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One major unresolved problem in olfaction research is to relate the percept to the molecular structure of
stimuli. The present study examined this issue and showed for the first time a quantitative structure-odor
relationship in which the more structurally complex a monomolecular odorant, the more numerous the
olfactory notes it evokes. Low-complexity odorants were also rated as more aversive, reflecting the fact that
low molecular complexity may serve as a warning cue for the olfactory system. Taken together, these
findings suggest that molecular complexity provides a framework to explain the subjective experience of
smells.

T
he wealth of our sensory world relies on the diversity of stimuli in our environment and on their manifold
effects on behavior and cognition. The physical properties of stimuli are predictive of perception: perceived
colors rely on the integration of frequencies of light waves in the visual system, and the pitch of a sound is

perceived as high or low depending on its acoustic frequency. As regards smell, however, the relation between
percept and stimulus properties remains unclear.

Olfactory perception is based on binding between ligands (odorant molecules) and olfactory receptors which
are thought to recognize specific molecular features. An important rule governing this interaction is that a given
odorant can activate one or several olfactory receptors1. This combinatorial coding is then processed by higher
brain structures and gives rise to percepts that are difficult to name for novices but are sensed by experts in
perfumery as olfactory ‘‘notes’’ (a smell being described as ‘‘green’’, ‘‘woody’’, ‘‘tobacco’’, etc). For example, whereas
some odors are described by few olfactory notes (e.g., furan is described as smokey, cinnamon-like and spicy),
others are described by multiple notes (e.g., coumarin is described as herbaceous, sweet, spicy, nut-like, tobacco-
like and hay-like) (Fig. 1a). One major challenge in fundamental olfaction research, and which is also an important
unresolved issue for perfumers, is to explain this complex perceptual processing on the basis of the structural
features of the molecule. The present study hypothesized that an odorant which is structurally complex at the
molecular level would also be described using multiple olfactory notes. To test this hypothesis, we examined the
quantitative relationship between the structural complexity of odorants and the number of olfactory notes they
evoked for experts and non-experts. The results from both sets of subjects revealed that the more complex the
odorant’s structure, the more numerous the olfactory notes it evoked. In non-experts, moreover, it was found that
odorants of low structural complexity, evoking few olfactory notes, were also perceived as more unpleasant.

Results
Molecular complexity influences the number of olfactory notes. The relationship between the structural
complexity of 411 odorants and the number of olfactory notes they evoked was examined. Odorant molecules
were selected from the standardized Arctander atlas2, which contains descriptions by experts referring to various
chemosensory qualities: olfactory and trigeminal notes as well as flavors.

Firstly, to obtain a homogeneous measure of the number of olfactory notes across all odorants, a reference list
was compiled, using a template developed by Chastrette and colleagues3 which depicts the most relevant olfactory
notes included in Arctander’s book (see Methods). Secondly, the structural complexity of odorant molecules was
measured, using a molecular complexity index initially developed by chemists to predict the probability of
interaction between ligands (i.e., drugs) and receptors4. This index, which takes into account both the elements
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composing the molecule and structural features including symmetry5

(see Methods), ranges from 0 (simple ions) to several thousand
(complex natural products). In general, small and/or highly symmet-
rical molecules and compounds with few distinct atom types (or
elements) have low complexity. For example, at the molecular level,
coumarin (C9H6O2) is more complex than furan (C4H4O) because
it contains more heavy atoms, has a greater number of double bonds
and, unlike furan, is not symmetric (Fig. 1b).

