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Abstract: Deep Neural Networks (DNNs) are often examined at the level of their response to
input, such as analyzing the mutual information between nodes and data sets. Yet DNNs can
also be examined at the level of causation, exploring “what does what” within the layers of the
network itself. Historically, analyzing the causal structure of DNNs has received less attention than
understanding their responses to input. Yet definitionally, generalizability must be a function of
a DNN’s causal structure as it reflects how the DNN responds to unseen or even not-yet-defined
future inputs. Here, we introduce a suite of metrics based on information theory to quantify and
track changes in the causal structure of DNNs during training. Specifically, we introduce the effective
information (EI) of a feedforward DNN, which is the mutual information between layer input and
output following a maximum-entropy perturbation. The EI can be used to assess the degree of
causal influence nodes and edges have over their downstream targets in each layer. We show that
the EI can be further decomposed in order to examine the sensitivity of a layer (measured by how
well edges transmit perturbations) and the degeneracy of a layer (measured by how edge overlap
interferes with transmission), along with estimates of the amount of integrated information of a layer.
Together, these properties define where each layer lies in the “causal plane”, which can be used to
visualize how layer connectivity becomes more sensitive or degenerate over time, and how integration
changes during training, revealing how the layer-by-layer causal structure differentiates. These results
may help in understanding the generalization capabilities of DNNs and provide foundational tools
for making DNNs both more generalizable and more explainable.
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1. Introduction

Deep neural networks (DNNs) have shown state-of-the-art performance in varied domains such
as speech synthesis [1], image recognition [2,3], and translation [4]. These immense advances have
been due to the introduction of deep learning techniques [5] to artificial neural networks and the
use of GPUs for high-speed computation [6]. Yet the performance of DNNs remains mysterious in
multiple ways. For instance, fundamental machine learning theory suggests that models with enough
parameters to completely memorize large data sets of images should vastly overfit the training data
and lead to poor generalization, especially in models that are not regularized [7]. However, in practice,
deep neural networks have good generalization performance, even when not explicitly regularized [8].
While it is well known that artificial neural networks can approximate any given function [9], how the
functions they arrive at generalize beyond their training data is less well understood.

Entropy 2020, 22, 1429; doi:10.3390/e22121429 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-6141-5750 
https://orcid.org/0000-0001-7912-1953
https://orcid.org/0000-0002-2970-0057
http://dx.doi.org/10.3390/e22121429
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/12/1429?type=check_update&version=2


Entropy 2020, 22, 1429 2 of 14

One promising approach to explaining the generalization capability of DNNs is the information
bottleneck approach [10,11]. The information bottleneck approach conceives of DNNs as optimizing
the trade-off between compression of input data into an internal representation and prediction of
an output using this representation. Proponents of this approach analyze DNNs by their behavior
in the “information plane”, composed of layer-to-input mutual information scores given a data
set as input [12]. While looking for information bottlenecks has been a rich research program,
larger networks are still plagued by information estimation issues [13], and there have been
errors in predictions or deviations for certain network topologies and activation functions [14].
More fundamentally, the information bottleneck approach is in its mathematical formulation
data-dependent, that is, its mutual information scores vary with changes to input distributions.
Yet generalizability exists for both within-distribution and out-of-distribution data and is definitionally
a function of performance across different data sets with different frequencies of inputs, or even
unknown and not-yet-defined future data sets. Therefore, to understand generalizability fully it is
necessary to focus on what is invariant in DNNs across different data sets with different properties [7].

Examining what is independent across differing data sets means investigating the causal structure
of DNNs themselves. That is, uncovering the set of causal relationships (dependencies) between the
nodes in the network using techniques from the field of causal analysis. As the causal relationships
between nodes are a function of nodes’ mechanisms and connectivity and the dependencies those entail,
these relationships are independent of any given data distribution. Information-theoretic techniques
can then capture the information contained just in the causal relationships between the nodes (the full
set of a layer’s relationships is what we refer to as the causal structure). Here, we introduce a
perturbational approach that uses information theory to track the causal influences within a DNN
in a layer-by-layer manner. Specifically, we introduce the effective information (EI), which captures
the informativeness and therefore strength of a causal relationship. The EI was originally introduced
as a information-theoretic measure of the causal relationships between two subsets of a complex
system [15]. EI has already been shown to quantify the causal structure of Boolean networks [16],
and also graphs, by measuring the amount of information contained in the dynamics of random
walkers [17]. Notably, EI has mathematical similarities to the information bottleneck approach,
although it is focused on causation and therefore differs in key ways.

