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Abstract

Pollination services and honeybee health in general are important in the African savannahs

particularly to farmers who often rely on honeybee products as a supplementary source of

income. Therefore, it is imperative to understand the floral cycle, abundance and spatial dis-

tribution of melliferous plants in the African savannah landscapes. Furthermore, placement

of apiaries in the landscapes could benefit from information on spatiotemporal patterns of

flowering plants, by optimising honeybees’ foraging behaviours, which could improve apiary

productivity. This study sought to assess the suitability of simulated multispectral data for

mapping melliferous (flowering) plants in the African savannahs. Bi-temporal AISA Eagle

hyperspectral images, resampled to four sensors (i.e. WorldView-2, RapidEye, Spot-6 and

Sentinel-2) spatial and spectral resolutions, and a 10-cm ultra-high spatial resolution aerial

imagery coinciding with onset and peak flowering periods were used in this study. Ground

reference data was collected at the time of imagery capture. The advanced machine learn-

ing random forest (RF) classifier was used to map the flowering plants at a landscape scale

and a classification accuracy validated using 30% independent test samples. The results

showed that 93.33%, 69.43%, 67.52% and 82.18% accuracies could be achieved using

WorldView-2, RapidEye, Spot-6 and Sentinel-2 data sets respectively, at the peak flowering

period. Our study provides a basis for the development of operational and cost-effective

approaches for mapping flowering plants in an African semiarid agroecological landscape.

Specifically, such mapping approaches are valuable in providing timely and reliable advisory

tools for guiding the implementation of beekeeping systems at a landscape scale.

1. Introduction

African savannahs are characterized by unreliable and erratic rainfall with low and dispersed

forest pockets. They do not efficiently support rainfed agriculture, necessitating for alternative

sources of income to supplement the unpredictable crop yield [1,2]. Apiculture and related
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ecosystem services such as pollinator activities boosts local economies, food and nutritional

security and improve biodiversity, hence valuable and sustainable socio-ecological practices in

the African savannah [3,4].

Beneficial insects such as honeybees, stingless bees, wasps, butterflies, mulberry and wild

silk moths [2,5], are important income sources to local communities and living adjacent to the

forest, paramount in pollination and pivotal incentives in forest conservation. These insects

are valued for among others production of honey, wax, dyes and silk on one hand [6,7], and

pollination of agricultural and forest ecosystems, as well as conservation of derelict land and

degraded forest [2,8]. It is estimated that between 60% to 90% of plant species depend on

insects and other animals such as birds for pollination [2,9]. In the USA for instance, pollina-

tion is estimated to contribute more than $14 billions a year to the agricultural economy alone

[4,10]. However, whereas the contribution of pollination in Africa is unequivocal, its economic

importance is yet to be fully documented.

As human pressure on land increases, communities living within four kilometers radius

from the forest increases. These communities directly or indirectly depend on a range of forest

resources and ecosystem services [3,4]. For instance, placement of apiaries in close proximity

of a forest (less than one kilometer) doubles the production of honey than when placed out of

a three kilometer radius [11]. Moreover, proximity to the right types and amounts of pollen

and nectar improves hive productivity, honey quality and the agility of bees to fight off pests

and diseases [5,11,12]. Forest habitats are important to the various life cycles of many benefi-

cial insect species [13,14]. As aforementioned, these insects are useful for among others polli-

nation, improving biodiversity, diversification of livelihood options and as natural agents of

pest control [15,16]. Disturbance of forest stands and savannah vegetation leads to reduction

in pollen and nectar sources and ultimately pollinators, which are susceptible to habitat alter-

ation and changes in climate [17]. A decline or elimination of some plant species leads to a

reduction of certain type of pollinators which are specific to either pollen type, flower colour

and morphology or physiology [18]. Most insects rely on visual signals in the choice of flowers

to visit. Colour, shape and size influence insects in flower preference [19–21]. For instance,

hummingbirds prefer red coloured flowers, flies like pale colours, while butterflies and bees

prefer brightly coloured flowers [19–23]. Since most of the crops are pollinated by social polli-

nators such as honeybees, agricultural production in Africa is predicted to reduce as their

numbers decline [24,25]. In this regard, measures aimed at locating, conserving and improving

cover of relevant flowering vegetation around vulnerable communities that depend on agricul-

ture for their livelihoods are necessary.

Geoinformation and earth observation tools are increasingly being used to establish, locate

and secure sources of nectar and pollen for enhanced hive productivity and ecosystem services

