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Montpellier, CNRS, INSERM, Montpellier, France; 4CNR, Institute of Neuroscience, U28 and NeuroMI Center for
Neuroscience, University of Milano-Bicocca, Vedano al Lambro (MB), Italy; 5Institute for Advanced Biosciences, Inserm U
1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France; 6Laboratoire de Physiologie Cellulaire Végétale,
Univ.Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France; 7Department of Chemistry, University of Bath, Bath, United
Kingdom; 8Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom; and 9Bridge Institute,
Department of Chemistry, University of Southern California, Los Angeles, CA, USA
Abstract Cholesterol is a major component of
mammalian plasma membranes that not only affects
the physical properties of the lipid bilayer but also is
the function of many membrane proteins including G
protein-coupled receptors. The oxytocin receptor
(OXTR) is involved in parturition and lactation of
mammals and in their emotional and social behaviors.
Cholesterol acts on OXTR as an allosteric modulator
inducing a high-affinity state for orthosteric ligands
through a molecular mechanism that has yet to be
determined. Using the ion channel-coupled receptor
technology, we developed a functional assay of
cholesterol modulation of G protein-coupled re-
ceptors that is independent of intracellular signaling
pathways and operational in living cells. Using this
assay, we discovered a stable binding of cholesterol
molecules to the receptorwhen it adopts an orthosteric
ligand-bound state. This stable interaction preserves
the cholesterol-dependent activity of the receptor in
cholesterol-depletedmembranes.Thismechanismwas
confirmed using time-resolved FRET experiments on
WTOXTRexpressed in CHOcells. Consequently, a
positive cross-regulation sequentially occurs inOXTR
between cholesterol and orthosteric ligands.
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Mammalian G protein-coupled receptors (GPCRs)
are transmembrane proteins embedded in cholesterol-
containing lipid membranes. Because some GPCRs
require the presence of cholesterol for their proper
function and the high specificity for this sterol,
numerous studies have attempted to decipher the exact
molecular mechanisms of this lipid-protein interaction
using biochemical, biophysical, structural, and compu-
tational studies (1). It is known that cholesterol affects
the activity of some GPCRs either by altering the
physical properties of the membrane (thickness and/or
fluidity) or by interacting directly with the receptor or
through a combination of these two effects (2). Dis-
tinguishing between these effects on different re-
ceptors is not technically trivial and is determined by
comparing, in altered and natural cholesterol condi-
tions, diverse parameters such as thermostabilization,
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protein hydrolysis profile, pH sensitivity (2, 3), and
change of membrane fluidity with various steroids (4).
In the case of the oxytocin receptor, a comparative
analysis of radioligand binding and membrane anisot-
ropy demonstrated an absence of correlation between
the cholesterol dependence of oxytocin receptor
(OXTR) and the membrane fluidity, which suggests a
direct interaction of cholesterol molecules with the re-
ceptor (4).

Both the molecular mechanisms of GPCR regulation
by cholesterol and the cholesterol binding sites have not
been conclusively defined by experimental results. Ev-
idence of direct interaction of cholesterol with GPCRs
has been observed in crystal structures of several
different receptors (5, 6) such as β2AR (PDB code: 2RH1,
3D4S) (7, 8), A2AR (4EIY) (9), 5-HT2BR (4IB4) (10), μOR
(4DKL, 5C1M) (11, 12), P2Y12R (4NTJ, 4PXZ) (13, 14),
P2Y1R (4XNV) (15), mGlu1R (4OR2) (16), viral US28
(4XT1) (17), κOR (6B73) (18), ETB (5X93) (19), CB1 (5XRA)
(20), CCR9 (5LWE) (21), and SMO (5L7D) (22). The
cholesterol sites are distributed in both membrane
leaflets (3), and cholesterol molecules are present at
interfaces of β2AR (2RH1) (7) and mGlu1R (4OR2) (16)
dimers. Molecular dynamics simulations indicate
different exchange kinetics of cholesterol molecules
with receptors like β2AR depending on their interaction
with specific sites (hot spots) (23). A model to differ-
entiate cholesterol molecules with different binding
kinetics has been proposed, including annular (bulk)
cholesterol molecules that surround GPCRs with fast
exchange rates (sub-microsecond time-scale), and non-
annular (bound) molecules that tightly bind to the re-
ceptor with slow exchange rates (microsecond time-
scale) (3, 23–25). It is still not known whether these
bound cholesterol molecules have a functional role, or
which binding sites are involved. To identify the bind-
ing site(s) of functional cholesterol molecules, the
challenge is currently to overcome two obstacles: i) the
current lack of technology able to isolate functional
cholesterol molecules in a membrane containing a
majority of nonfunctional cholesterol molecules and ii)
the lack of stable interactions of functional cholesterol
molecules with the receptor because of the frequent
exchanges of bulk and bound cholesterol molecules in
the microsecond time-scale.

