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The fungal pathogen Cryptococcus neoformans causes life-threatening infections in
immunocompromised individuals, representing one of the leading causes of morbidity
and mortality in AIDS patients. The main virulence factor of C. neoformans is the
polysaccharide capsule; however, many fundamental aspects of capsule structure
and function remain poorly understood. Recently, important capsule properties were
uncovered using optical tweezers and other biophysical techniques, including dynamic
and static light scattering, zeta potential and viscosity analysis. This review provides an
overview of the latest findings in this emerging field, explaining the impact of these findings
on our understanding of C. neoformans biology and resistance to host immune defenses.

Keywords: Cryptococcus neoformans, polysaccharide, capsule, optical tweezers, light scattering, viscosity,
zeta potential

Introduction

The basidiomycete fungusCryptococcus neoformans is an opportunistic human pathogen that causes
cryptococcosis, a life-threatening disease that kills over 600,000 people a year (Arturo and Perfect,
1998). Cryptococcosis is one of the leading causes of morbidity and mortality among AIDS patients
(Park et al., 2009); however, some cases have also been documented in immunologically competent
individuals (Rozenbaum and Goncalves, 1994; Chen et al., 2000; Pappas et al., 2001). Although
the disease is a worldwide threat, underdeveloped countries experience particularly high mortality
rates. Current antifungal-based therapies against cryptococcosis are often incapable of completely
eliminating the pathogen, leading to the recurrence of the disease (Bicanic and Harrison, 2004).
Thus, the development of novel therapeutic strategies is paramount, but depends on an improved
understanding of C. neoformans biology and pathogenesis.

Several virulence factors allow C. neoformans to evade host defense mechanisms, enabling
pathogen survival and dissemination in the host tissues (Casadevall and Pirofski, 2007). While
virulence factors include melanin production (Huffnagle et al., 1995; Wang et al., 1995; Doering
et al., 1999; Liu et al., 1999; Gomez and Nosanchuk, 2003), phenotypic switching (Goldman et al.,
1998; Fries et al., 2001), and cellular “gigantism” (Okagaki et al., 2010; Zaragoza et al., 2010), the
most significant and hazardous feature of C. neoformans is the ability to produce a polysaccharide
(PS) capsule, which represents the main virulence factor of this fungal species. The capsule protects
the fungal cell against a variety of host immune defenses (Park et al., 2009), and plays diverse roles
in the development of cryptococcosis.
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Cryptococcal PS can be secreted via the protein secretory
pathway (Yoneda and Doering, 2006; Panepinto et al.,
2009), or shed from cells in association with vesicular
structures (Rodrigues et al., 2007), and consists of at least
two types of polymers: glucuronoxylomannan (GXM) and
glucuronoxylomannogalactan (GXMGal; Heiss et al., 2009).
Despite the homogenous appearance of the capsule by light
microscopy, electron microscopy (EM) data suggest that the
capsule is a heterogeneous structure, with a clear vertical
“stratification” of the matrix into an electron-dense inner layer
and an electron-lucent outer layer (Gates et al., 2004; Bryan
et al., 2005; Frases et al., 2009b). While the outer layer is more
permeable, the inner layer of the capsule matrix prevents
larger macromolecules—including antibodies and complement
proteins—from reaching the cell wall (Gates et al., 2004; Gates
and Kozel, 2006; Frases et al., 2009b), protecting the fungus from
the deleterious effects of these immune system molecules.

Many fundamental aspects of capsule structure, mechanics and
dynamics remain poorly understood, partly due to its complex
composition and organization. Also, the capsule is sensitive to the
dehydration and fixation procedures used in conventional EM,
which limits severely the number of available methods for native
PS structural characterization. Recently, the use of a variety of
biophysical tools—including static and dynamic light scattering
(DLS), as well as zeta potential, optical tweezers and PS viscosity
analysis—has improved considerably our understanding of the
macromolecular properties of the C. neoformans PS capsule,
challenging earlier views on capsule architecture and assembly
(McFadden et al., 2006; Nimrichter et al., 2007; Frases et al., 2008,
2009a,b; Cordero et al., 2011b, 2013; Araujo Gde et al., 2012).

This review focuses on the novel data on the biophysical
properties of the capsule uncovered by the use of different tools,
highlighting the correlation between these properties and capsule
structure and function.

Studying the Capsule PS Structure using
Light Scattering, Zeta Potential and
Viscosity Analysis

Novel and interesting macromolecular properties of the C.
neoformans capsule PS, and the impact of these properties on PS
biological activity, have been uncovered by combining concepts
from the theory of polymer solutions with the use of a variety of
biophysical techniques, including static and DLS, zeta potential
and viscosity analysis.

Light scattering represents alterations—by reflection, refraction
and diffraction—in the direction and intensity of a light beam
after it interacts with particles. The magnitude of light scattering
by a given macromolecule suspension depends on the size and
concentration of the molecules, as well as on their “polarizability,”
which reflects structural features of the macromolecules being
analyzed. Polarizability is calculated using the differential index of
refraction—the ratio between the refractive index of themolecules
and that of the surrounding medium—and polarizability data
obtained by light scattering analysis reveals important structural
information on macromolecules in solution (Schärtl, 2007).