[12,26,27]. Specifically, plant species mapping techniques adopting remotely sensed data

assumes that each plant species has a unique spectral niche that is defined by the species bio-

physical and biochemical make-up [28–30]. Therefore, it is possible to identify and separate

every tree species using their spectral features. However, commonly, operational mapping of

tree species using remote sensing systems is hampered by the low spectral resolution in multi-

spectral images and high acquisition cost of hyperspectral images. The improved division of

the electromagnetic spectrum in hyperspectral data for instance gives narrow band data the

ability to resolve subtle spectral canopy features associated with carotenoid, chlorophyll con-

tent and foliar nutrient content [29,31,32]. However, prohibitive cost, high dimensionality and

multicollinearity, especially when using conventional parametric classification and regression

procedures often make the use of hyperspectral data unfeasible. Specifically, the Hughes effect

and the high redundancy rates of some bands in models developed using hyperspectral data

impede landscape classification [33–36]. In this regard, it is paramount to explore the utility of
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multispectral images with fewer broad bands for optimal discrimination of functional flower-

ing groups [29,37–39]. However, whereas broadband multispectral data of lower spectral and

medium spatial resolution such as the Landsat series have become popular in landscape map-

ping, they could mask out specific spectral features of functional flowering groups, resulting in

very low mapping accuracy. The newly launched relatively improved spectral and/or spatial

resolution sensors such as WorldView-2, RapidEye, Spot-6 and Sentinel-2 offer great potential

in detecting different colours of functional flowering groups [40–42]. Such sensors are specifi-

cally designed to capture spectral properties at additional wavebands such as red-edge and yel-

low spectrum that mimic over 90% of plant biophysiological information [43–45]. However,

the acquisition cost of some of the commercial multispectral data could limit their operational

mapping applications. Hence, there is need first to explore the utility of simulated image data

of such multispectral sensors and compare their usefulness with freely available ones for flower

mapping [46,47].

In this study, we explored the utility of four simulated multispectral data (i.e. WorldView-2,

RapidEye, Spot-6 and Sentinel-2) for detecting and mapping functional flowering groups in

the African savannahs during the beginning and peak flowering seasons.

2. Methods

2.1 Study area

The study was carried in Kasanga (0.770˚S and 38.143˚E and approximately 933 metres above

sea level), about 17 km north of Mwingi town, in Mwingi Central Sub-county, Kitui County,

Kenya (Fig 1). The study area covers about 7.88 km2 in a semi-arid agroecological zone with

relatively high temperatures (ranging from 15˚C to 31˚C). The lowest temperatures are experi-

enced between the months of July to August, while higher temperatures are experienced twice

a year, from February to March and September to October. Rainfall in Mwingi is relatively low

with typically two peaks in April and November (mean annual precipitation of between 147 to

270) [38]. Vegetation in Mwingi varies from woody plants, shrubs to crops. They include

Azandirachta indica, Melia volkensii, Markhamia lutea, Zizyphus abyssinica, Albizia gummi-
fera and Acacia spp. Flowering plants in Mwingi include Terminalia brownie, Cassia diambo-
tia, Aspilia mozambensis, Solonium incunum, Cassia semea, Grewia spp, Boscia spp, and

Acacia spp [48]. Most of these plants start flowering from December to May, with peak flower-

ing season in February. The flowering season is triggered by the onset of rainfall in November,

while the March-April rainfall extends the flowering through to May.

In Mwingi, traditional agricultural practices such as tilling, bush clearance and charcoal

burning lead to deforestation of natural forest patches, including melliferous plants. This in

turn leads to reduction in honeybee products, pollination services and biodiversity [38,49,50].

2.2 Image acquisition and pre-processing

2.2.1 AISA Eagle hyperspectral images. The airborne AISA Eagle hyperspectral images

were obtained during the onset and peak of flowering periods, i.e. 11th January 2014 and 14

February 2013, respectively. AISA Eagle has a pushbroom scanning sensor with 0.037˚ instan-

taneous field of view and 36.04˚ and 969 pixels across the spatial axis [53]. To produce an opti-

mal number of bands with high signal-to-noise-ratio (SNR), the sensor was set on eight times

spectral binning at full width at half maximum (FWHM) of 8–10.5 nm in the 400 to 1000 nm

spectral range. Hence, the product had 64 bands and a 0.6m spatial resolution after geo-

referencing. Since this study sought to re-sample AISA Eagle hyperspectral images to a range

of multispectral sensor specifications, all AISA Eagle image bands were utilized to accommo-

date a range of sensor characteristics.
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A digital elevation model (DEM) with 90m resolution, interpolated to match the 0.6m reso-

lution of the images [54], together with a 2m WorldView-2 image (37S UTM projection) cap-

tured over Mwingi in April 2014 were used to geo-reference the AISA Eagle images. The AISA

Eagle raw digital values were also converted to at-sensor spectral radiance using the CaliGeo-

Pro atmospheric correction tool (Specim Limited, Oulu, Finland).

2.2.2 Resampling of multispectral data from AISA Eagle. Both AISA Eagle hyperspec-

tral images captured in January 2014 and February 2013 were resampled to WorldView-2,

RapidEye, Spot-6 and Sentinel-2 multispectral spatial and spectral sensor specifications using

the spectral resampling tool in Environment for Visualizing Images (ENVI) 5.3 software [55].