For the OXTR, the focus of this study, six cholesterol
molecules have been suggested to play a role in the
high-affinity state of the receptor (26). However, their
positions could not be precisely determined by receptor
mutagenesis or photoaffinity labeling. Moreover, the
mechanisms of cholesterol dependence at the molecu-
lar level are not yet known (27), and the cholesterol
dependence on GPCR function is still not clear for most
receptors (28).

In this study, we present a new assay to study the
functional cholesterol dependence of GPCRs by
sensing in real-time ligand-induced conformational
changes of the receptors in a natural membrane
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environment in living cells. This assay is based on the
ion channel-coupled receptor (ICCR) technology.
ICCRs are created by genetic fusion of GPCRs to a
potassium channel (Kir6.2) (29). The ion channel acts as
a real-time reporter of conformational changes of the
GPCR by generating an electrical signal that can be
easily detected by conventional electrophysiological
techniques (30) or by nanoelectronic and microelec-
tronic systems (31). ICCRs can detect GPCR ligand
binding of orthosteric agonists and antagonists in a
concentration-dependent manner and independently
of intracellular signaling pathways (29, 32).

The OXTR was chosen as a cholesterol-dependent
GPCR model for this study to assess the ability of the
ICCR technology to detect cholesterol-dependence of
GPCRs. The receptor is involved in various physiolog-
ical functions related to pregnancy such as uterine
contractions (33) and lactation (34). It is also involved in
social behavior and is consequently a potential target
for treating neuropsychiatric disorders (35) including
autism, schizophrenia and anxiety (36).

Cholesterol acts on OXTR as an allosteric regulator
required for the high affinity state of the receptor (Kd
∼1 nM for oxytocin), which exists in equilibrium with a
low affinity state (Kd∼100 nM). It is suggested that high
and low affinity states are conformationally different,
as cholesterol binding induces a more compact and less
dynamic state with an increase of the thermal stability
of the receptor (37). The molecular mechanisms of this
dynamic process induced by bound cholesterol mole-
cules is still unknown.

The oxytocin ICCR has been designed in a previous
study (32), where it was heterologously expressed in
Xenopus oocytes and functionally characterized by the
two-electrode voltage-clamp (TEVC) technique. This
technique records real-time whole cell currents gener-
ated by ICCRs present in the plasma membrane.
External ligands can be easily applied in various con-
centrations. In Xenopus oocytes, cholesterol is endoge-
nously present in the plasma membrane of these giant
cells (∼1 mm in diameter), and its concentration is esti-
mated to be 20.7 mol % (38), which is of the same order
of magnitude as the concentrations found in most hu-
man cells (28 mol %) (39). OXTR is coupled to Gi/o and
Gq proteins (40), both proteins being endogenous in
Xenopus oocytes. The activation of the Gq protein
signaling pathway leads to (i) activation of problematic
effectors for TEVC recordings, namely endogenous
calcium-activated chloride channels generating very
large interference currents and (ii) the closure of the
fused Kir6.2 channel in ICCR because of the decrease
of phosphatidylinositol-4,5-bisphosphate concentration
in the plasma membrane. To prevent these effects, in-
hibitors of Gq proteins can be applied (41) (42). In this
work, however, we took advantage of a previously
designed ICCR in which OXTR has been uncoupled
from G proteins by replacing the third intracellular
loop with the T4 phage lysozyme (T4L) domain (32). We



showed that the OXTR(T4L) ICCR reported the re-
ceptor activity independently of any intracellular
signaling pathways.

Using this assay, we discovered an unreported
mechanism of stabilization of the interaction of func-
tional cholesterol molecules with OXTR when the re-
ceptor adopts a ligand-bound state. These results
highlight a simple method to discriminate and isolate
functional bound cholesterol molecules in a cell mem-
brane that is naturally abundant in cholesterol. This
original functional selection of cholesterol molecules
offers new possibilities (i) for the challenging identifi-
cation of their binding site(s) by structural, biochemical
and computational studies, (ii) for deciphering the
molecular mechanisms of the allosteric cross-regulation
occurring between the cholesterol and the oxytocin
binding sites, and (iii) for evaluating the role of the
stable oxytocin-bound and cholesterol-bound state of
the receptor in physiological processes where this state
takes place (recycling, intracellular receptor signaling).
MATERIALS AND METHODS

Molecular biology
All genes were subcloned in pGEMHE-derived vectors

optimized for protein expression in Xenopus oocytes (32).
After cDNA linearization in the 3′ end of the polyA tail,
mRNA was synthesized using the T7 mMessage mMachine Kit
and purified by the standard phenol:chloroform protocol,
analyzed by agarose-gel electrophoresis and quantified by
spectrophotometry (43). Kir6.2 is truncated of its last 36 resi-
dues (Kir6.2ΔC36) to remove a known endoplasmic reticulum
retention signal and to allow the surface expression of the
channel alone (44) or the T4L-modified ICCRs (32). The T4L
domain was inserted between QNL231 [T4L] 264KLI in
OXTR and between SRI217 [T4L] 377PPP in the human M2
muscarinic acetylcholine receptor (M2). In the OXTR-ICCR,
the last 42 residues of OXTR were truncated to create a
functional coupling between the receptor and the fused ion
channel (32).