To examine the relationship between molecular complexity and
the number of olfactory notes, a linear regression analysis was first
performed on the dataset and showed a significant positive rela-
tionship between variables (r50.28, p,0.0001). However, this rela-
tionship was best described by a logarithmic function (logarithmic
regression: r50.35, p,0.0001), reflecting saturation of the number
of olfactory notes above a certain threshold of molecular complexity
(Fig. 2a). A statistical analysis performed on the same data set,
splitting odorants into three classes of molecular complexity (low,
medium and high: see Methods), confirmed this saturation effect
(F[2,408]515.373, p,0.0001): low complexity odorants evoked fewer
olfactory notes than medium (t(261)54.522, p,0.0001) or high
(t(284)54.924, p,0.0001) complexity odorants, while no difference
was seen between medium and high complexity odorants (t(271)5
0.241, p50.810) (Fig. 2b). To ensure that this finding was not
restricted to the main descriptors listed by Chastrette, used in the
first analysis, a second analysis was performed using all the olfactory
notes found in the odorant description (see Methods); the same
quantitative relationship was found (F[2,408]511.629, p,0.0001)
(see SI, Supp. Fig. 1).

To further examine the specificity of the effect of molecular com-
plexity on smell perception, we investigated whether the trigeminal
component of an odorant depended on molecular complexity.
Trigeminal notes were collected for all odorants (see Methods). No
effect of molecular complexity on the number of trigeminal notes was
found (F[2,408]50.763, p50.467; Fig. 2c). Thus, we show here for
the first time that odorant molecular complexity itself influences the
way humans perceive smells. However, since this result was based on
descriptions by experts – who represent a very small portion of the
population – it was important to know if the above effect would
persist in non-experts.

Molecular complexity influences the number of olfactory notes,
even for non-experts. To examine this question, in a first psy-
chophysical experiment, 24 non-expert healthy subjects were asked
to sniff 54 odorants selected from the Arctander atlas (Experiment 1,
see Methods) and to freely describe them verbally. To equalize final
concentrations in inhaled air, the 54 pure odorants were diluted
according to their respective vapor pressure value (see Methods).
The non-expert responses once again showed a significant effect of
molecular complexity on the number of olfactory notes (F[2,51]5
3.542, p50.036; Fig. 3a). Paired comparison showed that low
complexity odorants evoked fewer olfactory notes than medium
(t(34)52.442, p50.020) or high (t(34)52.313, p50.027) complexity
odorants, while no difference was seen between the latter (t(34)5
0.327, p50.746), thus replicating the relationship between molecular

Figure 1 | Examples of odorants described by olfactory notes (a) and
displaying various degrees of molecular complexity (b). (a) Odorants can

be described by few or many olfactory notes. The number of olfactory notes

evoked by each odorant is shown in brackets. (b) At the molecular level,

odorant molecules display various degrees of complexity. The molecular

complexity value for each odorant is shown in brackets. All odorants were

selected from the Arctander atlas2, which provides data regarding olfactory

notes (see Methods). Molecular complexity values were obtained from the

PubChem database and 3-dimensional molecular drawings were obtained

from http://www.thegoodscentscompany.com/. (see Methods).

Figure 2 | Molecular complexity of monomolecular odorants influences the number of perceived olfactory (but not trigeminal) notes. A significant

logarithmic relationship is observed between molecular complexity and the number of olfactory notes (a). Molecular complexity of odorants influences

the number of olfactory notes (b) but not the number of trigeminal notes (c) evoked by odorants. Error bars represent s.e.m. *** p,0.0001.
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complexity and the number of olfactory notes found in expert
subjects.

Low complexity odorants are perceived as more unpleasant. To
investigate whether the effect of molecular complexity could be
related to other perceptual dimensions, participants were asked to
rate odor pleasantness, intensity, familiarity and edibility (see
Methods). A significant effect of molecular complexity on odor
pleasantness was found (F[2,51]55.128, p50.009; Fig. 3b): low
complexity odorants were rated as more unpleasant than medium
(t(34)52.524, p50.016) or high (t(34)52.716, p50.010) complexity
odorants, while no difference was seen between the latter (t(34)5
0.264, p50.793). Interestingly, there was a positive correlation
between the number of olfactory notes and odor pleasantness:
odorants that evoked few olfactory notes were also perceived as
more unpleasant (r50.61, p,0.0001; Fig. 3c). No significant dif-
ference in edibility rating (F[2,51]51.012, p50.370; Fig. 3e), per-
ceived intensity (F[2,51]51.227, p50.302; Fig. 3d) or familiarity
(F[2,51]51.937, p50.154; Fig. 3f) was observed between the three
groups of odorants.