ENVI uses the full-width-half-maximum wavelength information to spectrally resample

images. Since the spectral responses of these multispectral images were predefined in ENVI,

the pre-defined filter function was used as a resampling method under the spectral resampling

tool. These four multispectral image data were used to test the possibility of mapping flowering

Fig 1. The study area indicating the field data sample points collected from the study site in Mwingi in January 2014 and February 2013. The image on

the background is a true colour composite AISA Eagle captured in February 2013 over the Mwingi study site. The country boundary data was downloaded

from the World Resource Institute website (https://www.wri.org/resources/data-sets/kenya-gis-data) [51]. The maps were developed using QGIS software

version 3.10 (https://qgis.org/en/site/) [52].

https://doi.org/10.1371/journal.pone.0232313.g001
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plants using 10 m or less spatial resolution. Also, we selected multispectral sensors that have

infrared and red edge bands that have been established to be effective for detecting vegetation

and flowers spectral signals [37,56]. Resampled multispectral data were used to avoid image

acquisition cost before testing their suitability for mapping flowering plants. Further, the Senti-

nel-2 sensor was not yet launched when the study was conducted. Therefore, we obtained

AISA Eagle data from previous studies [37,38] that looked at the possibility of mapping flower-

ing plants using hyperspectral image data.

Four multispectral sensors (WorldView-2, RapidEye, Spot-6 and Sentinel-2) were consid-

ered for this study. These images were resampled from their respective January 2014 and Feb-

ruary 2013 AISA Eagle images. Additionally, a WorldView-2 image captured over the study

site in April 2014 was used to compare the accuracy of the classification achieved using the

resampled WorldView-2 image and provide insight on the reliability for our image resampling

procedure.

2.2.2.1 WorldView-2. WorldVeiw-2 is an eight (8) waveband multispectral image sensor

that was launched in October 2009 with a 1.84 m spatial resolution and an additional 0.46

metre panchromatic band [42,57,58]. The WorldView-2 sensor operates at an altitude of 770

kilometres and images at coastal, blue, green, yellow, red, red edge, near infrared 1, and near

infrared 2 regions of the electromagnetic spectrum (EMS). These wavebands have distinct

spectral separation (Table 1), hence potential for differentiating vegetation communities,

health and other spectral features [29,33,42,58]. The cost of acquiring a tasked WorldView-2

image is $58 per km2, with a 100 square kilometre and 5-kilometre minimum order width.

2.2.2.2 RapidEye. RapidEye is a 5-waveband multispectral sensor with 5 m spatial resolution

(Table 2) that was launched in August 2008 [59,60]. In addition to other multispectral bands,

RapidEye is notable for its red edge band which has potential for mapping flower blooms [37].

The cost of RapidEye image is $1.90 per square kilometre, with a 500 square kilometre and

10-kilometre minimum order width.

2.2.2.3 Spot-6. Spot-6 is a multispectral sensor launched in September 2012. It is character-

ised by four wavebands with 6 m spatial resolution and a panchromatic band with 1.5 metres

spatial resolution [61]. Table 3 further details the sensor spectral and spatial information. The

cost of Spot-6 image is $5.75 per square kilometre, with a 500 square kilometre and 20-kilo-

metre order width.

2.2.2.4 Sentinel-2. Sentinel-2 is multispectral sensor that was launched in 2015. It is charac-

terised by 13 bands in the spectral ranges of visible/near infrared (VNIR) and shortwave infra-

red (SWIR) (Table 4), with spatial resolution ranging from 10 to 60 metres [40,62,63].

Sentinel-2 data are freely available. When this study was conducted, the sensor was not yet

launched hence the need to resample this dataset from AISA Eagle images.

Table 1. Spectral responses of WorldView-2 indicating the lower and upper wavelength with the specific resolution of each band.

Waveband Lower λ (nm) Upper λ (nm) Spatial resolution (m)

1 Panchromatic 450 800 0.46

2 Coastal 400 450 1.84

3 Blue 450 510 1.84

4 Green 510 580 1.84

5 Yellow 585 625 1.84

6 Red 630 690 1.84

7 Red edge 705 745 1.84

8 Near infrared 1 770 895 1.84

9 Near infrared 2 860 1040 1.84

https://doi.org/10.1371/journal.pone.0232313.t001
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2.2.3 Field data collection. A stratified random sampling approach was used to collect

field data on white and yellow flowering plants, flowering fobs, shrubs, green trees, senesced

trees and crops (maize and sorghum) within three days of the AISA Eagle and WorldView-2

image data acquisition. Data on crops were only collected in January 2014 as they had already

been harvested in February 2013. Additionally, trees that had chlorophyll-inactive leaves were

identified, collected and tagged as ‘senesced trees’. The Geospatial Modelling Environment

(GME) tool was used to randomly generate 156 ground control points (GCPs) within the

study site (Fig 1), from which the field data were collected. Table 5 details the number of sam-

ples on each sensor data, depending on their spatial resolution (pixel size) during the flowering

seasons (i.e. January 2014; onset of flowering, February 2013; peak flowering and April 2014;

end of flowering). The variations in the number of samples on each image data is due to differ-

ences in sensor pixel sizes.

To locate the randomly generated GCPs, the data were loaded into a global positioning sys-

tem (GPS) device with a 3-metre accuracy that was used to locate identified trees on the

ground. Trees with three (3) metre canopy sizes (or more) were tagged and measurements

taken to ensure all GCP readings were within the tree crowns. Other GCP’s were collected

from a 10 cm spatial resolution Nikon D3X digital camera image that was captured together

with the AISA Eagle image data. Photos of the various functional groups are presented in S1

Table.