Reagents
Oxytocin was acquired from GenScript. Atosiban and

SR49059 were purchased from Bachem (UK). Methyl-
β-cyclodextrin (MβCD) (C4555), filipin (F9765), and digitonin
(D141) were purchased from Sigma-Aldrich. RS544-red was
prepared as previously reported (45), and the fluorophore was
modified to d2 by the Cisbio company.

Electrophysiological recordings
Xenopus oocytes were prepared as previously reported (29).

Animal handling and experiments fully conformed to Euro-
pean regulations and were approved by the French Ministry
of Higher Education and Research (APAFIS#4420-
2016030813053199 v4 to CM). Authorization of the animal
facility has been delivered by the Prefect of Isere (Authori-
zation # D 38 185 10 001). Amounts of mRNA injected per
oocyte and coding for the following proteins were: ICCR 4 ng,
OXTR 2 ng, Kir6.2ΔC36 2 ng. TEVC recordings were initially
performed manually and later automatically with the
Chole
HiClamp robot (Multi Channel Systems). During recordings,
oocytes were incubated in high potassium buffer: 91 mM KCl,
1.8 mM CaCl2, 1 mM MgCl2, 5 mM HEPES, 0.3 mM niflumic
acid, pH 7.4. Ligands and BaCl2 are diluted in this high po-
tassium buffer. The membrane voltage was clamped
at −50 mV.

Cholesterol manipulation
Cholesterol depletion was performed by incubation of

Xenopus oocytes in 96-well plates in 200 μl of 20 mMMβCD in
modified Barth's solution (30) for at least 3 h at 19◦C.
Cholesterol repletion was performed by re-incubating
cholesterol-depleted and nonrecorded oocytes in 40 mM
cholesterol, lanosterol, or cholesteryl hemi-succinate (CHS)
solubilized with 5 mM MβCD for 1 h at 19◦C. Experiments of
cholesterol depletion in presence of ligands were performed
by adding 5 μM of oxytocin to the modified Barth's solution
containing 20 mMMβCD and then incubated for at least 3 h at
19◦C. To wash bound ligands before testing ICCR function,
oocytes were placed for 2 min in a constant flow of high
potassium buffer. A second incubation of 20 mM MβCD was
performed on oocytes preincubated for 3 h in 20 mM
MβCD + 5 μM oxytocin. Before the second incubation, the
oocytes were pooled in 15 ml-tube and washed 3 times 5 min
in the modified Barth's solution to remove the ligand. Oocytes
were reloaded individually in wells of a 96-well plate filled
with 200 μl of 20 mM MβCD in modified Barth's solution and
incubated for 1 h at 19◦C.

Filipin-fluorescence microscopy
Filipin 0.05% (w/v) was added to wells containing oocytes,

1 h before the end of the 3 h-incubation with MβCD or buffer,
with and without 1 μM oxytocin. Confocal microscopy was
performed on a Zeiss inverted LSM710 microscope equipped
with a 40×N.A.1.20 C-Apochromat water immersion lens (Carl
Zeiss MicroImaging GmbH, Germany). Images were acquired
at the equatorial plane focused in brightfield mode. The fil-
ipin signal was collected using a two-photon laser at 700 nm
and low power (2%) to avoid photobleaching and emission set
to 400–485 nm. Gray intensities of pixels were analyzed with
ImageJ using the integrated pixel density parameter and
background subtraction with a threshold of 200 on a gray
scale from 0 to 1,403.

Digitonin assay
Cholesterol-depletion was performed as described in the

section “Cholesterol Modification”. Xenopus oocytes, pre-
incubated for 3 h in 20 mM of MβCD or in Buffer (modified
Barth's solution), were incubated in 10 μM digitonin for 2 min
in low-potassium buffer (ND96 buffer): 96 mM NaCl, 2 mM
KCl, 1.8 mM CaCl2, 1 mM MgCl2, 5 mM HEPES, 0.3 mM
niflumic acid, pH 7.4. Currents were recorded in real-time
with the TEVC HiClamp automate. Traces are the average
± SEM of 7 or 9 recorded oocytes incubated with buffer or
MβCD, respectively.