The number of olfactory notes does not depend on perceptual
certainty. Although it is tempting to conclude that the number of
olfactory notes evoked by an odorant directly reflects its molecular
complexity, it might also depend on perceptual certainty: perception
of structurally complex odorants might be associated with uncer-
tainty in verbal description, inclining subjects to come up with
more notes in an effort to describe them. To address this, a second
experiment was performed, using the same set of 54 stimuli. Parti-
cipants were asked to smell the stimuli, to rate odor pleasantness

and perceived intensity, to freely describe them verbally and finally
to rate the certainty of their verbal description (Experiment 2, see
Methods). However, since the number of olfactory notes evoked was
relatively low in Experiment 1, the description task was slightly
modified so as to encourage participants to use more olfactory
descriptions in defining the odorants (see Methods); consequently,
the number of olfactory notes evoked was greater in Experiment 2
than in Experiment 1 (mean50.22 notes/odorant in Experiment 1
vs. 0.71 in Experiment 2). Interestingly, even with this greater overall
number of reported olfactory notes, the results again showed an
effect of molecular complexity on the number of olfactory notes
(F[2,51]55.287, p50.008) and odor pleasantness (F[2,51]56.512,
p50.003), but not on certainty (F[2,51]51.185, p50.314) or per-
ceived intensity (F[2,51]50.489, p50.616) (see SI, Supp. Fig. 2).

Discussion
The present study showed for the first time that major dimensions of
odor perception, namely pleasantness and the number of reported
olfactory notes, are influenced by an odorant’s molecular complexity.
We first showed that, in experts, structurally complex odorants evoke
more olfactory notes than less complex odorants, and then replicated
this finding in naı̈ve subjects. We also demonstrated that, in naı̈ve
subjects, low complexity odorants are evaluated as more aversive
than high complexity odorants.

Like other sensory modalities, olfaction is a complex perceptual
process involving both innate and learnt components. Human ol-
factory perception can be modulated by receptor polymorphism6,
physiological states7, learning processes8 and lexical knowledge9–12,
and these aspects, which were not under study here, are prominent
parameters in odor perception. What is shown here, however, is that

Figure 3 | Molecular complexity of odorants influences the number of olfactory notes and pleasantness of odors. Subjects (n524) were asked to rate the

pleasantness, edibility, intensity and familiarity of a set of odorants on a 9-point scale (see Methods) and to freely describe the odors. Odorants of low

molecular complexity were verbally described using fewer olfactory notes (a), and rated as more unpleasant (b). A significant positive relationship was

observed between the number of olfactory notes and odor pleasantness (c). No effect of molecular complexity on an odorant’s perceived intensity,

edibility or familiarity was observed (d–f) Error bars represent s.e.m. *p,0.05.
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a relationship between molecular structure and number of evoked
olfactory notes exists not only in experts but also in non-expert
subjects, meaning that it is maintained beyond differences in learning
and experience and may reflect an intrinsic property of the human
olfactory system. In line with other studies13–17, this finding demon-
strates that olfactory processing is partly driven by the odorant mole-
cule itself, along with learnt components.

One concern that may be raised regarding our findings is that the
influence of molecular complexity on the number of olfactory notes
found here may have been due to a bias in the selection of odorants.
To avoid this possibility, we controlled and verified several aspects in
our design. First, since the volatility and vapor concentration of non-
diluted odorants would be likely to correlate with molecular com-
plexity, we diluted the odorants so as to equalize their vapor concen-
trations (see Methods). Using photo-ionization type gas-analysis, we
showed that low and high molecular complexity odorants produced
similar vapor concentrations in the inhaled air (see Supp. Fig. 3).
Moreover, a complementary statistical analysis did not reveal any
relationship between odorant boiling point on the one hand and
number of olfactory notes (r50.16, p50.236) or odor pleasantness
(r50.12, p50.387) on the other hand, again suggesting that volatility
did not account for the observed effects (see SI, Supp. Fig. 4).
Consequently, there was no difference in the perceived intensity of
odorants of low, medium and high complexity (Fig 3d), rendering it
unlikely that the effects observed on number of olfactory notes and
pleasantness were due to differences in concentration. Secondly, it
might be suggested that high molecular complexity odorants evoke
more olfactory notes because they are more familiar and thus easier
to describe. This possibility is, however, weakened by the fact that no
difference in familiarity scores was found between low, medium and
high complexity odorants (Fig. 3f).