2.2.4 Random forest classifier. The supervised random forest (RF) ensemble algorithm

[64–66] with recursive partitioning was used to classify the different multispectral datasets.

The ensemble is a robust machine learning algorithm that allows for growing of many regres-

sion trees (ntree) from bootstrap samples with replacement from the original data. It uses a

majority voting procedure to assign classes to the reference datasets. Each tree uses two thirds

(67%) of the randomly and independently selected dataset (mtry) for training the algorithm

and one third (33%) of the remaining dataset for testing its accuracy [64] using the out-of-bag

(OOB) instances. All the bands in the resampled multispectral images were used as variables in

the prediction while being optimized on the OOB error rate [66] using grid search and a

10-fold cross-validation method [67]. RF has a high level of randomness in bagging (selection

of datasets) with low sensitivity towards noise and overtraining, making it more suitable for

Table 2. RapidEye wavebands indicating the lower and centre wavelength with the specific resolution of each

band.

Waveband Lower λ (nm) Centre λ (nm) Spatial resolution (m)

1 Blue 440 475 5

2 Green 520 555 5

3 Red 630 657.5 5

4 Red edge 690 710 5

5 Near infrared 760 805 5

https://doi.org/10.1371/journal.pone.0232313.t002

Table 3. Spot-6 wavebands showing the lower, upper and centre wavelength with the resolution of specific bands that make up the image.

Waveband Lower λ (nm) Centre λ (nm) Spatial resolution (m)

1 Panchromatic 450 597.5 1.5

2 Blue 450 487.5 6

3 Green 530 560 6

4 Red 625 660 6

5 NIR 760 825 6

https://doi.org/10.1371/journal.pone.0232313.t003
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simultaneous classification and variable selection [64,66,68]. The randomForest [64] library in

‘R statistical software’ version 3.6.1 [66] was used for this study.

2.2.5 Accuracy assessment. An independent 30% random sample of the reference data

points was used to test the classification accuracy of the RF classification model. To establish

the versatility of the models, the following matrices were calculated; overall accuracy (OA),

users’ accuracy (UA), producer’s accuracy (PA), quantity disagreement (QD) and allocation

disagreement (AD) [69–71]. QD and AD are absolute values that are used to evaluate the dif-

ference among predictions and reference data while comparing the percentage of observations

that do not have optimal spatial locations as opposed to the reference samples [71]. It gives a

better indication of the portion of the predictions that are of a good fit with the prediction data

[72,73].

Table 4. Sentinel-2 wavebands showing the central wavelength, bandwidth with the resolution of specific bands that make up the image.

Waveband Central λ (nm) Bandwidth (nm) Spatial resolution (m)

1 Coastal aerosol 442.7 21 60

2 Blue 492.4 66 10

3 Green 559.8 36 10

4 Red 664.6 31 10

5 Vegetation red edge 704.1 15 20

6 Vegetation red edge 740.5 15 20

7 Vegetation red edge 782.8 20 20

8 Near infrared 832.8 106 10

8A Narrow near infrared 864.7 21 20

9 Water vapour 945.1 20 60

10 Shortwave infrared–Cirrus 1373.5 31 60

11 Shortwave infrared 1613.7 91 20

12 Shortwave infrared 2202.4 175 20

https://doi.org/10.1371/journal.pone.0232313.t004

Table 5. Field reference data used in the classification of the various flowering and other plant classes from different image datasets. 70% of the data were used for

training while 30% were used to test the accuracy of the random forest classification models.

Class AISA Eagle WorldView-2 RapidEye Spot-6 Sentinel-2

February 2013

Flowering fobs 320 89 115 34 31

Green trees 241 36 54 21 15

Senesced trees 450 85 211 66 56

Shrubs 639 109 149 53 38

Soil 1,369 432 422 142 111

White flowers 472 84 161 54 44

Yellow flowers 319 77 184 53 51

January 2014 WorldView-2 (April 2014)

Flowering fobs 1,659 155 22 27 35 148

Green trees 2,503 226 36 52 44 224

Senesced trees 1,178 107 19 43 13 101

Shrubs 4,304 392 65 112 83 389

Soil 8,740 787 126 236 161 783

White flowers 980 93 18 41 14 87

Yellow flowers 893 85 15 42 16 76

https://doi.org/10.1371/journal.pone.0232313.t005
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3. Results

3.1 Flower compaction and spread

The classification maps for the different flowering seasons; onset of flowering season (January

2014), maximum flowering season (February 2013) and end of the flowering season (April

2014), are presented in Figs 2–4, respectively.