Time-resolved FRET experiments on WT OXTR in
CHO cells

CHO cells were transfected according to the manufac-
turer's recommendation (jetPEI DNA transfection, Polyplus-
transfection, Illkirch, France). Briefly, cells were seeded on
day 1 in 6-well plates at a concentration of 300,000 cells/well.
sterol entrapping by ligand-bound oxytocin receptors 3



On day 2, 6 μl/well of JetPEI diluted in 100 μl NaCl (150 mM)
were added to a mix of DNA coding for SNAP-OXTR
(180 ng/well) and uncoding DNA (2820 ng /well) diluted in
100 μl NaCl (150 mM). The mixture was incubated for at least
30 min at room temperature and was then added onto the
cells. On day 3, cells in the 6-well plates were then harvested
after addition of trypsin, counted and seeded at a concen-
tration of 30,000 cells/well in a white 96-well plates. Experi-
ments were carried out on day 4. Cells were labeled with
SNAP-Lumi4-Tb (100 nM) (Cisbio Bioassays, Codolet, France)
at 37◦C for 1 hour, rinsed four times with Tag-lite buffer
(Cisbio Bioassays) and incubated in the presence of the
various compounds. The time-resolved FRET (TR-FRET)
signal was measured on a Pherastar (BMG Labtech). Cells
were illuminated at 337 nm, and luminescent signals were
measured at 620 nm and 665 nm every minute. The ratio
(665/620) was then plotted as a function of time. Experiments
were performed three times, independently.

RESULTS

The ICCR technology detects the cholesterol
dependence of OXTR

The oxytocin ICCR was previously reported to acti-
vate the fused Kir6.2 ion channel in presence of
oxytocin (32). To assess whether the ICCR technology is
able to detect the cholesterol dependence of the OXTR,
the endogenous cholesterol present in the Xenopus
oocytes plasma membrane (38) was depleted by incu-
bation with MβCD (Fig. 1).

MβCD is a water-soluble cyclic oligosaccharide
composed of seven molecules of methylated glucose
forming a central hydrophobic cavity with a high
specificity for cholesterol. Incubation of living cells
with methyl-β-cyclodextrin induces depletion of
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expressed in Xenopus oocytes, and endogenous cholesterol is deple
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cholesterol from the plasma membrane by solubilizing
the cholesterol molecules (46). Figure 2 illustrates the
activation of OXTR by 1 μM oxytocin in terms of
relative current amplitudes generated by the fused ion
channel. The results demonstrate that cholesterol
depletion (MβCD in Fig. 2A) leads to a large reduction
of ICCR activation induced by 1 μM oxytocin.

In contrast, when oocytes are not depleted in
cholesterol but incubated with cyclodextrin-free buffer
(Buffer in Fig. 2A), the amplitude of activation remains
significantly similar to the control before incubation.
MβCD being not strictly specific to cholesterol, a stan-
dard control consists in re-incubating depleted mem-
branes with cholesterol only. This was performed with
cholesterol solubilized in saturated MβCD (47) incu-
bated with oocytes previously depleted in cholesterol.
The ICCR activation is significantly, but not totally
restored (∼70% of the control before incubation) by
cholesterol repletion (Incubation with: Cholesterol in
Fig. 2A). This is in agreement with binding experiments
on HEK293 cells showing restoration of 70%–100% of
high-affinity oxytocin binding after cholesterol reple-
tion (4). Additional controls were set up without
cholesterol (Buffer in Fig. 2A) and with two cholesterol
analogs: (i) the CHS, widely used as cholesterol-
surrogate in biochemical and structural studies
because of its higher solubility in aqueous solutions(48),
(23) and (ii) lanosterol, a natural precursor of choles-
terol synthesis. Re-incubation with buffer did not
restore the ICCR activation indicating that endogenous
cholesterol replenishment is absent or weak under our
experimental conditions. Similarly, membrane reple-
tion with lanosterol did not restore the ICCR activation
Oxytocin
Receptor

Kir6.2
channel

l depletion with

T4L
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( Ø ~1 mm)

-cyclodextrin

G protein-coupled receptor with the ion channel-coupled re-
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orming a potassium selective pore. Binding of oxytocin induces
tude generated by the ion channel. The ICCR is heterologously
ted by incubation with methyl-β cyclodextrin. The proteins are
42 residues, and the third intracellular loop is replaced by the T4
the N-terminus of Kir6.2 is truncated of its first 25 residues.
electrode voltage-clamp technique in high external K+ concen-
cing an inward flow of K+ ions (yellow circles).
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sterol, solubilized in 5 mM MβCD, for sterol repletion or with Buffer as negative control. The number of recordings (n) is between 8
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recordings showing the current induced by 1 μM oxytocin after incubation of oocytes in the indicated conditions. By convention, the
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which was expected because lanosterol restored only
7% of high-affinity oxytocin binding in HEK293 cells
(4). In contrast, CHS was able to partially restore the
Chole
activation of the ICCR(∼45% of the control level before
incubation), confirming its role as a functional choles-
terol substitute for OXTR. While the functional effect
sterol entrapping by ligand-bound oxytocin receptors 5



of CHS on the restoration of ICCR activation is clear
and indicate a partition of CHS in the plasma mem-
brane, its quantitative interpretation on the amplitude
of activation must be taken with care in absence of CHS
concentration measurements in Xenopus oocytes.

