

Combination of Eq. (40) with Eq. (42) indicates that any cyclic heat-engine model (without heat leakage) we 
discussed satisfies tight-coupling condition |q| = 1.

From Eqs (31), (34), (38) and (39), we note that the power and the efficiency are given by = −W J X Ts s  and 
η = − J X T J( )/s s t , respectively. It then follows, maximizing the power by setting ∂ ∂ =W X/ 0s , that the 
maximum-power efficiency becomes

η =
∆

−
T
T

q
q2 1

,
(43)

mp
2

2

achieving its maximum value when and only when the tight-coupling condition (|q| = 1) is satisfied. Notice that, 
as mentioned above, the cyclic heat engine throughout the paper satisfies the tight-coupling condition |q| = 1, we 
reproduce the expression of the maximum-power efficiency η η=mp mw [cf. Eq. (36)].

Discussion
A key extension of our approach is to discuss an endoreversible heat engine in which there are multiple 
heat-transfer laws affected simultaneously and the irreversibility merely arises from heat fluxes between the work-
ing substance and the heat reservoirs. Without loss of generality, the heat absorbed by the system during any 
heat-exchange process can be given by

τ τ= − + −κ κ κ
α

κ
α

κ κ κ
β

κ
β

κQ T T T T[ ] [ ] , (44)w w
(1) (2) 
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where α and β are two independent parameters, not restricted to our model where β = α − 1, and κ
j( ) (j = 1, 2) is 

the heat conductivity for a given heat-transfer process κ with κ = c, h. Here α as well as β is a real number depict-
ing a concrete heat-transfer law, and κ

(1) (κ
(2)) is the heat conductance of a heat-transfer process. For instance, in 

a heat-transfer process where the heat exchange is contributed by both radiation and Newton’s law conduction, 
we adopt α and β = 4 in Eq. (44).

For a two-heat-source cyclic heat engine, the work output W is given by

τ τ τ τ= − + − + − + − .α α β β α α β βW T T T T T T T T[ ] [ ] [ ] [ ] (45)h h hw h h h hw h c c cw c c c cw c
(1) (2) (1) (2)   

Since the cycle is endoreversible, we have the following constraint

   τ τ τ τ
∆ = =

− + −
+

− + −α α α α β β

S T T T T
T

T T T T
T

0 [ ] [ ] [ ] [ ] ,
(46)cycle

h h hw h h h
b

hw
b

h

hw

c c cw c c c cw c

cw

(1) (2) (1) (2)

and the efficiency η = + Q Q1 /c h becomes

η = − .
T
T

1
(47)

cw

hw

Substituting Eq. (46) into Eq. (13) and using the condition =∂
∂

0L
Thw

 and =∂
∂

0L
Tcw

, we arrive at

α β

α β

α β

α β

+

−

+ − + + −

+ − + + −
=

α β

α β

α α β β

α α β β

T T T
T T T

T T T T
T T T T

( )
( )

[ ( 1)] [ ( 1)]
[ ( 1)] [ ( 1)]

1,
(48)

hw h hw h hw

cw c hw c cw

c c cw c c cw

h h hw h h hw

(1) (2)

(1) (2)

(1) (2)

(1) (2)
 
 

 
 

which determines the optimal relation between ⁎Thw and ⁎Tcw. In the case when the heat transfer obeys Newton’s law, 
i.e., α = 1 as well as =κ 0(2)  (κ = c, h), we obtain

=
T
T

T
T (49)

cw

hw

c

h

which, together with Eq. (47), yields the maximum-work efficiency,

η η= = − .
T
T

1
(50)

mw
CA

c

h

We now continue to analyze the finite-time performance of the endoreversible heat engine, applying our approach 
directly. Assuming that the adiabatic processes are instantaneous, we can write the total time of the cycle as 
τ τ τ τ= + = +(k k )c h c h , where τ τ=k /c c  and τ τ=k /h h  (with kc + kh = 1) define the fractional contact times 
with the cold and hot reservoirs, respectively.

Directly applying our approach, we insert = + ∆T Th
T

2
, = − ∆T Tc

T
2

, = + ∆T Thw w
T
2

w  and = − ∆T Tcw w
T
2

w , 
χ χ χ= ′ + ′∆ + ′∆T T Tw w1 2 3 , with ∆ = −T T Tw hw cw and = +Tw

T T
2

hw cw , into Eq. (46), and then expand it with 
respect to ΔT and ΔTw to obtain

χ

χ χ
α β

α β

χ χ
α β

α β

′ =

′ = ′ =
− + −

+ + +

′ = − ′ = −
− + −

+ + +

α β

α β

α β

α β

T

T T
T T

T T
T T

,

1
2

( k k ) ( k k )
( k k ) ( k k )

,

1
2

( k k ) ( k k )
( k k ) ( k k )

,
(51)

h h c c h h c c

h h c c h h c c

h h c c h h c c

h h c c h h c c

1

2

(1) (1) (2) (2)

(1) (1) (2) (2)

3

(1) (1) (2) (2)

(1) (1) (2) (2)

   
   