Previous studies attempted to relate odor quality to the odorant’s
physicochemical parameters18. Perfumers and chemists noticed that
the presence of certain chemical groups in a given odorant molecule
was often associated with specific olfactory notes19. For example,
whereas molecules that contain a sulfur atom tend to induce a typ-
ically unpleasant odor of rotten eggs, other chemical groups such as
esters confer a pleasant fruity character to the odor. A number of
theories were formulated in the past concerning this relationship
between molecules and odor percepts, such as the steric theory20,
the vibrational theory21 or the chromatography analogy22. How-
ever, these theories still failed to fully predict odor quality from
molecular structure. In the present study, we opted for a different
approach: we did not attempt to determine any specific quality of an
odorant on the basis of structural complexity. Indeed, the molecular
complexity index does not distinguish between functional groups.
For example, it cannot differentiate between a thiol (butanethiol,
C4H10S) and an alcohol (butanol, C4H10O), both of which have
a complexity value of 13. However, while butanol and butanethiol
elicit qualitatively different olfactory perceptions (according to the
Arctander atlas, butanol smells ‘‘winey’’ and butanethiol ‘‘sulfurac-
eous’’), they evoke the same number of olfactory notes. Rather, the
present findings provide new insight into the ‘‘molecule to percept’’
issue by explaining the number of notes of an odorant on the basis of
its molecular complexity.

Whether the influence of molecular complexity on the number of
olfactory notes and on odor pleasantness respectively involves sepa-
rate and/or specific neural mechanisms for each dimension remains
unclear. The strong positive correlation found between the two vari-
ables is in favor of the hypothesis that they do not represent inde-
pendent dimensions. Previous psychophysical studies relating odor
labeling to odor pleasantness strengthen this hypothesis: for example,
it was shown that jury members gave higher pleasantness ratings
for the odor of substances presented with their brand label than
for the same odors presented without a label23. Likewise, pleasantness
judgment was enhanced when participants were able to identify the

odorant source24 or when the experimenter provided a name for the
odorant object25.

The neural mechanisms by which molecular complexity deter-
mines the number of olfactory notes evoked by an odorant and its
pleasantness remain unknown and different hypotheses may be sug-
gested. Firstly, odorants with lower molecular complexity may activ-
ate more receptor types, since they would tend to be smaller and thus
able to fit into a larger variety of receptor binding sites. However, the
mechanism by which this would entail fewer olfactory notes for low
complexity odorants is unclear. In line with the present findings, we
hypothesize that complex odorants (with a large variety of molecular
features) will activate more olfactory receptors than low complexity
odorants, and hence evoke a greater number of olfactory notes and
greater pleasantness. We tested this hypothesis using data available
on the activation of mammalian odorant receptors by a set of odor-
ants26 (see SI, Table 5). The analysis supported the hypothesis, show-
ing that high complexity odorants activate more types of olfactory
receptor than low complexity odorants (r50.34, p50.006) (see SI,
Supp. Fig. 5). The fact that odors that are attractive for animals and
pleasant for humans induce a larger total neural response at various
levels of the olfactory system than repulsive or unpleasant odor-
ants27,28 further strengthens this hypothesis.

In conclusion, our finding that molecular complexity influences
the way we perceive odors could lead to a better understanding of
the neural mechanisms of olfactory perception by providing a new
framework to explain neural activation at receptor level, in the olfact-
ory bulb or cortex.