These results demonstrate that the loss of activation
after MβCD incubation was caused specifically by
cholesterol depletion. Furthermore, they confirm that
the ICCR technology detects cholesterol dependence of
OXTR.

The Kir6.2 channel is not involved in ICCR
cholesterol sensitivity

While MβCD has the highest affinity for cholesterol
among the cyclodextrins, it can also extract other lipids
that could decrease the ion channel activation. Moreover,
cholesterol is also known to affect the activity of ion
channels such asKir6.2 (49). To prove that the loss of ICCR
activation under cholesterol-depleted experiment is not a
result of loss of ion channel function, the samecholesterol-
depletion experiment was performed on the ion channel
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only. Under physiological conditions, Kir6.2 must form an
octameric complex with the sulfonylurea receptor to
traffic to the plasma membrane. However, deletion of an
endoplasmic reticulum retention signal in Kir6.2 C-ter-
minus (Kir6.2ΔC36) enables the surface expression of the
homotetrameric Kir6.2 channel alone (44). Figure 3 shows
that, in contrast to the experiments with ICCR, cholesterol
depletion increases the activation of Kir6.2ΔC36 by
extracellular sodium azide (50). Cholesterol repletion and
partially lanosterol repletion restored the initial amplitude
of activationbyazidewhile the controlwithbufferdidnot.
These results are in agreement with previous studies
showing an inhibition of Kir6.2 by cholesterol (49).
Consequently, the loss of ICCR activation cannot be
attributed to a direct effect on the ion channel.

The cholesterol dependence of the ICCR is specific
to the oxytocin receptor

To verify that the cholesterol effect was specific to the
OXTR, the receptor was replaced by the human musca-
rinicM2 receptor. TheM2 receptor has not been reported
erol 
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as cholesterol-dependent (28) for its activity, and no
cholesterol molecules have been observed in its different
crystal structures (3UON (51), 4MQS (52) and 6OIK (53)).
Two M2 ICCRs were used for the experiment: i) the T4L
version (32), as in the OXTR ICCR and ii) theM2 receptor
with an intact third intracellular loop, which was possible
to use because the M2 receptor is not coupled to the
problematic Gq proteins. Both ICCRs were engineered to
be inhibited by the agonist acetylcholine (43). The func-
tional characterization ofM2(T4L)-ICCR showed that the
amplitude of the inhibition is unchanged after incubation
with MβCD or with buffer (Fig. 4A). Consequently, the
cholesterol depletion did not affect the M2 receptor
function. To verify that the exogenous T4L domain did
not alter potential cholesterol sensitivity of the M2 re-
ceptor, the same experiments were performed on theM2-
ICCR with an intact third intracellular loop. The same
results were observed (Fig. 4B), indicating that the T4L
domain has no influence on the cholesterol-insensitivity
of the M2 receptor.

These results confirm that: 1) the cholesterol depen-
dence observed for the OXTR-ICCR is specific to the
OXTR and 2) the human M2 muscarinic receptor is not
cholesterol dependent for its activity, which is in
agreement with previous results showing a similar ac-
tivity of the purified M2 receptor in presence or
absence of cholesterol (54).
The ligand-bound state preserves the oxytocin
receptor activity in cholesterol-depleted condition

The ICCR technology used in Xenopus oocytes allows
long periods of ligand incubationswithout internalization
(55). Moreover, the replacement of the third intracellular
loop by the T4L domain prevents the activation of intra-
cellular signaling pathways. In contrast, in HEK293T
mammalian cells, OXTR activation induces fast and
almost complete internalization of the receptors (56).

Taking advantage of the Xenopus oocyte characteris-
tics, the OXTR-ICCR was incubated simultaneously with
the agonist oxytocin and withMβCD to keep the receptor
inagonist-bound stateduringcholesterol depletion.After
washing theMβCD- andoxytocin-containing solution, the
activity of the ICCR was measured as in previous exper-
iments by TEVC recordings in presence of oxytocin
(Fig. 5). Surprisingly, we observed that the ICCR did not
lose its activity, but instead kept an amplitude of activa-
tion of 100% of the basal current that is similar to the
control without MβCD (Buffer+Oxy, 120%). This result
indicates that the agonist-bound state of the receptor
preserved its cholesterol-dependent function despite the
cholesterol depletion by MβCD.