To measure the EI between feedforward layers of a DNN, we evenly bin the activation range of
nodes, inject independent and simultaneous white noise (maximum entropy) into a layer, then calculate
the transmitted mutual information to the downstream targets. This captures the total amount
of information in the causal structure of that layer-to-layer connectivity. Looking across network
architectures, tasks, and activation functions, we observe that steep changes in the loss curve are
reflected by steep changes in the EI.

Additionally, EI can be used to track how the causal structures of layers in DNNs change in
characteristic ways during training. Specifically, we show how to track DNNs during training in the
space of possible causal structures (the “causal plane”), such as whether the connectivity becomes
more informationally degenerate or more sensitive. This allows us to show how DNNs develop
specific layer-by-layer causal structures as they are trained. We hypothesize that the differentiation
of layer-by-layer causal structure may assist generalizability, as networks trained on simpler tasks
show less differentiation than those trained on complex tasks, differentiation ceases or slows after the
network is fitted to its task, and redundant layers generally fail to differentiate in the causal plane.
Additionally, we show how the EI can be used to calculate the difference between the total joint
effects and the total individual effects of nodes in a layer, allowing for the measuring of feedforward
integrated information in a deep neural network [18].

The tools put forward here to assist in analyzing the causal structures of DNNs using information
theory should assist with another central problem of the field, which is that large parameterizations
often make DNNs into “black boxes” with millions of fine-tuned weights that allow for successful
performance but that are impenetrable in their operations and functions [19]. A lack of explainability
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can mask other problems, such as biases in either datasets [20] or model choice [21], and is a serious
problem for those who want to use DNNs to make life and death decisions, such as in the case of
self-driving cars [22], autonomous drones [23], or medical diagnoses [24]. Using this suit of techniques,
researchers will be able to directly observe the process during training wherein the overall causal
structure of a DNN changes, a key step to opening up the “black box” and understanding what does
what in DNNs.

2. Quantifying the Causal Structure of DNNs

Interventions (also called “perturbations”) reveal causal relationships. The set of causal relationships
(also called the“causal structure”) of a feedforward DNN is composed of layers, their respective
connections, and the activation functions of the nodes. We introduce tools to explore the hypothesis that
the generalizability of DNNs is a matter of how their causal structures differentiate to fit the tasks they
are trained on (all code is publicly available, see https://github.com/ei-research-group/deep-ei).

To investigate this issue, we make use of a formal approach widely used to study causation
where interventions are represented as the application of a do(x) operator [25]. The do(x) is normally
used to set an individual variable in a given system, such as a directed acyclic graph, to a particular
value (for instance, it has been used previously to apply individual interventions in DNNs [26,27]).
Rather than tracking individual interventions, in order to generate an analytic understanding of the full
causal structure of a DNN layer, we introduce here the use of an intervention distribution, ID, which is
a probability distribution over the do(x) operator. The ID is simply a mathematical description of a
set of interventions. The application of an ID over the inputs of a layer leads to some distribution of
effects at the downstream outputs (the ED) [28].

The informativeness of a causal relationship can be measured via information theory using an
ID. More informative causal relationships are stronger. Here, we make use of effective information
(EI), a measure of the informativeness of a causal relationship, to quantify and examine the causal
structure of a layer. Specifically, the EI is the mutual information between interventions and effects,
I(ID, ED), when ID = Hmax, the maximum-entropy distribution. Put more simply, the EI is the mutual
information (MI) following a noise injection in the form of randomization. Note that this randomization
serves multiple purposes. First, unlike the standard MI, which is explicitly a measure of correlation [29],
all mutual bits with a noise injection will necessarily be caused by that noise. Additionally, as the
maximally-informative intervention (in terms of its entropy), EI represents the information resulting
from the randomization of a variable, which is the gold standard for causation in the sciences [30],
with the number of bits revealing the strength of the causal relationship. Additionally, it can also be
thought of as an unbiased sampling of the state-space of an input, meaning that it reflects how the
network transmits out-of-distribution data. Finally, the EI can be thought of as measuring how well
the image of the function can be used to recover the pre-image, and has important relationships to
Kolmogorov Complexity and VC-entropy [31]. Most notably, previous research has shown that EI
reflects important properties for causal relationships, capturing how informative a causal relationship
is, such as their determinism (lack of noise) or degeneracy (lack of uniqueness) [16], properties which
the standard MI does not measure.