   
   

yielding the simple form,

χ χ= + ′∆ − ′∆ .T T T T (52)w w

This, with equations = + ∆T Thw w
T
2

w  and = − ∆T Tcw w
T
2

w , gives rise to

χ χ= + ′∆ +


 − ′



∆T T T T1

2
,

(53)hw w

χ χ= + ′∆ −


 + ′



∆ .T T T T1

2 (54)cw w

Substituting = − ∆T T Thw h w
h, = + ∆T Th

T
2

 and = − ∆T Tc
T

2
, with ∆ = −T T Th c and = +T T T

2
h c , into Eq. (44), 

we find Qh by expanding Eq. (44) with respect to ∆Tw
h and ΔT to be

α β= + ∆ + ∆ ∆ ∆ .α β− −


Q T T T T T Tk ( ) ( , ) (55)h h h h w
h

w
h

w
h(1) 1 (2) 1 2

C C O
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Similarly, directly inserting = + ∆T T Tcw c w
c , = + ∆T Th

T
2

 and = − ∆T Tc
T

2
 into Eq. (44), we expand Eq. (44) 

with respect to ∆Tw
c  and ΔT to obtain

C C Oα β= − + ∆ + ∆ ∆ ∆ .α β− −
Q T T T T T Tk ( ) ( , ) (56)c c c c w

c
w
c

w
c(1) 1 (2) 1 2

According to Eqs (53)–(56) as well as ∆ = −T T Tw
h

h hw and ∆ = −T T Tw
c

cw c, we can rewrite Eqs (55) and (56) as

α β χ= +


 − ′



 ∆ − ∆α β− −

Q T T T Tk ( ) 1
2

( ),
(57)h h h h w

(1) 1 (2) 1 

α β χ= − +


 + ′



 ∆ − ∆α β− −

Q T T T Tk ( ) 1
2

( ),
(58)c c c c w

(1) 1 (2) 1 

respectively.
Inserting Eqs (53) and (54) into Eq. (47), and expanding it with respect to ΔT and ΔTw, Eq. (47) reduces to 

the simple form

η =
∆

+ ∆ ∆ ∆ ∆ .
T

T
T T T T( , , ) (59)

w
w w

2 2

If we put together Eqs (57) and (59), we can obtain the power output P as

 η α β χ= = +


 − ′



∆ ∆ − ∆ .α β− −

P Q T T T T Tk ( ) 1
2

( )
(60)h h h h w w

(1) 2 (2) 2

Using the condition of ∂ ∂∆ =P T/ 0w , we find that the maximum power is reached at

∆ =
∆

.⁎T T
2 (61)w

By instituting Eq. (61) into Eq. (59), one immediately obtains the maximum-power efficiency

η η=
∆

= + ∆ .
T
T

T
2

( ) (62)
mp

CA
2

This maximum-power efficiency is identical to that derived from the heat engine based on Newton’s heat transfer 
law23, but it is valid in a broader context in which the general heat transfer law in Eq. (44) is employed.

As another key extension, our approach can be directly used to describe the thermodynamics of a finite-work 
heat engine working with some particular systems of ultrocold fermions. One typical example is the heat engine 
using a free electronic Fermi gas at very low temperatures. At very low temperatures ( T TF with TF the Fermi 
temperature) the heat capacity of the free electron Fermi gas can be expressed as the sum of electron and phonon 
contributions: = + = +C C C T Tele phon

3G A , where  is Sommerfeld constant. Based on Eqs (9) and (14), and 
using the exact method adopted in this paper, one can find that the efficiency at maximum work has the univer-
sality, η η+/2 /8C C

2 , and that it is universally bounded from above by the CA value.
Last but not least we should note that, since the heat capacity of the interacting system composed of atoms 

(e.g., the interacting Bose system56 or Bose-Fermi mixture system57) takes the form similar to Eq. (3), applying 
our approach will definitely yield the same conclusion about the (α – independent) universal behavior of the 
maximum-work efficiency.

Summary
We have derived the expression of maximum-work efficiency ηmw which depends on the dimensionality and form 
of the trapping potential, and the particle number. We showed that, at small relative temperature differences, the 
maximum-work efficiency can be given by, η η η= + + + a/2 ( 1/8)mw

C C0
2 , the same as the CA efficiency ηCA, 

where a0 is not strongly dependent on the system size and becomes zero in the symmetric case. This universality 
holds independently of the dimensionality and form of the trapping potential, the particle number, and even the 
strength of interaction between particles (for the weakly interacting system). Starting from the analysis of the 
linkage between the temperatures of the working substance and heat reservoirs, we found that, if only accurate to 
the first order of ηC, the maximum-work efficiency is η η η= + O ( )m

CA C
w 2 . In particular, we showed, within the 

context of linear irreversible thermodynamics, that the cyclic heat engine (with no heat leakage) satisfies the 
tight-coupling condition and the maximum-power efficiency reads η η= + ∆O T( )mp

CA
2 . We have not consid-

ered the effects induced by the phase transition58 on the performance of a cyclic heat engine working in the 
regime of maximum work or power, which as a natural extension of this work deserves a deeper study in future.
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