The activity of the OXTR-ICCR being highly
dependent on cholesterol suggests that functional
cholesterol molecules are preserved during cholesterol
depletion when OXTR adopts an oxytocin-bound state.

Two mechanisms could explain why ligand-bound
receptors would stably bind specific cholesterol
Chole
molecules and make them inaccessible to MβCD: 1) co-
incubation of oxytocin with MβCD hinders cholesterol
depletion or 2) the ligand-bound state of the receptor
induces conformational changes that drastically slow
down the dissociation kinetics of functional cholesterol
molecules resulting in their sequestration and the
preservation of the ICCR activity.

To assess the possibility of a lack of cholesterol
extraction by MβCD in our experimental conditions,
three controls were carried out: 1) Confocal fluores-
cence microscopy was performed on Xenopus oocytes
incubated in MβCD with and without oxytocin and
stained with the filipin probe. Filipin specifically in-
teracts with cholesterol molecules (57) in the lipid
bilayer (58) resulting in an increase of fluorescence
intensity at 385–470 nm. Fluorescence images were
taken at the equatorial plane of the Xenopus oocytes
(Fig. 6), and they demonstrated that MβCD efficiently
depleted cholesterol molecules even in the presence of
the ligand; 2) A second approach based on digitonin
was used for confirming cholesterol-depletion by
MβCD. Digitonin is a saponin from Digitalis purpurea
which forms digitonin-cholesterol complexes leading
to rapid membrane leakage or rupture (59). During
TEVC recordings, digitonin at 10 μM was applied to
oocytes preincubated with MβCD or with Buffer. The
results (Fig. 6D) demonstrated that the leak induced by
digitonin was significantly reduced by MβCD pre-
incubation compared with the control with buffer
(−0.782 ± 0.283 μA vs. −5.451 ± 0.794 μA at 116.4 s,
respectively), indicating that cholesterol was depleted
from the plasma membrane; 3) a third approach
attempted to quantify cholesterol after MβCD incu-
bation. However, the isolation of Xenopus oocyte
plasma membrane is made complicated by the pres-
ence of large intracellular lipid stocks, and only four
articles in our knowledge described the procedures
(38), (60), (61), (62). All of them were tested, and the
protocol adapted from (61) was selected as it provided
the best results for plasma membrane isolation in our
conditions (supplemental Fig. S1A). Western-blot tar-
geting the Xenopus plasma membrane ClCa channel
was used to normalize the quantity of isolated plasma
membrane between the sample incubated with MβCD
and the control sample incubated with Buffer over-
night. The results confirmed a similar quantity of this
protein, and therefore of plasma membrane, between
both samples (supplemental Fig. S1B). Cholesterol
quantification with a commercial enzymatic assay
showed a decrease of 39.8% of quantity of cholesterol
in the sample incubated with MβCD compared with
the control (supplemental Fig. S1C). This value must be
considered as an estimation because potential
contamination with internal lipid stocks could occur.
All these approaches confirmed previous reports
showing the depletion of cholesterol molecules by
MβCD independently of their location in cholesterol-
rich or poor domains (63, 64).
sterol entrapping by ligand-bound oxytocin receptors 7
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Consequently, these results are in opposition to the
first hypothesis of impaired cholesterol-depletion.

Cholesterol molecules stably bind to ligand-bound
OXTR

In the second hypothesis, the ligand-bound state of
OXTR stabilizes the binding of functional cholesterol
molecules. Dissociation of the ligand by washing
8 J. Lipid Res. (2021) 62 100059
releases these cholesterol molecules and makes them
accessible to MβCD for their extraction from the
membrane. To test this hypothesis, oocytes pre-
incubated with MβCD+oxytocin were washed three
times for 5 min in 15 ml of modified Barth's solution to
dissociate oxytocin ligand from the receptors. The oo-
cytes were re-incubated for at least 1 h in MβCD
(without ligand) to extract the potentially released