Methods
Odorant selection from Arctander’s book. Odorant information was obtained from
the book ‘‘Perfume and Flavor Chemicals’’, published in 1969 by Steffen Arctander2.
In this book, Arctander gives a complete description, including olfactory and
trigeminal notes as well as flavors, of more than 3,000 odorants. 411 monomolecular
odorants were pseudo-randomly selected from this book (excluding molecules
described as odorless, which usually have larger molecular weight and greater
molecular complexity) (SI, Table 1).

Firstly, to measure the number of olfactory notes evoked by each odorant, the 74
olfactory notes selected by Chastrette and colleagues3 were used as a reference list.
These notes were selected in a study of the whole of Arctander’s book by excluding
those which did not provide qualitative olfactory information and also the least
frequent ones (SI, Table 2). In line with Chastrette and colleagues, odorants in our
selection are described on average by around 2.7 olfactory notes. We also performed a
complementary analysis taking into account all the olfactory notes present in the
odorant description (this did not include words related to intensity, flavor or
trigeminality of odorants). Using this method, the odorants in our selection were
described on average by around 3.6 olfactory notes. Secondly, another analysis took
account only of the trigeminal notes (SI, Table 3) found in the odorant description.

To examine the nature of the psychophysical function that best defines the
relationship between molecular complexity and the number of olfactory notes, we
compared different types of regression analysis (simple or logarithmic), with
molecular complexity as the independent variable and number of olfactory notes as
the dependent variable. For purposes of graphical representation (Fig 2a), odorants
were categorized according to molecular complexity on a path of 10 (0,x#10,
10,x#20, …, 240,x#250).

The molecular complexity values in our dataset ranged from 2 to 249. To further
examine the influence of molecular complexity on 1) the number of olfactory notes 2)
the number of trigeminal notes, we categorized molecules by low (molecular
complexity value between 2 and 99.7, n5138), medium (molecular complexity value
between 100 and 150, n5125) or high molecular complexity (molecular complexity
value between 151 and 249, n5148), so as to have approximately the same number of
molecules in each category.

Analysis of Variance (ANOVA), with molecular complexity (low, medium and
high) as the independent factor and number of olfactory notes, pleasantness rating or
number of trigeminal notes as the dependent variables, was performed to test the
effect of molecular complexity on these perceptual parameters. Statistical significance
was set at p, 0.05.

Odorant molecular complexity. Molecular complexity is an index of how
complicated a molecular structure is, based on bond connectivity, diversity of
non-hydrogen atoms and symmetry. In general, larger compounds exhibit greater
complexity than smaller ones, but large symmetrical compounds and large
compounds with low diversity of atom kinds are downgraded. The molecular
complexity of the odorants used in the present study was collected from PubChem,
one of the largest databases of chemical molecules (http://pubchem.ncbi.nlm.nih.gov/).
The value was computed using the Bertz/Hendrickson/Ihlenfeldt formula5:

www.nature.com/scientificreports
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C~CnzCe

where C is molecular complexity, Cn skeletal complexity (as a function of n, which is
bond connectivity) and Ce a function of element diversity or kinds of atoms. Cn and
Ce are in turn composed of 2 terms: an overall complexity term and a symmetry term
subtracted from it, so as to reduce skeletal complexity (Cn) or element diversity (Ce)
when the molecule is symmetric or atoms of the same kind are present.

Psychophysical experiments. The studies were conducted according to the
Declaration of Helsinki and were approved by the local ethics committee ‘‘CPP Lyon
Sud Est 2’’. Testing was performed in an experimental room designed specifically for
olfactory experiments.