Generally, flower classes were mapped with lower individual class accuracies (up to

87.36%) during the onset of the flowering season (Fig 2 and Table 6) as opposed to the maxi-

mum flowering season (up to 93.33%, Fig 3 and Table 6), using different multispectral sensor

data. Specifically, both yellow and white flowers were reliably delineated with accuracies of up

to 94.44% and 90.00% respectively (Table 6). These accuracies were higher than mapping accu-

racies of other non-flowering plants (Table 6). There was more flower compaction in February

(peak flowering season) than January (onset of flowering season). Furthermore, there was

more flowering fobs spread across the Mwingi study site in the peak flowering season com-

pared to the onset of the flowering season, but less towards the end of the flowering season

(Fig 4 and Table 7). Flowering fobs had the highest classification accuracy compared to the

other flower classes (Table 6). The spread of the flowering fobs reduced as the peak flowering

season came to an end towards April (Tables 6 and 7). Typically, April is the end flowering sea-

son in Mwingi, hence the reduced flowering. On the other hand, flowering crops reduced

towards the peak flowering period as flowering in other melliferous plants increased. Results

also show that crops were mapped with relatively higher accuracy (79.31%) at the start than

later in the flowering season (65.08%).

The delineation of flowering plant species differed with sensor spatial and spectral resolu-

tions, with a decrease in spatial and spectral resolution, leading to a decline in classification

accuracies (Tables S1 and 6 and 7). WorldView-2 generated the best overall classification

results (87.36% at the onset, 93.33% at the peak and 76.40% at the end of the flowering seasons,

Tables S1 and 6). Using the WorldView-2 data, subtle flowering differences were identified

between the three capture periods; i.e. January 2014, February 2013 and April 2014.

Visual observation of the classification maps indicated that Sentinel-2 had the poorest pre-

sentation of the different flowering plants under consideration (Figs 2 and 3). The image and

classes were more pixilated with more ‘salt and pepper’ than classification maps from other

sensors. However, the mapping accuracy presented in Tables S1 and 7 indicated that Sentinel-

2 data mapped the flowering plants more accurately than RapidEye and Spot-6 data, even

though the latter two had better spatial resolution. Spectrally, RapidEye, Spot-6, WorldView-2

and Sentinel-2 have five, six, eight and twelve spectral bands respectively, a clear indication

that spectral resolution influence mapping of melliferous plant species. On the other hand, our

maps show over prediction of senesced tree class, particularly during the peak flowering season

(February 2013).

3.2 Accuracy assessment

Results presented in Tables S1 and 7 showed consistent differences between the January 2014

and February 2013 classification maps and between the different sensor datasets. WorldView-

2 data had superior classification accuracy (87.36% in January 2014 and 93.33% in February

2013) than all the other sensor datasets. Spot-6 had the least overall accuracy (67.52%) in Feb-

ruary 2013 while RapidEye had the least overall accuracy (72.84%) in January 2014. Both the

users’ and producers’ accuracies reduced as the spatial resolution decreased (Table 6). On the

other hand, the users’ and producers’ accuracies of Sentinel-2 were higher than those of both

RapidEye and Spot-6.
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Fig 2. January 2014 classification maps of the Mwingi study site obtained using random forest classifier and resampled simulated

WorldView-2 image classification (a), RapidEye (b), Spot-6 (c), Sentinel-2 (d) images. The maps were developed using QGIS software

version 3.10 (https://qgis.org/en/site/) [52].

https://doi.org/10.1371/journal.pone.0232313.g002
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Fig 3. February 2013 classification maps of the Mwingi study site obtained using random forest classifier and resampled simulated

WorldView-2 image classification (a), RapidEye (b), Spot-6 (c), Sentinel-2 (d) images. The maps were developed using QGIS software

version 3.10 (https://qgis.org/en/site/) [52].

https://doi.org/10.1371/journal.pone.0232313.g003

PLOS ONE Mapping flowering plants in the Kenyan savannah

PLOS ONE | https://doi.org/10.1371/journal.pone.0232313 September 22, 2020 10 / 22

https://qgis.org/en/site/
https://doi.org/10.1371/journal.pone.0232313.g003
https://doi.org/10.1371/journal.pone.0232313


Fig 4. April 2014 classification map of the Mwingi study site obtained using random forest classifier and WorldView-2 image. The map

was developed using QGIS software version 3.10 (https://qgis.org/en/site/) [52].

https://doi.org/10.1371/journal.pone.0232313.g004
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Table 6. Confusion matrix for the classification of flowering vegetation communities in the Mwingi study site obtained using random forest classifier and resam-

pled simulated WorldView-2, RapidEye, Spot-6 and Sentinel-2 datasets for onset of flowering (January 2014) and maximum flowering (February 2013).