Fig. 5. Oxytocin preserves the activity of the OXTR in depleted-cholesterol conditions. A: Histogram showing the mean ± SEM of
the percentage of current change induced by 1 μM of oxytocin on the ICCR in the conditions indicated in abscissa. Oxytocin (Oxy)
5 μM is incubated with 20 mM MβCD or buffer for at least 3 h before TEVC recordings of oxytocin-induced activation of the ICCR.
The number of recordings (n) is between 6 and 18. P values are measured with the Student t test. *P < 0.0005 (ref= Control); **P <
0.0001 (ref=MβCD). B: Representative TEVC recordings showing the current induced by 1 μM oxytocin after incubation of oocytes in
the indicated conditions. ICCR, ion channel-coupled receptor; MβCD, methyl-β cyclodextrin; OXTR, oxytocin receptor; TVEC, two-
electrode voltage-clamp.
cholesterol molecules. The results (Fig. 7) demonstrate
that this second incubation with MβCD (red traces)
restored the cholesterol-depleted phenotype of the
ICCR as observed in the control (black traces). Conse-
quently, ligand washing allowed the depletion of
functional cholesterol molecules that were inaccessible
in ligand-bound OXTRs. These results confirm the
second hypothesis that the ligand-bound state of OXTR
stabilizes functional cholesterol molecules and pre-
serves them from MβCD extraction. This maintains the
cholesterol-dependent activity of the ICCR even in
cholesterol-depleted membranes. Dissociation of li-
gands generates ligand-free receptors, which release
these specific, functional cholesterol molecules, making
them accessible again for extraction by MβCD.

In the case of OXTR, and only when it adopts a
ligand-bound state, the interaction of functional
cholesterol molecules is highly stable, both during the
Chole
3 h of co-incubation with MβCD and ligand and during
the initial steps of recordings in buffer.

In wild-type OXTR, the ligand-bound conformation
also preserves the high-affinity state of the receptor
in cholesterol-depleted condition

To explore the protective effects of ligands on WT
OXTR in mammalian cells, TR-FRET experiments
were performed on CHO cells transiently expressing
WT OXTR. A Snap-Tb fluorescent tag was present at
the N-terminus of the receptor, and FRET signal was
detected between the tag and bound fluorescently
labeled ligands (65) (66) (Fig. 8). We chose an antagonist,
RS544-red, to avoid receptor internalization during
ligand incubation. Diagrams illustrating the experi-
mental conditions used for TR-FRET recordings are
shown in supplemental Fig. S2.
sterol entrapping by ligand-bound oxytocin receptors 9
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In conditions of cholesterol depletion in presence of
ligand (Fig. 8B, orange squares), the FRET signal retains
the same amplitude as the controls without cholesterol
depletion (Fig. 8B, red dots or Fig. 8C, teal triangle). This
result indicates that the ligand-bound conformation of
the receptor preserves its cholesterol-dependent high-
affinity state even in cholesterol-depleted conditions.
When cholesterol depletion was performed in absence
of a ligand (Fig. 8C, dark blue diamonds), the
FRET signal had a slower kinetics and a lower
amplitude indicating a lower affinity state of the re-
ceptor, as previously observed (67). Consequently,
these results confirmed the ligand-induced preserva-
tion of the OXTR high affinity state on the wild-type
receptor.

DISCUSSION

The ICCR technology reports GPCR conformational
changes occurring between the orthosteric ligand-
binding site and the G protein-binding site of the re-
ceptor through an electrical signal generated by the
fused Kir6.2 channel. This tool does not require acti-
vation of intracellular pathways or labeled ligands and
is complementary to existing ligand binding and
intracellular signaling assays. The results of this study
demonstrate the ability of the ICCR technology to
assess, at the receptor level, the functional cholesterol-
dependence of GPCRs in a cellular environment. This
assay offers new opportunities to functionally charac-
terize ambiguous or unknown cholesterol dependence
of GPCRs.

The effect of cholesterol on OXTR has been clearly
previously demonstrated (68) as a positive allosteric
modulation of orthosteric ligand binding. This allo-
steric modulation is related to the stabilization of a
high-affinity state of OXTR that has a different
conformation than the low affinity state (37). In this
work, we discovered the reciprocity of this allosteric
mechanism. Orthosteric ligands also act as positive
allosteric modulators on cholesterol binding resulting
in a stable interaction of functional cholesterol mole-
cules in ligand-bound OXTRs. Thus, the presence of
ligands during cholesterol-depletion or modification
could have an impact in the interpretation of results in
studies of cholesterol-dependence of GPCRs.

Based on published evidence, two mechanistic
models can explain the cholesterol stabilization by
ligand-bound OXTR. It has been shown that OXTR
exists in two affinity states corresponding to two
different conformations (26). Cholesterol depletion
decreases the affinity for oxytocin by almost two orders
of magnitude (Kd = 131 nM vs. 1.5 nM) in cholesterol-
that is recorded in real-time by TEVC method. The number of re
MβCD, respectively. Error bars are SEM. ICCR, ion channel-couple
ceptor; TVEC, two-electrode voltage-clamp.

Chole
depleted guinea pig myometrium cell membrane (67).
The high- and low-affinity states of OXTR (in high and
low cholesterol environment respectively) co-exist in
the same membrane, and the proportion of the two
populations of receptors can be reversibly modified
depending on the quantity of cholesterol in the mem-
brane (67). No intermediate states were observed sug-
gesting only two cholesterol-dependent conformations
of the receptor. Cholesterol behaves as an allosteric
modulator of ligand binding on OXTR not only in the
cell membrane (68) but also in its solubilized form (69).
These results imply intrinsic and stable interactions of
cholesterol molecules with receptors even in the
absence of a lipid bilayer.