First, we introduce a way to measure the EI of layer-to-layer connectivity in a DNN, capturing
the total joint effects of one layer on another. Therefore, we start with L1, which is a set of nodes that
have some weighted feedforward connection to L2, and we assume that all nodes have some activation
function such as a sigmoid function. In order to measure EI, L1 is perturbed at maximum entropy,
do(L1 = Hmax), meaning that all the activations of the nodes are forced into randomly chosen states.
L1 = Hmax implies simultaneous and independent maximum-entropy perturbations for all nodes
i in L1:

EI = I(L1, L2) | do(L1 = Hmax) (1)

https://github.com/ei-research-group/deep-ei
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That is, the calculation is made by measuring the mutual information between the joint states of
L1 and L2 under conditions of L1 = Hmax.

EI scales across different commonly-used activation functions. Figure 1a–c shows the EI of a
single edge between two nodes, A and B, wherein A → B with increasing weight, with each panel
showing a different activation function (sigmoid, tanh, ReLU). We can see that for each isolated edge
with a given activation function there exists a characteristic EI curve dependent on the weight of
the connection from A to B, and that the shape of this curve is independent of the number of bins
chosen (8, 16, 32, and 64). At low weights, the EI shows that B is not sensitive to perturbations in A,
although this sensitivity rises to a peak in all three activation functions. The curve then decays as the
weight saturates the activation function, making B insensitive to perturbations of A.

Note that the characteristic peaks reveal which weights represent strong causal relationships
(of a connection considered in isolation). For instance, a sigmoid activation function has the most
informative causal relationship at a weight equal to Euler’s number e, a tanh activation function at
weight coth(1), and a ReLU activation function at weight 1. This indicates that the most important
weights in a DNN may be the most causally efficacious, not the highest in absolute value. For example,
with sigmoid activation functions and an extremely high weight connecting A→ B, A’s activation is
not very informative to perturb, as most perturbations will lead to a saturation of B’s output at 1.

In the case of multiple connections, the EI curve becomes a higher-dimensional EI manifold.
Figure 1d–f shows the EI(A, B → C) of a layer comprised of two nodes (A, B) each with a single
connection to C. As perturbations can interfere with one another, the EI depends not only on the
sensitivity of the relationships between nodes, but also the overlap, or degeneracy, of the network
connectivity, thus creating a manifold. For instance, in sigmoid activation functions, the EI manifold is
roughly 2-fold symmetric, which is due to the symmetric nature of the sigmoid around positive and
negative weights, combined with the symmetric nature of the network itself, as both neuron A and B
only connect to C.
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Figure 1. EI is a function of weights and connectivity. Plots (a–c) show EI vs. weight for a single
input and output neuron, using sigmoid, tanh, and ReLU activation functions, and computed using
8, 16, 32, and 64 bins. Marked is the most informative weights (in isolation) for transmitting a set of
perturbations for each activation function. Plots (d–f) show EI for a layer with two input nodes A, B
and a single output nodes C. Different activation functions have different characteristic EI manifolds.

Note that while the number of bins determines the amplitude of the curve, the rise/decay behavior
is consistent across them, indicating that as long as bin size is fixed at some chosen value, ratios and
behavior will be preserved (Figure 1 uses 30,000 timesteps for the noise injection for panels (a–c) and
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100,000 samples for panels (d–f)). That is, EI values for a DNN layer converge to a particular value
if the noise injection is long enough and the bin size is high enough, which contradicts the idea that
mutual information in a deterministic system is always infinite ([32]), as this infinity is based on the
assumption of an infinite number of bins: given a finite number of bins the EI appears to converge.
Evidence for this and more information on EI calculation can be found in the Appendix A.1.

First, however, we assess how changes to EI occur during training networks on common machine
learning tasks.