January 2014 February 2013

WorldView-2

FB GT ST SB SL WF YF Totals UA FB GT ST SB SL WF YF Totals UA

FB 38 0 0 3 2 0 0 43 88.4 25 0 1 1 0 1 0 28 89.3

GT 0 62 1 8 0 2 0 73 84.9 0 10 0 0 0 1 0 11 90.9

ST 0 0 24 1 0 0 0 25 96 1 0 24 0 0 0 0 25 96

SB 3 5 5 92 0 15 14 134 68.7 0 0 0 29 0 5 5 39 74.4

SL 2 0 0 0 234 0 0 236 99.2 0 0 0 0 129 0 0 129 100

WF 0 0 1 2 0 10 1 14 71.4 0 0 0 1 0 18 1 20 90

YF 0 0 1 2 0 0 10 13 76.9 0 0 0 1 0 0 17 18 94.4

Totals 43 67 32 108 236 27 25 538 26 10 25 32 129 25 23 270

PA (%) 88.4 92.5 75 85.2 99.2 37 40 96.2 100 96 90.6 100 72 73.9

OA (%) 87.4 93.3

Kappa 0.811 0.908

AD (%) 6.69 2.96

QD (%) 5.95 3.70

RapidEye

FB 3 0 0 1 0 0 0 4 75 16 2 2 4 0 2 4 30 53.3

GT 0 6 2 3 0 1 2 14 42.9 0 4 0 0 0 0 1 5 80

ST 0 1 3 1 0 1 0 6 50 7 1 48 3 4 2 3 68 70.6

SB 2 2 0 10 0 2 2 18 55.6 5 2 6 25 0 7 4 49 51

SL 0 0 0 0 37 0 0 37 100 2 0 4 0 122 2 1 131 93.1

WF 0 0 0 0 0 0 0 0 0 2 4 0 6 0 23 12 47 48.9

YF 0 1 0 0 0 1 0 2 0 2 3 3 6 0 12 30 56 53.6

Totals 5 10 5 15 37 5 4 81 34 16 63 44 126 48 55 386

PA (%) 60 60 60 66.7 100 0 0 47.1 25 76.2 56.8 96.8 47.9 54.6

OA (%) 72.8 69.4

Kappa 0.551 0.619

AD (%) 17.28 26.42

QD (%) 9.88 4.15

Spot-6

FB 2 0 0 1 2 0 0 5 40 9 0 2 4 0 2 3 20 45

GT 0 9 1 2 0 1 2 15 60 0 4 0 0 0 3 3 10 40

ST 0 3 4 0 0 2 3 12 33.3 3 2 40 3 4 0 3 55 72.7

SB 0 1 3 24 0 4 3 35 68.6 6 0 1 19 1 9 4 40 47.5

SL 2 0 0 0 68 0 0 70 97.1 2 0 3 1 83 1 3 93 89.3

WF 0 1 0 2 0 2 0 5 40 3 3 1 3 0 15 7 32 46.9

YF 0 1 0 1 0 1 2 5 40 0 3 0 0 0 6 15 24 62.5

Totals 4 15 8 30 70 10 10 147 23 12 47 30 88 36 38 274

PA (%) 50 60 50 80 97.1 20 20 39.1 33.3 85.1 63.3 94.3 41.7 39.5

OA (%) 75.5 67.5

Kappa 0.620 0.597

AD (%) 17.69 24.09

QD (%) 6.80 8.39

Sentinel-2

FB 5 0 0 2 0 0 0 7 71.4 6 0 0 1 0 0 0 7 85.7

GT 0 11 1 0 0 1 0 13 84.6 0 3 0 0 0 0 0 3 100

(Continued)
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Moreover, the maps had low quantity disagreement (QD) (3.70 to 9.88%) compared to the

allocation disagreement (AD) (2.96 to 26.42%). Generally, there was more disagreement both

in allocation and quantity as the spatial resolution decreased (Table 8). WorldView-2 had the

best agreement fit in the two dimensions (as low as 2.96% AD), while RapidEye and Spot 6 had

the highest disagreements (as high as 26.42% and 24.09% AD, respectively). On the contrary,

Sentinel-2 with the least spatial resolution had better agreement (6.73% QD) than RapidEye

and Spot-6.

Fig 5 compares deviation in means between different classes in the two flowering periods.

Results showed that flowering plants had less deviation from the mean than non-flowering

plants. There was lower deviation at the peak flowering season i.e. February 2013 than at the

onset of flowering i.e. January 2014. Contrary to the others, yellow flowers and flowering fobs

signatures deviated more from the mean during the peak flowering period than at the onset of

flowering. In the study site, yellow flowers start flowering at the onset of October rains while

other flowering plants have their peak in February. Generally, flowering fobs were confused

with soil and other background features in January 2014 than February 2013.

4. Discussion

Results in this study showed that resampled multispectral data of different spectral and spatial

resolutions can be used to reliably map flowering plants in a heterogenous landscape in the

African Savanna at different flowering seasons. Multispectral images provide affordable or

Table 6. (Continued)

January 2014 February 2013

ST 0 1 2 0 0 0 0 3 66.7 0 0 14 0 0 0 0 14 100

SB 5 1 0 19 1 2 1 29 65.5 1 0 0 8 0 0 2 11 72.7

SL 0 0 0 1 47 0 0 48 97.9 0 0 2 0 33 0 1 36 91.7

WF 0 0 0 0 0 0 1 1 0 0 1 0 1 0 8 1 11 72.7

YF 0 0 0 0 0 1 2 3 66.7 2 0 0 1 0 5 11 19 57.9

Totals 10 13 3 22 48 4 4 104 9 4 16 11 33 13 15 101

PA (%) 50 84.6 66.7 86.4 97.9 0 50 66.7 75 87.5 72.7 100 61.5 73.3

OA (%) 82.7 82.2

Kappa 0.699 0.777

AD (%) 10.58 10.89

QD (%) 6.73 6.93

The overall, producers’ and users’ accuracies, Kappa, allocation disagreement (AD) and quantity disagreement (QD) are also presented.