Static light scattering (SLS), which measures light scattering
intensity at different angles, allows the determination of the
weight-average molecular weight, the molecular size (or radius
of gyration) and the second osmotic virial coefficient (Schärtl,
2007) of macromolecules in suspension. On the other hand,
DLS measures fluctuations (over time) in the intensity of
the light scattered by macromolecules diffusing in solution
due to Brownian motion. These fluctuations are a direct
result of macromolecular diffusion, which alters the otherwise
monochromatic incident light, generating scattered waves of
different wavelengths—a phenomenon known as the “Doppler
effect.” If the temperature and solvent are constant and known, the
time-dependent fluctuations in scattered light intensity (detected
and analyzed using an autocorrelator) are directly related to
molecular size, and can be used to calculate the average-
hydrodynamic radius and “polydispersity” of macromolecules
(Berne and Pecora, 2013).

Another powerful biophysical tool for the analysis of
macromolecules in suspension is the zeta potential, defined as the
difference between the electric potential of the dispersionmedium
and that of the stationary layer of fluid attached to dispersed
particles. By applying an electric field to amacromolecule solution
and monitoring the movement of dispersed macromolecules,
zeta potential measurements can be obtained and used to assess
the ability of molecules to either come together or remain stably
dispersed, due to repulsive electric forces between them (Hunter
et al., 2013). Importantly, zeta potential measurements allow for
rapid estimation of relative differences in composition between
ionic polymers.

Viscosity analysis—representing measurements of the
resistance of a macromolecular fluid to flow—is also used to
infer important properties of macromolecules. The viscosity of a
solution can be obtained by the ratio of the applied shear stress to
the resulting strain rate. The most common method for viscosity
analysis consists of using a capillary viscometer (e.g., an Ostwald
viscometer) submerged in a temperature-controlled water bath,
to compare the flow times of polymer solutions of different
concentrations with that of pure solvents (under constant
temperature, pressure and volume). High molecular weight
polymers have higher intrinsic viscosity than low molecular
weight and/or linear polymers (Landel and Nielsen, 1993). Thus,
viscosity measurements can be used to infer the molecular weight
of polymers in solution.

Until recently, most of what was known on capsule properties
had been inferred from data on secreted PS recovered from
culture supernatants (Cherniak et al., 1988), believed to
represent shed capsular material. However, a comparison
of secreted PS isolated by two different techniques with
capsular PS stripped from cells using either gamma radiation
or dimethyl sulfoxide (DMSO) treatment revealed significant
differences in glycosyl composition, mass, size, charge, viscosity,
circular-dichroism spectra, and monoclonal antibody reactivity
(Frases et al., 2008), strongly suggesting that secreted PS
and capsular PS are structurally different, and questioning
the use of secreted PS as a surrogate for the capsule PS,
in biochemical studies. Also, these data confirm that the
extraction/isolation method may influence significantly the
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structural and antigenic properties of PS fractions (Nimrichter
et al., 2007).

Analysis of the size of capsule GXM molecules removed
from cryptococcal cells by DMSO revealed a wide distribution,
with average-molecular weights ranging from kilo- to mega-
Daltons (McFadden et al., 2006, 2007). Also, these and other
datasets highlight the considerable inter-strain variability in the
properties of the cryptococcal capsular PS (Cherniak et al., 1988,
1995; McFadden et al., 2007). Macromolecular characterization
of capsular PS from different cryptococcal strains shows that
these molecules are particularly large, exhibiting weight-average
molecular weights from 107 to 108 g mol−1, molecular sizes
ranging from 158 to 239 nm, and average hydrodynamic radius
values ranging from 570 to 2434 nm, as determined by static and
DLS. The high values of average molecular weight observed for
capsular PSmolecules are consistent with previous reports (Frases
et al., 2008), and confirm a fundamental difference between
capsular and secreted PS molecules, since the latter has average
molecular weights from 105 to 106 g mol−1 only (McFadden
et al., 2006, 2007; Frases et al., 2008). To our knowledge, the
cryptococcal capsular PS molecules are the largest PS molecules
described to date.

Data derived from DLS and SLS measurements, such as the
angular dependency and the relationship between the weight-
average molecular weight and the molecular size—known as the
“shape factor”—provide values consistent with the notion that the
cryptococcal PS is branched (Cordero et al., 2011a).Moreover, the
viscosity behavior of capsular PS at relatively low concentrations
are consistent with branching, because they suggest a high degree
of entanglement and inter-particle interaction in the absence
of applied force (Cordero et al., 2011a). Also, isolated capsular
PS molecules appear as rosette-like structures similar to those
of other branched PS (e.g., glycogen), when visualized by EM
(Childress et al., 1970; Tao et al., 2007). Thus, the EM data
on isolated PS is in agreement with the light scattering data,
and provide clear evidence that the cryptococcal capsule PS is
branched.

Polysaccharide branching is not the norm in nature, since other
microbes exhibit capsules composed of linear homopolymers
formed in the extra-cytoplasmic environment (Whitfield and
Roberts, 1999; Garcia et al., 2000; Garcia-Rivera et al., 2004;
Whitfield, 2006; Yother, 2011). The ability of C. neoformans
to synthesize complex heteropolymers that are both large
and branched may stem from the fact that, contrary to
bacterial capsular polymers, cryptococcal PS are generated in
the intracellular environment and exported to the extracellular
space via vesicle-mediate secretion (Feldmesser et al., 2001;
Garcia-Rivera et al., 2004; Yoneda and Doering, 2006; Rodrigues
et al., 2007). Thus, biochemical synthesis of modified branched
sugars and/or cross-linking (either enzymatic or non-enzymatic)
may occur as PS molecules migrate through distinct chemical
environments within the cell, en route to the cell surface.