Molecules of cholesterol or CHS have been observed
in several structures of GPCRs either in monomers or
at dimer interfaces (2). Thus, the sequestered choles-
terol molecules could be located either 1) in the
monomeric form of OXTR (Fig. 9A) in cavities like the
one observed in the structure of the β2 adrenergic re-
ceptor (3D4S (8)) or in molecular dynamics simulations
on SMO receptor (70), or 2) at the interface of homo-
dimers (or higher order oligomers) (71) (Fig. 9B). In the
first scenario, the binding of a ligand would induce
conformational changes that increase molecular in-
teractions with bound cholesterol molecules making
them less accessible to MβCD.

In the second scenario, ligand binding would stabilize
a dimeric form of OXTR with cholesterol molecules at
the interface. It has been shown that ligands are also
able to induce oligomerization of some GPCRs such as
the β2 adrenergic receptor (72). The stable, embedded
position of these cholesterol molecules would prevent
their accessibility to MβCD in OXTR ligand-bound
state. Molecular dynamics simulations confirmed the
ability of OXTR to form a known homodimeric inter-
face (73) within the ICCR complex (supplemental
Fig. S3). Both scenarios are possible, and additional ap-
proaches are required to identify the correct one. Very
recently, the crystal structure of the human OXTR was
obtained and published (74). In the crystallographic
conditions, the structure shows a monomeric form of
the receptor bound to a small molecule antagonist.
Interestingly, the electron density of a cholesterol
molecule is observed between the helices IV and V.
This position is very close to the position observed in
the model of the supplemental Fig. S3B and suggests
that a cholesterol molecule at this position could be
trapped in the dimeric form of the model. Additional
cryo-electron microscopy structures of OXTR in lipid
bilayers enriched and depleted in cholesterol and in
absence and presence of ligands would also be of in-
terest to explore in conditions closer the physiological
cordings is 7 or 9 for the oocytes preincubated with buffer or
d receptor; MβCD, methyl-β cyclodextrin; OXTR, oxytocin re-
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membranes, potential new conformations as suggested
by the present article.

New prospects arise for clearly identifying the
binding site(s) of functional cholesterol molecules and
for understanding the molecular mechanism of the
dependence of OXTR on cholesterol, thanks to the
possibility of selectively stabilizing the interaction of
12 J. Lipid Res. (2021) 62 100059
these molecules with the receptor. Thus, the simple
addition of ligands during cholesterol depletion al-
lows the removal of the bulk and nonfunctional
cholesterol molecules while the interactions of the
functional molecules are preserved. Associated with
photoreactive cholesterol compounds (8), mass spec-
trometry (75), or structural approaches, this method
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Fig. 9. Monomeric and dimeric models of cholesterol sequestration by ligand-bound OXTR. A: Diagram showing the monomeric
model of cholesterol sequestration by ligand-bound OXTR. Cholesterol and ligand binding on OXTR is in equilibrium between
bound and unbound forms. Binding of cholesterol is known to induce a high-affinity state of OXTR for its ligands. In this model,
binding of ligands will induce conformational changes that stabilize the binding of cholesterol and render it inaccessible to external
chelators. In gray, the lipid membrane, in blue, the structure of a GPCR (M2, PDB code: 3uon) representing OXTR, in green an
external orthosteric peptidic ligand (ET, PDB code: 5glh) and in yellow a cholesterol molecule (PDB code: 3d4s). B: The dimeric model
showing the cholesterol-induced stabilization of OXTR homodimers which represent the high-affinity state of the receptor for its
orthosteric ligands. In this model, binding of orthosteric ligands would stabilize the homodimeric form of OXTR and embed bound
cholesterol molecules at the interface. GPCR, G protein-coupled receptor; OXTR, oxytocin receptor.
should facilitate the identification of all binding sites
of functional cholesterol. The oxytocin-induced
cholesterol-bound state of OXTR appeared to be
stable for more than 3 h, which is mandatory for
structural studies. This finding has also potential ap-
plications in functional studies of intracellular acti-
vation and recycling of cholesterol-dependent GPCRs
because the agonist-induced internalization should
stabilize cholesterol interaction with the ligand-bound
receptors.

In conclusion, these results reveal not only a new
ICCR technology operational in living cells to charac-
terize the cholesterol-dependence of GPCRs but also
the allosteric cross-regulation occurring between the
ligand-binding and the cholesterol-binding sites of
OXTR. This regulation leads to the stabilization of the
functional cholesterol molecules by the ligand-bound
receptors.
14 J. Lipid Res. (2021) 62 100059
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