3. Information in the Causal Structure Changes During Training

To understand how the causal structures of DNNs change during learning, we tracked the EI in
networks trained on two benchmark classification tasks: Iris [30] and MNIST [33]. For Iris, we trained
networks with three densely connected layers 4→ 5→ 5→ 3, and for MNIST we used networks with
four densely connected layers 25→ 6→ 6→ 5, using sigmoid activation functions and no biases for
both tasks. For MNIST, we reshaped the inputs from 28 × 28 down to 5 × 5 and removed examples of
digits 5–9 from the dataset so that the final layer has only 5 nodes—this was necessary in order to reduce
the computational cost of accurately computing EI. Networks for both tasks were trained with MSE loss
and vanilla gradient descent with a learning rate of 0.01. We trained the Iris networks with a batch-size
of 10 for 4000 epochs and the MNIST networks with a batch-size of 50 for 500 epochs. We initialized
the weights by sampling from the uniform distribution Wij = U ([− 1√

fanin
, 1√

fanin
]). For each task and

architecture, we perform three runs with distinct initializations. Using the same respective network
architectures, we also trained networks with tanh and ReLU activation functions—results can be found
in Appendix A.2. To compute EI, we use a fixed noise injection length of 107 samples. We found that
in our networks, an injection of this length was enough to ensure convergence (see Appendix A.1).
Note, however, that wider network layers may require many more samples.

Qualitatively, we observe that the greatest changes in EI significantly match the steepest parts
of the loss curve during training and EI is generally dynamic during periods of greatest learning
(shown in Figure 2). During the overfitting period when training performance dissociated from testing
performance, EI was generally flat across all layers, indicating that the information in the causal
structure was unchanged during this period after the network had appropriately fitted.
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Figure 2. How EI evolves during training across three different runs per condition. Notably,
the largest changes in EI occur during the steepest reductions in the loss function for both Iris-trained
networks (a,b) and MNIST-trained networks (c,d).
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4. Deep Neural Networks in the Causal Plane

As discussed in Section 2, EI depends both on the weight of connections as well as their degree
of overlap, which together create the EI manifold. This indicates that EI can be decomposed
into two properties: the sensitivity of the causal relationships represented by individual weights
and the degeneracy of those relationships due to overlap in input weights. This mirrors previous
decompositions of the EI in Boolean networks or Markov chains into the determinism (here replaced
with sensitivity, since neural networks are traditionally deterministic) and degeneracy [16,17].
This breakdown of EI gives us more information than just whether EI increases or decreases, but shows
how the changes to its components lead to changes in the EI, and how EI reveals key properties of a
DNN’s causal structure.

In DNNs, the sensitivity of a layer measures how well the input transmits perturbations to the
output nodes, while the degeneracy of a layer measures how well the source of input perturbations can
be reconstructed by examining the layer output. If the source of a perturbation cannot be reconstructed
well the network is said to be degenerate. Together, these two dimensions of causal relationships form a
“causal plane” which all DNN layers occupy. As layers differentiate via learning, their causal structures
should occupy unique positions in the causal plane reflecting their contribution to the function of the
DNN by becoming more sensitive or more degenerate.

To identify the position or trajectory of a DNN layer in the causal plane, both sensitivity and
degeneracy are explicitly calculated based on the components of EI. The sensitivity is calculated by
summing the total contribution of each edge individually, in the absence of interaction effects between
parameters. Therefore, the total sensitivity from layer L1 to the next layer L2 is

Sensitivity = ∑
(i∈L1,j∈L2)

I(ti, tj) | do(i = Hmax) (2)

This is the same as calculating the EI of each (i,j) pair, but done independently from the rest of
the network. Note that in a layer wherein each node receives only one unique input (i.e., no overlap)
the sensitivity is equal to the EI.

The degeneracy of a layer measures how much information in the causal relationships is lost from
overlapping connections, and is calculated algebraically as sensitivity− EI, as sensitivity measures the
information contribution from non-overlapping connections in the network. Figure 3 shows sensitivity
and degeneracy manifolds for a layer of two input nodes and one output node (with sigmoid activations)
with varying connection weights. The difference between them creates the EI manifold.

Previous research investigating the EI of graphs (based on random walk dynamics) has led to a
way to classify different canonical networks, such as Erdős-Rényi random graphs, scale-free networks,
and hub-and-spoke models, based on where they fall in terms of the determinism and degeneracy of
random walkers [17]. For EI in DNNs a sensitivity term takes the place of determinism.

In order to visualize layer shifts between sensitivity and degeneracy we introduce the
“causal plane” of a DNN, wherein the two dimensions of the plane represent the two respective
values. The causal plane makes use of the fact that, as EI = sensitivity− degeneracy, if both increase
equally, the EI itself is unchanged. When degeneracy vs. sensitivity is plotted, points on the line y = x
represent zero EI, and we refer to this 45◦ line as the “nullcline” of the EI. Paths that move more
towards sensitivity will increase EI, and paths that move more towards degeneracy will decrease EI,
while paths along the EI nullcline will not change EI.