The impact of a branched conformation on cryptococcal PS
activity was demonstrated by comparing capsular PS samples
exhibiting different degrees of PS branching (based on their shape
factor values), but equivalent glycosyl composition (Cordero et al.,
2011a). These data suggest that the degree of branching and/or

structural complexity influences the ability of capsular PS to
interfere with phagocytosis, stimulate nitric oxide production by
macrophages, and protect against ROS and antibody reactivity,
and also affects the half-life of PS molecules in serum.

Different Applications of Optical Tweezers
in the Examination of Capsule Structure
and Function

Laser-based optical trapping emerged in the early 1970s, when
Arthur Ashkin demonstrated that optical forces could displace
micrometer particles in water solutions (Ashkin, 1970). These
seminal work led to the development of single-beam optical
traps or “optical tweezers” (OT; Ashkin et al., 1986), which
allow micromanipulation of cells and molecules using forces
and displacements in the piconewton (pN) and nanometer (nm)
ranges respectively, corresponding to the scales of important
physical and biological events. Thus, OT represents an ideal
technique to study biological phenomena in detail (Neuman and
Block, 2004; Moffitt et al., 2008). OT applications range from the
study of molecular motors at single-molecule level (Veigel and
Schmidt, 2011; Elting and Spudich, 2012), to the determination of
the mechanical properties of biopolymers (Greenleaf et al., 2007),
and cellular structures (Pontes et al., 2008, 2011, 2013).

An OT is formed by focusing a laser beam onto a particle
observed under a light microscope. The particle experiences
forces due to the transfer of momentum from the incident light,
and the resulting optical force components are a “scattering” force
that pushes the particle in the direction of light propagation, and
a “gradient” force (i.e., one that pushes dipole-like particles in a
inhomogeneous electric field toward the field gradient; Neuman
and Block, 2004) that pulls the particle toward the laser source.
Stable optical trapping is achieved by sharply focusing the laser
beam (using an objective of high numerical aperture) onto a
particle near the focal point of the lens, where the gradient force
pulling the particle toward focus exceeds the scattering force
pushing it away from focus. The OT then acts as a Hookean
spring, whose stiffness is proportional to the light intensity;
since the displacement of a trapped particle can be measured by
imaging techniques, the force producing the displacement can
be determined easily following Hooke’s law. These force values
can then be used to calculate important mechanical properties of
polymers and cells.

Optical tweezers-based methods have emerged as useful
tools in the study of the C. neoformans capsule, by allowing
micromanipulation of the capsule in its native state, as described
in the pioneering work of Frases et al. (2009a). Briefly, the capsule
of live C. neoformans yeast cells is deformed with the aid of a
polystyrene bead attached to the capsule and trapped in an OT,
and the displacement of the bead’s center of mass is monitored
as a function of time. Then, a stress-strain curve is produced
and used to determine the elastic properties (also known as the
“Young’s modulus”) of the C. neoformans capsule. The higher
the Young’s modulus, the greater is the capsule rigidity. A major
advantage of this method is that capsular mechanical properties
can be probed with high accuracy and reproducibility, as well
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as under conditions were the cells remain alive. Moreover, the
Young’s modulus represents a useful quantitative parameter to
evaluate capsule architecture under different conditions. In fact,
several applications of this method have already been reported
(Frases et al., 2009a; Cordero et al., 2011b, 2013; Araujo Gde et al.,
2012).

In its original description, the OT method described above
was used to evaluate the effect of treatment with divalent cations
on the PS capsule (Frases et al., 2009a). Divalent cations can
induce the self-aggregation of C. neoformans PS fibers—possibly
by forming intra- and/or intermolecular links between (or within)
glucuronic acid residues—and this effect could contribute to
maintain capsule architecture and PS aggregation (Nimrichter
et al., 2007). Moreover, divalent cations can also modify
important biological properties of the C. neoformans capsule,
such as its antibody reactivity and electronegativity (Frases et al.,
2008). Frases et al. (2009a) investigated the hypothesis that
cation-mediated aggregates and non-aggregated C. neoformans
capsules have different elastic properties, by incubating EDTA-
pretreated yeast cells in media with different Ca2+ concentrations
(0–20 mM). Young’s modulus values increased as a function
of ion concentration, supporting the view that divalent cations
create cross-links that stabilize capsular structure (Frases et al.,
2009a). Thus, at higher Ca2+ concentrations, all cation-binding
sites on PS molecules were presumably occupied, which led to
the formation of a lattice of cross-linked fibers, explaining the
significant increase in Young’s modulus values (Frases et al.,
2009a).

The OT-based method for capsule analysis was also used to
study capsule growth induced by cultivating C. neoformans in
minimal media (Frases et al., 2009a). Examination of the elastic
properties of the PS capsule over time in culture showed that
cells with smaller capsules had higher Young’s modulus values
than those with larger capsules (Frases et al., 2009a). These results
are particularly interesting in light of earlier reports showing
that variations in capsule size can influence fungal pathogenesis
in animal models (Rivera et al., 1998). Moreover, the finding
that larger capsules are more deformable correlates with the
observation that the outer sections of the capsule are mainly
formed by lower density PS molecules (Gates et al., 2004).