Odorant concentrations were equalized by dilution in mineral oil so as to achieve
an approximate gas-phase partial pressure of 1 Pa15. Vapor pressure values for the 54
odorants used in Experiments 1 and 2 were collected from a specialized website
(http://www.thegoodscentscompany.com/) and are referenced for each odorant with
the volume/volume dilution values in Supp. Table 4 (SI). Odorants were presented in
15 ml vials (opening diameter: 1.7 cm; height: 5.8 cm; filled with 5 ml solution) and
absorbed on scentless polypropylene fabric (337 cm; 3 M, Valley, NE, USA) to
optimize evaporation and air/oil partitioning. Moreover, to further ensure that the
resulting vapor concentrations did not differ according to molecular complexity,
concentrations were measured for a subset of 10 representative odorants (5 low
complexity odorants: butanol-1, butyric acid, ethyl butyrate, benzaldehyde and iso-
amyl acetate; 5 high complexity odorants: citral, geraniol, R-(1)-limonene, terpine-
nol and carvone-l). Measurements were performed using an olfactometer29 connected
to a gas analyzer (photo-ionization type, PID, RAE Systems, Sunnyvale, CA, USA).
The output odorous air was fed by a 4 mm tube (20 cm length) into the gas analyzer.
Each odorant was presented 5 times (duration: 3 sec; interstimulus interval: 2 min) in
the gas analyzer. As expected, there was no significant difference in vapor concen-
tration between low and high complexity odorants (see Supp. Fig. 3).

Experiment 1. Twenty-four participants (9 male and 15 female, mean age 5

22.79 1/2 4.45 yrs) without neurological disease or olfactory disorder were tested.
Olfactory screening on the European Test of Olfactory Capabilities (ETOC30) checked
normal sense of smell. Subjects were asked to smell 54 odorants grouped into the same
molecular complexity categories as in the Arctander analysis: low (n518; molecular
complexity value between 7.2 and 86.9), medium (n518; molecular complexity value
between 99.3 and 150) and high molecular complexity (n518; molecular complexity
value above 154) (see SI, Table 4). The instructions given to the subjects were as
follows: ‘‘You are going to smell several odors one after the other. Your task will be to
sniff each vial and then to estimate how intense, pleasant, familiar and edible the smell
was. To give your estimates, you will rate each odorant on a scale from 1 (not at all
intense, pleasant, familiar or edible) to 9 (very intense, pleasant, familiar or edible).
Then, after each of these odor ratings, you will have to explain ‘‘what that smell makes
you think of’’. It is important to note that, whereas for experts the notion of olfactory
notes is well defined, this is not the case for naı̈ve subjects. This is why we chose a very
open question, to capture as many as possible of the semantic associations or terms
that could be considered as an olfactory ‘‘note’’.

Once the instructions had been read and the consent form signed, the experiment
started. To habituate the subjects to the experimental setting, a training session using a
sequence of 1 to 3 empty vials was carried out. The experimenter then presented the
odorant vial 1 cm below the subject’s nose and subjects were instructed to sniff at each
vial presentation and to rate odor intensity, pleasantness, familiarity and edibility.
Odorants were presented every 45 sec. Once odor ratings were completed, partici-
pants were asked to verbalize on each odor by answering the question ‘‘What does that
smell make you think of?’’. Here, for each subject and each odorant, the olfactory notes
that fitted the Chastrette descriptor list were counted. As in the Arctander analysis, an
ANOVA was used to examine whether molecular complexity influenced the number
of olfactory notes and odor intensity, pleasantness, familiarity and edibility ratings.

Experiment 2. Six participants (1 male and 5 female, mean age 5 27.83 1/2
8.70 yrs) without neurological disease or olfactory disorder were tested. Subjects were
asked to smell the 54 odorants used in Experiment 1. The instructions given to the
subjects were as follows: ‘‘You are going to smell several odors one after the other. Your
task will be to sniff each vial and then to estimate how intense and pleasant the smell
was. To give your estimates, you will rate each odorant on a scale from 1 (not at all
intense or pleasant) to 9 (very intense or pleasant)’’. Then, after each of these odor
ratings, subjects had to describe the smell. However, since the number of olfactory notes
evoked in Experiment 1 was relatively low, to encourage participants to evoke more
notes, they were instructed to ‘‘identify and/or describe the smell using one or several
words’’ (in contrast with Experiment 1, where participants were asked to explain ‘‘what
that smell makes you think of?’’). Finally, they were asked to rate the certainty of their
description on a scale from 1 (not at all certain) to 9 (very certain). As in Experiment 1,
an ANOVA was used to examine whether molecular complexity influenced the number
of olfactory notes and odor intensity, pleasantness and certainty ratings.
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