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Abstract
Annonaceous acetogenins are botanical compounds with good potential for use as insecti-

cides. In the vector, Aedes aegypti (L.) (Diptera: Culicidae), squamocin (acetogenin) has

been reported to be a larvicide and cytotoxic, but the modes of action of this molecule are

still poorly understood. This study evaluated the changes in the cell morphology, and in

the expression of genes, for autophagy (Atg1 and Atg8), for membrane ion transporter

V-ATPase, and for water channel aquaporin-4 (Aqp4) in the midgut of A. aegypti larvae
exposed to squamocin from Annona mucosa Jacq. (Annonaceae). Squamocin showed

cytotoxic action with changes in the midgut epithelium and digestive cells of A. aegypti lar-
vae, increase in the expression for autophagy gene Atg1 and Atg8, decrease in the expres-

sion of V-ATPase, decrease in the expression of Aqp4 gene in LC20 and inhibition of Apq4
genes in the midgut of this vector in LC50. These multiple modes of action for squamocin

are described for the first time in insects, and they are important because different sites of

action of squamocin from A.mucosamay reduce the possibility of resistance of A. aegypti
to this molecule.

Introduction
Some natural products from plants has been identified and isolated with insecticidal against
various insects. These have been obtained from plants and have been identified and isolated
(for review see Okwute) [1]. However, the focus of these studies is to find molecules with
potential for the synthesis of new insecticides, which act against several molecular targets in the
insects [2].

Among these natural compounds, acetogenins from Annonaceae plants are compounds
with good potential for use as insecticides [3]. It is quite likely that there are other botanical
compounds whose modes of action of acetogenins against insects are poorly understood. In
mammals, acetogenins are potent inhibitors of mitochondrial complex I, inhibiting nicotin-
amide adenine dinucleotide hydride (NADH) ubiquinone oxidoreductase, an essential enzyme
in the complex I [4]. Acetogenins bind on the catalytic site of ubiquinone in the complex I as
well as in the microbial glucose dehydrogenase inhibiting NADH oxidase in cancer cells [4].
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Because acetogenins affect cellular respiration, especially during the conversion of energy
[5], they may be important components in management programs to avoid insect resistance to
these molecules. Molecules with specific or multiple sites of action may be a power tool in miti-
gating insect resistance to insecticides. In addition, unexplored compounds may have different
sites of action, may be selective in safety to humans and the environment [6]. In general, sec-
ondary plant metabolites play some role of interference in critical components of the cell sig-
naling system, nervous system (e.g., neurotransmitter synthesis, receptors activation and signal
transduction), metabolic pathways and the enzymes activities [7].

The search for alternatives to control disease vectors, especially Aedes aegypti (Diptera: Culi-
cidae), the main vector for yellow fever, dengue [8], chikengunya fever [9] and zika virus [10] is
urgently required. This mosquito is difficult to control because it adapts well to the environ-
ment due to its resilience and ability to overcome population disturbance caused by human
interventions [11,12]. In addition, A. aegypti has developed rapid resistance for conventional
insecticides, and to date, its resistance is reported for 35 active ingredients [13]. In Brazil, the
main strategies used in the control of A. aegypti are based on the chemicals that act as acetyl-
cholinesterase inhibitors, axonic nerve poisons, and insect growth regulators [14,15]. Thus, the
use of alternative molecules with multiple sites of action is important to control this resistant
species of mosquito.

In A. aegypti, different classes of acetogenins have been tested [16–18], and squamocin
(acetogenin from A. squamosa seed) had cytotoxic and larvicidal activities against this vector
[18]. However, as with many other botanical molecules, there are no data about its modes of
action in this insect. In this study, we tested a squamocin isolated from A.mucosa seeds against
the larvae of A. aegypti, and describe the changes in the cell morphology, and in the expression
of genes involved in cell death processes and in plasma membrane transport in the midgut,
thus increasing our understanding of the possible modes of action of this molecule.