The effects of chronological aging (Bouklas and Fries, 2015)
on the capsule was also analyzed using OTs (Cordero et al.,
2011b). Senescent cells accumulate during the course of infection
by C. neoformans (Jain et al., 2009), and cell aging has important
implications during cryptococcosis, since the chronicity of this
disease can be associated with the persistence of senescent cells
in the lung (Goldman et al., 2000). To analyze changes in the
elastic properties of the capsule throughout the aging process,
Cordero et al. (2011b) performed elegant experiments where
C. neoformans cultures that had reached stationary phase in
capsule-inducing medium were inoculated into fresh medium,
and the capsule Young’s modulus was determined every 12 h
(for a total of 120 h) after inoculation (Cordero et al., 2011b).
Initially, capsule Young’s modulus values decreased significantly
(with lowest values obtained 24 h post-inoculation), followed by a
progressive increase up to the values obtained before inoculation.
Interestingly, the size of the capsule did not vary significantly

during the experiments. These results suggest that the Young’s
modulus of the C. neoformans capsule is a modular property that
changes over time in culture (Cordero et al., 2011b).

Interestingly, clear alterations in capsule structure, as well as
changes in capsule permeability, charge, and antigenic density,
occurred during cell aging, and could explain the differences
in Young’s modulus values (Cordero et al., 2011b). On average,
capsules from “older” cells had PS molecules with reduced
molecular size and average-hydrodynamic radius, and there was
a decrease in the weight-average molecular weight distribution
of polymer molecules during prolonged stationary phase growth.
These results were unexpected, given that capsule enlargement
during exponential growth was thought to be irreversible
(Zaragoza et al., 2006), and no PS degrading enzymes have
been described so far, while non-enzymatic acid hydrolysis of
PS molecules is improbable (Cordero et al., 2011b). Interestingly,
capsules from “older” cells contained α-1-3-glucans, structural
components not previously observed in C. neoformans capsules
(Cordero et al., 2011b). Overall, the report of Cordero et al.
(2011b) strongly suggest that prolonged stationary phase growth
triggers the degradation and remodeling of the C. neoformans
capsule, and that the capsule is a highly dynamic structure capable
of readily changing its physical, chemical and structural properties
in response to external stimuli.

Although the molecular mechanisms behind capsule “aging”
are unknown, this process is associated with important functional
alterations, such as increased resistance to complement-mediated
phagocytosis and antibody reactivity (Cordero et al., 2011b;
Bouklas and Fries, 2015). The increased phagocytosis resistance
of “older” capsules appears to be caused by altered complement
deposition due to steric hindrance and decreased capsule
permeability (Cordero et al., 2011b). In addition, the reduced
electrostatic potential exhibited by “older” cells could contribute
to this effect, as suggested by previous observations (Kozel et al.,
1980).

A clinically relevant application of OT to the study of C.
neoformanswas the evaluation of capsule stiffness after incubation
with protective or non-protective antibodies (Cordero et al.,
2013), whichmay help explain some of the protectivemechanisms
of antibodies with therapeutic potential. Antibodies against GXM,
the main capsule PS, mediate protection against C. neoformans
infection in mice (Sanford et al., 1990; Mukherjee et al., 1992;
Fleuridor et al., 1998), and have been tested for clinical use
as therapeutic agents against cryptococcosis (Casadevall et al.,
1998; Larsen et al., 2005). Protection seems to involve classical
mechanisms, such as increased rates of phagocytosis, complement
activation, and recruitment of inflammatory cells (Nussbaum
et al., 1997; Yuan et al., 1998; Taborda and Casadevall, 2001;
Taborda et al., 2003), as well as non-classical mechanisms,
such as inhibition of PS release (Martinez et al., 2004), biofilm
formation in vitro (Martinez and Casadevall, 2005) and changes
in pathogen metabolism and gene expression (McClelland et al.,
2010; McClelland and Casadevall, 2012). Using OT, Cordero et al.
(2013) showed that binding of protective, but not non-protective,
antibodies produced a concentration-dependent increase in
capsule stiffness, likely due to antibody-mediated cross-linking of
PS molecules. Increases in capsule stiffness may affect cell wall
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integrity sensors (Levin, 2005), which could trigger changes in
gene expression, as well as PS release (Martinez et al., 2004) or
biofilm formation (Martinez and Casadevall, 2005). Protective
antibody binding also led to “trapping” of daughter cells in a sac-
like structure derived from the parental cell’s capsule (Cordero
et al., 2013). This defect in daughter cell formation/separation is
expected to lead to reduced pathogen dissemination and increased
chances of pathogen phagocytosis, in the context of infection.

Conclusions and Perspectives

Biophysical techniques have proven to be powerful alternatives
for the analysis of fundamental C. neoformans capsule properties,
and have successfully expanded our knowledge on the synthesis,
regulation, and function of this key virulence factor. In particular,
OT has emerged as an important tool in the study of the
biophysical properties of the PS capsule, especially because OT
measurements provide information on the capsule in its native
state, without the need to isolate capsule PS. Importantly, OT
experiments provided basic information that could be useful
in the design and development of capsule-targeted therapeutic
strategies against C. neoformans. The same techniques may
be informative if applied to the study of other encapsulated
pathogens.

Nevertheless, the biophysical properties detailed above remain
difficult to reconcile with the organization of capsular PS

molecules as observed in EM images, where capsules often
appears as a layers of dispersed long fibers with dimensions
inconsistent with light scattering data (Frases et al., 2009b).
These inconsistencies suggest that the fiber-like structures
observed using current EM techniques most likely represent
artifacts in capsule morphology that results from dehydration
and collapse of adjacent capsular PS molecules. New EM
techniques under development should allow ultrastructural
analysis without the need for fixation, dehydration and critical
point-drying steps that severely affect capsule preservation for
EM. Furthermore, the use of atomic force microscopy (AFM),
both as imaging technique and/or as force spectroscopy technique,
may contribute to our knowledge of the PS capsule. In a near
future, it is likely that the association of OT, in particular, with
modern EM and AFM techniques will improve considerably
our understanding of the structure of the C. neoformans
capsule.