Here, we explore the hypothesis that the internal causal structure of a DNN shifts to match the task
it is trained on, and that this happens in specific stages throughout the training process. To investigate
this, we measured the paths of three runs on the Iris and MNIST data sets through the causal plane
during training (shown in Figure 4a–b). Of the two tasks, classifying MNIST digits is more degenerate
and complex, as the network must transform a manifold in a high-dimensional space into only 10
distinct output classes (or rather 5 for our reduced version of MNIST here). The task of classifying Iris
flowers is not as degenerate nor complex, as the network must transform a 4-dimensional space into
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three (mostly) linearly separable classes. If a network learns by matching its internal causal structure
to the data set a network trained on MNIST would shape itself to a greater degree than one trained on
Iris. This is precisely what we observe in Figure 4 wherein the MNIST-trained network shows much
greater differentiation and movement within the causal plane, while there is less differentiation in the
causal structure of the Iris-trained network as it follows the EI nullcline. In many cases, particularly for
hidden and output layers, the runs first demonstrate an increase in sensitivity (increasing the EI),
and then later an increase in degeneracy (decreasing the EI).
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Figure 3. EI is composed of sensitivity and degeneracy. The above surfaces are the sensitivity and
degeneracy of a layer with two input nodes and a single output nodes, with a sigmoid activation
function. Subtracting the surface in panel (b) from the surface in panel (a) gives the EI manifold
as in panel (c).
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Figure 4. Behavior on the causal plane during training. Paths traced on the causal plane in different
layers. All paths get less smooth over time during the period of overfitting and move about less in the
causal plane. Networks trained on the simpler Iris task (a) show less differentiation between layers
than those trained on the MNIST task (b). The causal plane shows which layers are redundant, as an
MNIST-trained network with a single hidden layer shows significant movement (c) whereas for an
MNIST-trained network with five hidden layers, all five layers show minimal movement in the plane (d).

In order to examine the hypothesis that the causal structure of layers necessarily differentiate
in response to training, the MNIST-trained network with sigmoid activation functions was modified
in two ways: in one case a hidden layer was removed, and in the other case a number of redundant
hidden layers were added (Figure 4c–d). Both modifications of the network trained as accurately as
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the previous network. In the causal plane the added redundant layers moved very little, indicating a
net-zero contribution to the EI during training (for movie see https://github.com/ei-research-group/
deep-ei). This shows how redundant layers that don’t contribute to the network’s causal structure
cluster along the EI nullcline and move little, compared to more dynamic layers.

5. Measuring Joint Effects of Layer-to-Layer Connectivity

Integrated Information Theory (IIT) has been used to assess the total information contained in joint
effects versus their independent effects in systems [34]. It is a useful tool for causal analysis, analyzing
the amount of information being integrated in a network’s causal structure [35,36]. Previously,
the integrated information has been measured as the loss in EI given a partition [37], making EI
the upper bound for integrated information. However, there is no one accepted and universal measure
of integrated information [18,38]. Instead, various measures for integrated information have been
put forward in different systems [39,40]. Traditionally, the amount of integrated information in a
feedfoward network is zero as there is no reentrant connectivity, as it is based on finding the minimum
information partition across all possible subsets of a system. However, even in a feedforward network
a layer’s nodes can still contain irreducible joint effects on another layer, and therefore we introduce a
measure, feedforward integrated information, to apply in DNNs.

Normally calculating the integrated information requires examining the set of all possible
partitions, which prohibits this method for systems above a small number of dimensions. Alternatively,
in order to assess the synergistic contribution to EI of individual edges, one would likely need to use
multivariate information theory, such as the partial information decomposition, which grows at the
sequence of Dedekind numbers as sources are included [41].