Key:

FB - Flowering fobs

GT – Green trees

ST - Senesced trees

SB - Shrubs

SL - Soil

WF - White flowers

YF - Yellow flowers

PA - Predictor accuracy

UA - User accuracy

OA - Overall accuracy

AD - Allocation disagreement

QD - Quantity disagreement

https://doi.org/10.1371/journal.pone.0232313.t006
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freely available data useful for generating flower maps. Such maps could be operationally valu-

able in guiding the placement of honeybee apiaries at a landscape scale. Plants of different

flower colour (i.e. white and yellow) were mapped with relatively higher accuracies. Specifi-

cally, we grouped the flowering plants in the study site into different functional flowering

groups of different colours as honeybees foraging behaviour is highly influenced by among

Table 7. Confusion matrix for the classification of flowering vegetation communities in the Mwingi study site obtained using random forest classifier and World-

View-2 image for the end of the flowering season (April 2014) using the WorldView-2 image.

Ground truth

Prediction FB GT ST SB SL WF YF Total UA (%)

FB 23 2 0 10 2 3 0 40 57.5

GT 1 40 12 6 0 6 8 73 54.8

ST 0 7 16 0 0 3 0 26 61.5

SB 8 13 0 83 6 7 7 124 66.9

SL 3 1 0 4 224 1 0 233 96.1

WF 1 1 2 2 0 5 2 13 38.5

YF 0 2 0 1 0 1 4 8 50

Totals 36 66 30 106 232 26 21 517

PA (%) 63.9 60.6 53.3 78.3 96.6 19.2 19.1

OA (%) 76.4

Kappa 0.695

AD (%) 17.79

QD (%) 5.80

The overall, producers’ and users’ accuracies, Kappa, allocation disagreement (AD) and quantity disagreement (QD) are also presented.

Key:

FB – Flowering fobs

GT – Green trees

ST - Senesced trees

SB - Shrubs

SL - Soil

WF - White flowers

YF - Yellow flowers

PA - Producers’ accuracy

UA - Users’ accuracy

OA - Overall accuracy

AD - Allocation disagreement

QD - Quantity disagreement

https://doi.org/10.1371/journal.pone.0232313.t007

Table 8. Classification accuracy of different flowering vegetation communities in the Mwingi study site during

the start of the flowering season (January 2014) and the peak of the flowering season (February 2013) using resam-

pled simulated data.

Sensor Overall Accuracy Allocation Disagreement Quantity Disagreement

2014 2013 2014 2013 2014 2013

WorldView-2 87.36 93.33 6.69 2.96 5.95 3.70

WorldView-2 (April 2014) 76.40 N/A 17.79 N/A 5.80 N/A

RapidEye 72.84 69.43 17.28 26.42 9.88 4.15

Spot-6 75.51 67.52 17.69 24.09 6.80 8.39

Sentinel-2 82.69 82.18 10.58 10.89 6.73 6.93

https://doi.org/10.1371/journal.pone.0232313.t008
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others, flower colour [22,74–76]. Our study shows that large canopy white flowered acacia

trees (predominantly Acacia tortilis and Acacia brevispica), white flowered Terminalia brownee
and yellow flowered acacia (predominantly Acacia nilitica) were mainly observed on low alti-

tude areas within the study area. These three Acacia spp and Terminalia brownee were

observed to be the most foraged plants by honeybees in the Mwingi region [2]. Therefore, api-

aries in such areas could be placed within the flight radius for honeybees to capitalize on such

flowering plants for optimised productivity.

The high flower mapping accuracy achieved in our study could be attributed to the rela-

tively large flowering plant canopies, which ranged between 8 and 42 feet. These flowering

plants were also characterized by higher blooming density and compaction [38], particularly

during the peak flowering season in February. A large plant canopy size with higher flower

density enhance the floral spectral signal detected by the sensor and reduce the background

heterogeneity on flowering signal, leading to improved flower detection accuracies [77].

Our results showed a better delineation of flowering plants using multispectral sensors with

better spectral resolution. For instance, Sentinel-2, with relatively coarser spatial resolution

(10m), mapped flowering plants with better accuracy than RapidEye (with 5 m spatial resolu-

tion) and Spot 6 (with 6 m spatial resolution). This is consistent with Mumby and Edwards

(2002) who demonstrated better mapping accuracy of marine environments using higher spec-

tral resolution images as opposed to images with fewer number of bands. Mumby and

Edwards (2002) and Stratoulias et al., (2015) noted that in discriminating vegetation commu-

nities, spectral resolution could be more influential than spatial resolution.

Whereas other studies have argued that spatial resolution is more influential in vegetation

mapping than spectral resolution [46,47,63], Abdel-Rahman et al. (2015) and Landmann et al.

(2015) noted that spectral resolution improves the ability of an image to identify finer vegeta-

tion features like flower colour and compaction. However, we acknowledge that spatial resolu-

tion is complimentary to spectral resolution when mapping features such as flowering since

flower blooms are more often smaller in size compared to other background features [78,79].