Acknowledgments

We would like to thank Flavia Moreira-Leite for language
editing and stimulating discussions. We gratefully acknowledge
funding from the Brazilian agencies Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq), Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and
Fundação de Amparo à Pesquisa do Rio de Janeiro (FAPERJ).

References

AraujoGde, S., Fonseca, F. L., Pontes, B., Torres,A., Cordero, R. J., Zancope-Oliveira,
R.M., et al. (2012). Capsules from pathogenic and non-pathogenicCryptococcus
spp. manifest significant differences in structure and ability to protect against
phagocytic cells. PLoS ONE 7:e29561. doi: 10.1371/journal.pone.0029561

Arturo, C., and Perfect, J. R. (1998). Cryptococcus Neoformans. Washington DC:
ASM Press.

Ashkin, A. (1970). Acceleration and trapping of particles by radiation pressure.
Phys. Rev. Lett. 24, 156–159.

Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., and Chu, S. (1986). Observation of a
single-beam gradient force optical trap for dielectric particles.Opt. Lett. 11, 288.

Berne, B. J., and Pecora, R. (2013). Dynamic Light Scattering: With Applications to
Chemistry, Biology, and Physics. Mineola: Dover Publications.

Bicanic, T., and Harrison, T. S. (2004). Cryptococcal meningitis. Br. Med. Bull. 72,
99–118. doi: 10.1093/bmb/ldh043

Bouklas, T., and Fries, B. C. (2015). Aging: an emergent phenotypic trait that
contributes to the virulence of Cryptococcus neoformans. Future Microbiol. 10,
191–197. doi: 10.2217/fmb.14.124

Bryan, R. A., Zaragoza, O., Zhang, T., Ortiz, G., Casadevall, A., and Dadachova, E.
(2005). Radiological studies reveal radial differences in the architecture of the
polysaccharide capsule of Cryptococcus neoformans. Eukaryot. Cell 4, 465–475.
doi: 10.1128/EC.4.2.465-475.2005

Casadevall, A., Cleare, W., Feldmesser, M., Glatman-Freedman, A., Goldman,
D. L., Kozel, T. R., et al. (1998). Characterization of a murine monoclonal
antibody to Cryptococcus neoformans polysaccharide that is a candidate for
human therapeutic studies. Antimicrob. Agents Chemother. 42, 1437–1446.

Casadevall, A., and Pirofski, L. A. (2007). Accidental virulence, cryptic
pathogenesis, martians, lost hosts, and the pathogenicity of environmental
microbes. Eukaryot. Cell 6, 2169–2174. doi: 10.1128/EC.00308-07

Chen, S., Sorrell, T., Nimmo, G., Speed, B., Currie, B., Ellis, D., et al. (2000).
Epidemiology and host- and variety-dependent characteristics of infection
due to Cryptococcus neoformans in Australia and New Zealand. Australasian
Cryptococcal Study Group. Clin. Infect. Dis. 31, 499–508. doi: 10.1086/
313992

Cherniak, R., Jones, R. G., and Reiss, E. (1988). Structure determination of
Cryptococcus neoformans serotype A-variant glucuronoxylomannan by 13C-
n.m.r. spectroscopy. Carbohydr. Res. 172, 113–138.

Cherniak, R., Morris, L. C., Belay, T., Spitzer, E. D., and Casadevall, A. (1995).
Variation in the structure of glucuronoxylomannan in isolates frompatientswith
recurrent cryptococcal meningitis. Infect. Immun. 63, 1899–1905.

Childress, C. C., Sacktor, B., Grossman, I. W., and Bueding, E. (1970). Isolation,
ultrastructure, and biochemal characterization of glycogen in insect flight
muscle. J. Cell Biol. 45, 83–90.

Cordero, R. J., Frases, S., Guimaraes, A. J., Rivera, J., and Casadevall, A.
(2011a). Evidence for branching in cryptococcal capsular polysaccharides and
consequences on its biological activity. Mol. Microbiol. 79, 1101–1117. doi:
10.1111/j.1365-2958.2010.07511.x

Cordero, R. J., Pontes, B., Guimaraes, A. J., Martinez, L. R., Rivera, J., Fries,
B. C., et al. (2011b). Chronological aging is associated with biophysical and
chemical changes in the capsule of Cryptococcus neoformans. Infect. Immun. 79,
4990–5000. doi: 10.1128/IAI.05789-11

Cordero, R. J., Pontes, B., Frases, S., Nakouzi, A. S., Nimrichter, L., Rodrigues,
M. L., et al. (2013). Antibody binding to Cryptococcus neoformans impairs
budding by altering capsular mechanical properties. J. Immunol. 190, 317–323.
doi: 10.4049/jimmunol.1202324

Doering, T. L., Nosanchuk, J. D., Roberts, W. K., and Casadevall, A. (1999). Melanin
as a potential cryptococcal defence against microbicidal proteins. Med. Mycol.
37, 175–181.

Elting, M. W., and Spudich, J. A. (2012). Future challenges in single-molecule
fluorescence and laser trap approaches to studies of molecular motors. Dev. Cell
23, 1084–1091. doi: 10.1016/j.devcel.2012.10.002

Feldmesser, M., Kress, Y., and Casadevall, A. (2001). Dynamic changes in the
morphology of Cryptococcus neoformans during murine pulmonary infection.
Microbiology 147, 2355–2365.