In order to avoid these issues we introduce a measure, EIparts, which is calculated based on
contributions of each edge. That is, for each node i ∈ L1 a sample ti of its activation function under a
maximum-entropy perturbation is recorded, along with that of each node j ∈ L2. To calculate EIparts,
each sample of each node is discretized into some shared chosen bin size, and the MI of each (i,j) pair
is calculated and summed:

EIparts(L1 → L2) = ∑
(i∈L1,j∈L2)

I(ti, tj) | do(L1 = Hmax). (3)

Note that for a layer with a single node, EI and EIparts are identical. The same is true when
each node of the network only receives a single edge. However, EIparts measure will necessarily miss
certain positive joint effects. Importantly, the difference between EI and EIparts measures can capture
the amount of joint effects, and therefore the amount of information the layer-to-layer is integrating
in a feedforward manner. Specifically, we compare EI, the upper bound for integrated information,
to EIparts as defined in Section 3, that is φ f eed f orward = EI − EIparts. It should be noted that φ f eed f orward,
while designed to capture total joint effects of one layer to another, is not bounded by zero and can be
negative. The sign of φ f eed f orward determines if a network’s higher-order joint effects are informative
or noisy. A network with a positive value of φ f eed f orward will contain mostly informative joint effects,
while a network with a negative value of φ f eed f orward will contain mostly noisy joint effects. Note that
its possible negative value makes it conceptually similar to the Interaction Information based on
information decomposition [42].

To understand how layer-to-layer joint effects change during training of a DNN, we analyzed how
φ f eed f orward changes during training across both Iris and MNIST data sets (see Appendix A.1 for details
on our methodology for measuring EIparts). We observe that MNIST-trained networks have higher
φ f eed f orward than Iris-trained networks, indicating that the causal structure has indeed differentiated in
accordance with the complexity of the task and requires more joint effects to learn (Figure 5). This is
likely because MNIST requires a more complex network than Iris and requires learning joint effects
instead of the more linear learning for Iris.

https://github.com/ei-research-group/deep-ei
https://github.com/ei-research-group/deep-ei
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Figure 5. Integrated Information over training. MNIST-trained networks (a,b) develop more φ f eed f orward
during training than IRIS-trained networks (c,d).

6. Discussion

Here, we have introduced information-theoretic techniques to categorize and quantify the causal
structures of DNNs based on information flows following perturbations. These techniques are built
around the effective information (EI), which we adapted to apply to DNNs. It is defined as the mutual
information following a set of perturbations of maximum entropy, and it reveals the information
contained in the causal structure of a layer. For networks trained on both Iris and MNIST tasks,
EI changed during the training period, particularly when learning actually occurred (as reflected by
step changes in the loss function).

EI depends on both the sensitivity and degeneracy of a network. The sensitivity between two
nodes reflects the strength of causal relationships in isolation and peaks at particular characteristic
weights for different activation functions (e.g., in sigmoid activation functions it peaks at e).
The degeneracy of a layer reflects the difficulty of downstream reconstruction of an upstream
perturbation due to overlap of edge weights. Analyzing the EI reveals where networks lie on
sensitivity/degeneracy space, which we call the “causal plane.” The ability to place network
architectures in this plane means we can track how any given DNN’s causal structure evolves during its
training as it moves through the space. Our results indicate that the causal structure of an DNN reflects
the task it is trained on. For instance, in the MNIST task, different layers have a clear task in the causal
structure of the DNN, reflected by each layer’s different trajectory in the causal plane, and adding new
redundant layers added no new information to the causal structure by not contributing to the EI.

These techniques offer a different approach than work on information bottlenecks [43], which is
focused on using the mutual information to measure correlations between inputs and node activity.
Both approaches have a similar goal to explain DNN generalizability and both share formal similarities,
although here the focus is on the layer-by-layer causal structure itself rather than the input of DNNs.
In the future, this work can be extended to different activation functions beyond the three considered
here [44,45], unsupervised tasks [46], recurrent neural networks such as LSTMs [47], and convolutional
neural networks [2].

These techniques open up the possibility of assessing decompositions and expansions of the EI,
such as the integrated information of DNNs (as integrated information can be calculated using the
minimum of EI between subsets of a network [15]), and integrated information is also decomposable
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into properties similar to sensitivity and degeneracy [48]. Here, a measure of integrated information,
φ f eed f orward, is outlined that measures the irreducible joint effects in feedforward layer connectivity.