It would therefore be expected that an image with higher spatial resolution would yield higher

accuracy when coupled with higher spectral resolution.

The classification of the January 2014 image revealed that the onset of the flowering season

was dominated by green trees and shrubs as compared to the peak flowering season (February

Fig 5. Box plots distribution of the flowering endmember abundancy of the flowering vegetation communities. Endmember standard deviation (SD) and means are

shown for each of the flowering vegetation communities during the onset of flowering in January 2014 (a) and peak flowering season in February 2013 (b). Box plots with

different letter(s) are significantly different from each other according to the Duncan’s test (p≦0.05). The circles show outliers.

https://doi.org/10.1371/journal.pone.0232313.g005
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2013) image. Some of the trees, such as Combretum spp and Terminalia brownee, that were

identified as green at the onset of flowering season (January 2014 image) were observed to be

flowering at the peak of flowering (February 2013 image). The flowering of these species is trig-

gered by the onset of the October and April rains [80]. Although Terminalia brownee and

Combretum spp scored lower than the Acacia spp in honey bee foraging preferences [48], their

adaptation at higher altitudes provide a viable foraging option for honey bee colonies from

nearby apiaries.

The flowering fobs were also observed at higher and lower altitudes. These flowering fobs

(predominantly Ipomoea kituiensis vatke) had the highest classification accuracies compared to

the other flower classes studied. This finding is consistent with Landmann et al. (2015) who

established that flowering fobs were the most accuratly mapped class in the study area using

hyperspectral data and spectral unmixing approach. The flowering fobs were more spread

across the landscape as compared to other flowers that were mainly restricted to farms and vast

open grounds. The flowering fobs had higher flower compaction, which could have supressed

the background interferences from adjoining green leaves and soil. In this regard, identification

of their specific spectral signature was more accurate, hence the higher classification accuracy.

Flowering fobs, being ephemeral, are characterized by very short growing periods, espe-

cially on the higher grounds of the study site. The flowering fobs respond to the change in rain-

fall both in growth vigour and flowering intensity. The flowering fobs sprout out at the onset

of the rains but lack in sustaining the rapid growth with low rainfall, hence rapidly die off.

These flowering fobs however bridge the pollen and nectar gaps in low rainfall periods for

improved bee diversity and honey production [2].

Additionally, there were more yellow flowers at the onset of the flowering season than at

the peak of the flowering season at the study site. It was also noted that Acacia nilotica (with

yellow flowers) bloomed earlier than the other flowering trees. These tree species (Acacia nili-
tica and Combretum spp) and flowering crops blossom as early as October, hence could pro-

vide foraging options to honey bees before the peak flowering periods. It’s worth noting that

our results showed over prediction of senesced trees during the peak flowering period, espe-

cially in images with low spatial and spectral resolutions (Spot-6 and RapidEye). This could be

due to the confusion with the signature of some white flowering plants, soil, and trash, espe-

cially from bare farmlands.

Yellow flowers (predominantly Acacia nilotica), were generally better mapped across all the

data sets than white flowers. On the other hand, white flowering trees were mapped with the

least accuracy as compared to other large sized flower blooms. This is consistent with Abdel-

Rahman et al. (2015), who reported that white flowers signal was confused with other classes,

especially soil, leading to their lower mapping accuracy than the yellow flowers. This could

explain the low deviation in January 2014 as the yellow flowers were more compact during this

period as compared to the February 2013 period. Landmann et al. (2015) also established that

the user accuracy of mapping white flowering plants was lower during the peak than the onset

of flowering period due to confusion with dry white sand at the study site. The elevated water

content in soil at the start of the flowering period helps distinguish the soil signature from

white flowering plants. As opposed to the onset of flowering at the study site, peak flowering

period is characterized by low rainfall and increased temperature. Therefore, the soil has bright

characteristics that are similar to those of white flowering plants.

5. Conclusions

This study demonstrated the possibility of using multispectral images to map flowering plants

in a semi-arid African savannah. The multispectral images are easily accessible, less expensive
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with less complex flower map production methods. Overall, the multispectral images tested

produced acceptable classification accuracies (over 67%) which improved with both spatial

and spectral resolutions. WorldView-2 produced maps with the highest classification accuracy

while Spot-6 had the least classification accuracy. It was also evident that spectral resolution

was paramount in mapping flowering plants. Increasing spectral resolution resulted in better

classification accuracies. Moreover, this study poised the freely available medium resolution

Sentinel-2 as a valuable dataset for mapping flowering patterns in the African Savannahs.

Additionally, the methods used herein are more practical and available to practitioners with

limited remote sensing knowledge, skills and resources, hence could be used to generate more

information to farmers in the semi-arid African savannahs. Results from this study could

therefore be used to improve farmers’ access to ‘educated’ information on the optimal loca-

tions for setting up apiaries in the African savannahs to maximize honeybee products output

and ecological services such as pollination. Even though this research considered images from

three different flowering periods, this methodology could be more applicable to images from

other vegetation periods within the. This could aid in phasing the optimal times for plant spe-

cific mapping and feature selection, which could be upscaled to wider regions.
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