Fleuridor, R., Zhong, Z., and Pirofski, L. (1998). A human IgM monoclonal
antibody prolongs survival of mice with lethal cryptococcosis. J. Infect. Dis. 178,
1213–1216.

Frases, S., Nimrichter, L., Viana, N. B., Nakouzi, A., and Casadevall, A. (2008).
Cryptococcus neoformans capsular polysaccharide and exopolysaccharide

Frontiers in Microbiology | www.frontiersin.org June 2015 | Volume 6 | Article 6405

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Pontes and Frases Biophysical studies of Cryptococcus neoformans capsule

fractions manifest physical, chemical, and antigenic differences. Eukaryot. Cell
7, 319–327. doi: 10.1128/EC.00378-07

Frases, S., Pontes, B., Nimrichter, L., Rodrigues, M. L., Viana, N. B., and Casadevall,
A. (2009a). The elastic properties of the Cryptococcus neoformans capsule.
Biophys. J. 97, 937–945. doi: 10.1016/j.bpj.2009.04.043

Frases, S., Pontes, B., Nimrichter, L., Viana, N. B., Rodrigues, M. L., and Casadevall,
A. (2009b). Capsule of Cryptococcus neoformans grows by enlargement of
polysaccharide molecules. Proc. Natl. Acad. Sci. U.S.A. 106, 1228–1233. doi:
10.1073/pnas.0808995106

Fries, B. C., Taborda, C. P., Serfass, E., and Casadevall, A. (2001). Phenotypic
switching ofCryptococcus neoformans occurs in vivo and influences the outcome
of infection. J. Clin. Invest. 108, 1639–1648. doi: 10.1172/JCI13407

Garcia, E., Llull, D., Munoz, R., Mollerach, M., and Lopez, R. (2000). Current
trends in capsular polysaccharide biosynthesis of Streptococcus pneumoniae.Res.
Microbiol. 151, 429–435. doi: 10.1016/s0923-2508(00)00173-x

Garcia-Rivera, J., Chang, Y. C., Kwon-Chung, K. J., and Casadevall, A. (2004).
Cryptococcus neoformans CAP59 (or Cap59p) is involved in the extracellular
trafficking of capsular glucuronoxylomannan. Eukaryot. Cell 3, 385–392. doi:
10.1128/EC.3.2.385-392.2004

Gates, M. A., and Kozel, T. R. (2006). Differential localization of complement
component 3 within the capsular matrix of Cryptococcus neoformans. Infect.
Immun. 74, 3096–3106. doi: 10.1128/IAI.01213-05

Gates, M. A., Thorkildson, P., and Kozel, T. R. (2004). Molecular architecture of the
Cryptococcus neoformans capsule.Mol.Microbiol. 52, 13–24. doi: 10.1111/j.1365-
2958.2003.03957.x

Goldman, D. L., Fries, B. C., Franzot, S. P., Montella, L., and Casadevall, A. (1998).
Phenotypic switching in the human pathogenic fungusCryptococcus neoformans
is associated with changes in virulence and pulmonary inflammatory response
in rodents. Proc. Natl. Acad. Sci. U.S.A. 95, 14967–14972.

Goldman, D. L., Lee, S. C., Mednick, A. J., Montella, L., and Casadevall, A.
(2000). Persistent Cryptococcus neoformans pulmonary infection in the rat
is associated with intracellular parasitism, decreased inducible nitric oxide
synthase expression, and altered antibody responsiveness to cryptococcal
polysaccharide. Infect. Immun. 68, 832–838. doi: 10.1128/IAI.68.2.832-838.
2000

Gomez, B. L., and Nosanchuk, J. D. (2003). Melanin and fungi. Curr. Opin. Infect.
Dis. 16, 91–96. doi: 10.1097/00001432-200304000-00005

Greenleaf, W. J., Woodside, M. T., and Block, S. M. (2007). High-resolution,
single-molecule measurements of biomolecular motion. Annu. Rev. Biophys.
Biomol. Struct. 36, 171–190. doi: 10.1146/annurev.biophys.36.101106.
101451

Heiss, C., Klutts, J. S.,Wang, Z., Doering, T. L., andAzadi, P. (2009). The structure of
Cryptococcus neoformans galactoxylomannan contains beta-D-glucuronic acid.
Carbohydr. Res. 344, 915–920. doi: 10.1016/j.carres.2009.03.003

Huffnagle, G. B., Chen, G. H., Curtis, J. L., Mcdonald, R. A., Strieter, R. M., and
Toews, G. B. (1995). Down-regulation of the afferent phase of T cell-mediated
pulmonary inflammation and immunity by a high melanin-producing strain of
Cryptococcus neoformans. J. Immunol. 155, 3507–3516.

Hunter, R. J., Ottewill, R. H., and Rowell, R. L. (2013). Zeta Potential in Colloid
Science: Principles and Applications. San Diego: Elsevier Science.

Jain, N., Cook, E., Xess, I., Hasan, F., Fries, D., and Fries, B. C. (2009). Isolation
and characterization of senescent Cryptococcus neoformans and implications for
phenotypic switching andpathogenesis in chronic cryptococcosis.Eukaryot. Cell
8, 858–866. doi: 10.1128/EC.00017-09

Kozel, T. R., Reiss, E., and Cherniak, R. (1980). Concomitant but not causal
association between surface charge and inhibition of phagocytosis by
cryptococcal polysaccharide. Infect. Immun. 29, 295–300.