All of these may help understand why certain network architectures generalize and why some
do not. In the future, these techniques also open the possibility for direct measurement of individual
instances of causation in DNNs [36].
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Appendix A

Appendix A.1. Effective Information Converges Across Measurement Schemes and Can Be Found via Extrapolation

Consider a neural network layer consisting of n input neurons with feedforward connections to m
downstream output neurons (Rn → Rm). EI is defined as the mutual information between layer input
and output following a maximum-entropy perturbation. We estimate EI first by uniformly subdividing
the range of the chosen activation function (e.g., (0, 1) for sigmoids) into B bins. Then, an input
sample is constructed by independently sampling values uniformly from the activation function
range (e.g., (0, 1) for sigmoids) for each input neuron. This vector of activations ∈ Rn is then input
(“injected”) into the layer, and the output vector ∈ Rm of activations is recorded. Using the binning
scheme, the input sample and corresponding output are each converted from a continuous value
into a discrete symbol (there are Bn symbols in the input space and Bm symbols in the output space),
and added to a 2d histogram of input–output pairs. After a number of samples are injected, discretized,
and added to the histogram, the histogram can be normalized, giving a joint distribution over layer
inputs and outputs, from which the mutual information is computed.

EIparts is computed similarly, except instead of building up one large histogram with BnBm entries,
nm histograms are computed, one for each pair of input and output neurons, each histogram with
B2 entries. Each histogram represents a joint distribution between the activations of an input neuron
and an output neuron. When EIparts is computed, the mutual information of each pair of input and
output neurons is computed from their corresponding histogram, and these nm mutual information
values are summed. Sensitivity is computed similarly to EIparts, except that when calculating the joint
distribution between input neuron i and output neuron j, instead of all input neurons taking random
values, only neuron i outputs random values, with all other input activations set to 0.

Note, however, that these techniques require a choice both of the number of noise samples used
and of the number of bins. In Figure A1, we examined how EIparts converges for a 30 → 30 dense
layer with varying number of bins. The layer was initialized with the uniform distribution from earlier
(Section 3). As we see in Figure A1, provided enough bins are used, EIparts generally converges to
about the same value regardless of the exact number of bins used. However, the number of noise
samples which must be injected for the EIparts to converge greatly increases with the number of bins.
With 256 bins, convergence of EIparts can sometimes take millions of samples, and one must therefore
be careful about specifying a precise number of samples to use when computing EIparts.

To accurately compute EIparts without having to specify a fixed number of samples, we used two
techniques. When it was computationally tractable (which it was for all the experiments presented
here), we successively double the number of samples used in the injection until the expected change
(computed with secant lines through the EIparts vs. samples plot) in EIparts of another doubling is less
than 5% of the most recently computed value. In some scenarios, this technique, which computes EI
directly, requires many millions of samples (or as many as are needed for the EIparts vs. samples line to
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level off), and therefore is often intractable for large densely-connected layers, or when a large number
of bins are used. As a more tractable alternative, for the larger layers (like those in our MNIST-trained
networks) we introduced a way to measure EIparts with varying numbers of samples and fit a curve to
the EIparts vs samples relationship. Across a range of layer connectivities and sizes, we observe that
the EIparts vs. samples curve takes the form

EIparts(s) =
A
sα

+ C

To extrapolate EIparts, we evaluate EIparts directly on 100K, 200K, . . . , 2M samples, then fit the
above curve, and evaluate it at 1015. While this method does not compute EIparts directly, we find that
in practice it gives accurate values.

Figure A1. Convergence of EIparts measures to theoretical values. The EIparts a 30→ 30 layer injected
with a sample of noise up to 108 time-steps and analyzed with different numbers of bins.

Note that these methods apply only to the computation of EIparts which we find to be
monotonically decreasing in the number of samples used to compute it. Computing the full EI is in
general a much harder problem. Figure A2 shows convergence curves for both EI and EIparts for layers
of varying width, computed with 8 bins per node. As the number of samples used increases, EI at first
increases before decreasing and leveling off by 107 samples in layers of width no greater than 6 neurons.
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Figure A2. Convergence of EI and EIparts. If evaluated on enough noise samples, EI and EIparts

converge. In panels (a,b), we show how EI and EIparts, respectively, converge for dense layers of
varying width, initialized with the distribution U ([− 1√
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, 1√
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]). In panels (c,d), we show the same,

but with weights sampled from U ([− 5√
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, 5√
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Appendix A.2. Effective Information Tracks Changes in Causal Structure Regardless of Activation Function

Causal relationships should depend on activation functions. To test this, we further examined
the EI of Iris and MNIST-trained networks, yet with tanh and ReLU activation functions
(shown in Figure A3). Despite using different initializations, training order, and activation functions,
the changes in EI during training were broadly similar, although each choice of activation function
changed precise behavior in EI.
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Figure A3. Changes in EI during training across activation functions. Tanh (a,b) and ReLU (c,d)
versions of a network trained on the reduced-MNIST task, three runs each, showing the different layers.
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