Landel, R. F., and Nielsen, L. E. (1993). Mechanical Properties of Polymers and
Composites, 2nd Edn. Taylor & Francis.

Larsen, R. A., Pappas, P. G., Perfect, J., Aberg, J. A., Casadevall, A., Cloud,
G. A., et al. (2005). Phase I evaluation of the safety and pharmacokinetics
of murine-derived anticryptococcal antibody 18B7 in subjects with treated
cryptococcal meningitis. Antimicrob. Agents Chemother. 49, 952–958. doi:
10.1128/AAC.49.3.952-958.2005

Levin, D. E. (2005). Cell wall integrity signaling in Saccharomyces cerevisiae.
Microbiol. Mol. Biol. Rev. 69, 262–291. doi: 10.1128/MMBR.69.2.262-291.2005

Liu, L., Tewari, R. P., and Williamson, P. R. (1999). Laccase protects Cryptococcus
neoformans from antifungal activity of alveolar macrophages. Infect. Immun. 67,
6034–6039.

Martinez, L. R., and Casadevall, A. (2005). Specific antibody can prevent fungal
biofilm formation and this effect correlates with protective efficacy. Infect.
Immun. 73, 6350–6362. doi: 10.1128/IAI.73.10.6350-6362.2005

Martinez, L. R., Moussai, D., and Casadevall, A. (2004). Antibody to Cryptococcus
neoformans glucuronoxylomannan inhibits the release of capsular antigen.
Infect. Immun. 72, 3674–3679. doi: 10.1128/IAI.72.6.3674-3679.2004

McClelland, E. E., and Casadevall, A. (2012). Strain-related differences in
antibody-mediated changes in gene expression are associated with differences
in capsule and location of binding. Fungal Genet. Biol. 49, 227–234. doi:
10.1016/j.fgb.2012.01.006

McClelland, E. E., Nicola, A. M., Prados-Rosales, R., and Casadevall, A.
(2010). Ab binding alters gene expression in Cryptococcus neoformans and
directly modulates fungal metabolism. J. Clin. Invest. 120, 1355–1361. doi:
10.1172/JCI38322

McFadden, D. C., De Jesus, M., and Casadevall, A. (2006). The physical
properties of the capsular polysaccharides from Cryptococcus neoformans
suggest features for capsule construction. J. Biol. Chem. 281, 1868–1875. doi:
10.1074/jbc.M509465200

McFadden, D. C., Fries, B. C., Wang, F., and Casadevall, A. (2007). Capsule
structural heterogeneity and antigenic variation in Cryptococcus neoformans.
Eukaryot. Cell 6, 1464–1473. doi: 10.1128/EC.00162-07

Moffitt, J. R., Chemla, Y. R., Smith, S. B., and Bustamante, C. (2008).
Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228. doi:
10.1146/annurev.biochem.77.043007.090225

Mukherjee, J., Scharff, M. D., and Casadevall, A. (1992). Protective murine
monoclonal antibodies to Cryptococcus neoformans. Infect. Immun. 60,
4534–4541.

Neuman, K. C., and Block, S. M. (2004). Optical trapping. Rev. Sci. Instrum. 75,
2787–2809. doi: 10.1063/1.1785844

Nimrichter, L., Frases, S., Cinelli, L. P., Viana, N. B., Nakouzi, A., Travassos,
L. R., et al. (2007). Self-aggregation of Cryptococcus neoformans capsular
glucuronoxylomannan is dependent on divalent cations. Eukaryot. Cell 6,
1400–1410. doi: 10.1128/EC.00122-07

Nussbaum, G., Cleare, W., Casadevall, A., Scharff, M. D., and Valadon, P. (1997).
Epitope location in the Cryptococcus neoformans capsule is a determinant of
antibody efficacy. J. Exp. Med. 185, 685–694.

Okagaki, L. H., Strain, A. K., Nielsen, J. N., Charlier, C., Baltes, N. J., Chretien,
F., et al. (2010). Cryptococcal cell morphology affects host cell interactions and
pathogenicity. PLoS Pathog. 6:e1000953. doi: 10.1371/journal.ppat.1000953

Panepinto, J., Komperda, K., Frases, S., Park, Y. D., Djordjevic, J. T., Casadevall,
A., et al. (2009). Sec6-dependent sorting of fungal extracellular exosomes
and laccase of Cryptococcus neoformans. Mol. Microbiol. 71, 1165–1176. doi:
10.1111/j.1365-2958.2008.06588.x

Pappas, P. G., Perfect, J. R., Cloud, G. A., Larsen, R. A., Pankey, G. A., Lancaster,
D. J., et al. (2001). Cryptococcosis in human immunodeficiency virus-negative
patients in the era of effective azole therapy. Clin. Infect. Dis. 33, 690–699. doi:
10.1086/322597

Park, B. J., Wannemuehler, K. A., Marston, B. J., Govender, N., Pappas, P. G., and
Chiller, T. M. (2009). Estimation of the current global burden of cryptococcal
meningitis among persons living with HIV/AIDS. AIDS 23, 525–530. doi:
10.1097/QAD.0b013e328322ffac

Pontes, B., Ayala, Y., Fonseca, A. C., Romao, L. F., Amaral, R. F., Salgado, L. T., et
al. (2013). Membrane elastic properties and cell function. PLoS ONE 8:e67708.
doi: 10.1371/journal.pone.0067708

Pontes, B., Viana, N. B., Campanati, L., Farina, M., Neto, V. M., and Nussenzveig, H.
M. (2008). Structure and elastic properties of tunneling nanotubes. Eur. Biophys.
J. 37, 121–129. doi: 10.1007/s00249-007-0184-9

Pontes, B., Viana, N. B., Salgado, L. T., Farina, M., Moura Neto, V., and Nussenzveig,
H.M. (2011). Cell cytoskeleton and tether extraction. Biophys. J. 101, 43–52. doi:
10.1016/j.bpj.2011.05.044

Rivera, J., Feldmesser, M., Cammer, M., and Casadevall, A. (1998). Organ-
dependent variation of capsule thickness in Cryptococcus neoformans during
experimental murine infection. Infect. Immun. 66, 5027–5030.

Rodrigues, M. L., Nimrichter, L., Oliveira, D. L., Frases, S., Miranda, K., Zaragoza,
O., et al. (2007). Vesicular polysaccharide export inCryptococcus neoformans is a
eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot.
Cell 6, 48–59. doi: 10.1128/EC.00318-06

Rozenbaum, R., and Goncalves, A. J. (1994). Clinical epidemiological study of 171
cases of cryptococcosis. Clin. Infect. Dis. 18, 369–380.

Frontiers in Microbiology | www.frontiersin.org June 2015 | Volume 6 | Article 6406

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Pontes and Frases Biophysical studies of Cryptococcus neoformans capsule

Sanford, J. E., Lupan, D. M., Schlageter, A. M., and Kozel, T. R. (1990). Passive
immunization against Cryptococcus neoformans with an isotype-switch family
of monoclonal antibodies reactive with cryptococcal polysaccharide. Infect.
Immun. 58, 1919–1923.

Schärtl, W. (2007). Light Scattering from Polymer Solutions and Nanoparticle
Dispersions. Springer Berlin Heidelberg.

Taborda, C. P., and Casadevall, A. (2001). Immunoglobulin M efficacy against
Cryptococcus neoformans: mechanism, dose dependence, and prozone-like
effects in passive protection experiments. J. Immunol. 166, 2100–2107. doi:
10.4049/jimmunol.166.3.2100

Taborda, C. P., Rivera, J., Zaragoza, O., and Casadevall, A. (2003). More
is not necessarily better: prozone-like effects in passive immunization
with IgG. J. Immunol. 170, 3621–3630. doi: 10.4049/jimmunol.170.7.
3621

Tao, Y., Zhang, L., Yan, F., and Wu, X. (2007). Chain conformation of water-
insoluble hyperbranched polysaccharide from fungus. Biomacromolecules 8,
2321–2328. doi: 10.1021/bm070335+

Veigel, C., and Schmidt, C. F. (2011). Moving into the cell: single-molecule studies
of molecular motors in complex environments. Nat. Rev. Mol. Cell Biol. 12,
163–176. doi: 10.1038/nrm3062

Wang, Y., Aisen, P., and Casadevall, A. (1995). Cryptococcus neoformans melanin
and virulence: mechanism of action. Infect. Immun. 63, 3131–3136.

Whitfield, C. (2006). Biosynthesis and assembly of capsular
polysaccharides in Escherichia coli. Annu. Rev. Biochem. 75, 39–68. doi:
10.1146/annurev.biochem.75.103004.142545

Whitfield, C., and Roberts, I. S. (1999). Structure, assembly and regulation of
expression of capsules in Escherichia coli.Mol. Microbiol. 31, 1307–1319.

Yoneda, A., and Doering, T. L. (2006). A eukaryotic capsular polysaccharide
is synthesized intracellularly and secreted via exocytosis. Mol. Biol. Cell 17,
5131–5140. doi: 10.1091/mbc.E06-08-0701

Yother, J. (2011). Capsules of Streptococcus pneumoniae and other bacteria:
paradigms for polysaccharide biosynthesis and regulation.Annu. Rev. Microbiol.
65, 563–581. doi: 10.1146/annurev.micro.62.081307.162944

Yuan, R. R., Spira, G., Oh, J., Paizi, M., Casadevall, A., and Scharff, M. D. (1998).
Isotype switching increases efficacy of antibody protection against Cryptococcus
neoformans infection in mice. Infect. Immun. 66, 1057–1062.

Zaragoza, O., Garcia-Rodas, R., Nosanchuk, J. D., Cuenca-Estrella, M., Rodriguez-
Tudela, J. L., andCasadevall, A. (2010). Fungal cell gigantismduringmammalian
infection. PLoS Pathog. 6:e1000945. doi: 10.1371/journal.ppat.1000945

Zaragoza, O., Telzak, A., Bryan, R. A., Dadachova, E., and Casadevall, A. (2006).
The polysaccharide capsule of the pathogenic fungus Cryptococcus neoformans
enlarges by distal growth and is rearranged during budding.Mol. Microbiol. 59,
67–83. doi: 10.1111/j.1365-2958.2005.04928.x

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Pontes and Frases. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) or
licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org June 2015 | Volume 6 | Article 6407

http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive

	The Cryptococcus neoformans capsule: lessons from the use of optical tweezers and other biophysical tools
	Introduction
	Studying the Capsule PS Structure using Light Scattering, Zeta Potential and Viscosity Analysis
	Different Applications of Optical Tweezers in the Examination of Capsule Structure and Function
	Conclusions and Perspectives
	Acknowledgments
	References