Materials and Methods

Acetogenin
The squamocin was obtained from the Research Laboratory of Natural Resources (LPqRN) of the
Federal University of Alagoas, Maceió, Alagoas, Brazil. Squamocin (CAS number: 120298-30-8) is
a white solid wax obtained from amethanolic extraction of Annona mucosa seeds following by a
successive partition with chloroform (85.4 g; 57.3%). This compound was pre-solubilized in 1%
dimethylsulfoxide and dissolved in distilled water, resulting in a stock solution of 10 μg/mL.

Insects
Third instar larvae of A. aegypti previously fed with cat food (Whiskas) were obtained from
mass rearing in the insectary of the Laboratory of Molecular Biology of Insects of the Federal
University of Viçosa (UFV), Minas Gerais, Brazil. The insect colonies and the bioassays were
performed at 25 ± 2°C, with a 12 hours photoperiod.

Preliminary tests were conducted to determine the toxicity of squamocin, and to set its
lethal concentration (LC) and lethal time (LT) against third instar larvae of A. aegypti, and the
bioassays were performed with the sublethal concentrations LC20 and LC50, because higher
concentrations these larvae have a high level of lethargy.

Midgut cytotoxicity
The A. aegypti larvae were exposed to the acetogenin at concentrations of 0.004 μL/mL (LC20)
and 0.01 μL/mL (LC50) for 6 and 12 hours, along with control with untreated larvae at the
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same times. For analysis in light microscope, ten larvae per treatment were dissected in 2%
paraformaldehyde fixative solution and stored for 12 hours at 4°C. Then, the samples were
dehydrated in a graded ethanol series (30–100%) and embedded in historesin (JB4 Poly-
sciences). Slices of 5 μm thickness were stained with hematoxyline and eosin and, examined
and photographed in light microscope (Olympus BX60).

For ultrastructural analyses of the midgut in A. aegypti larvae treated with acetogenin at
LC20 and LC50 for 6 and 12 hours, the organs were transferred to 2.5% glutaraldehyde in 0.1 M
sodium cacodylate, pH 7.2 for 2 hours. The samples were post-fixed in 1% osmium tetroxide
for 2 hours at room temperature in the dark, dehydrated in a graded of ethanol series and
embedded in LRWhite resin [19]. Ultrathin sections were stained with 2% aqueous uranyl ace-
tate and 1% lead citrate and examined in a Zeiss EM 109 or LIBRA 120 transmission electron
microscope.

RNA preparation
The midgut from 10 larvae exposed to each squamocin concentration of 0.004μL/mL (LC20)
and 0.01μL/mL (LC50) for 0.5, 1, 2, 3 and 4 hours for Atg1 and Aqp4 and 5, 10, 15 and 17 hours
for Atg8 and V-ATPase, and the control, were dissected and transferred to RNAlater (Sigma-
Aldrich). Then the samples were transferred to 500 μL of Tri-reagent (Sigma), homogenized
and centrifuged at 12,000 × g for 10 minutes at 4°C. To the supernatant was added 100 μL of
chloroform, following incubation for 10 minutes and centrifugation at 12,000 × g for 15 min-
utes at 4°C. The aqueous phase was transferred to 250 μL of 2-propanol, incubated for 10 min-
utes in ice and centrifuged at 12,000 × g for 10 minutes. The pellet was washed twice with
500 μL of 75% ethanol and centrifuged at 12,000 × g for 5 minutes. The pellet was then air
dried and resuspended in 20 μL of ultrapure water. The amount of RNA was determined with a
NanoDrop Lite Spectrophotometer (Thermo Scientific), and its sample integrity was verified
by agarose gel electrophoresis in Tris/Borate/EDTA buffer.

Synthesis of cDNA
The RNA (500 ng) obtained from the midgut of A. aegypti larvae treated with squamocin at
each concentration and time and control was transferred to 1 μL of 2.5 mM dNTP mix (dATP,
dGTP, dCTP and dTTP), 1 μL 100 μM primers oligo (dT) and ultrapure water to 10 μL final
volume. After mild vortexing, the samples were incubated for 3 minutes at 70°C and cooled in
ice. Next, were added 4 μL of buffer (500 mM Tris-HCl pH 8.3, 500 mM KCl, 30 mMMgCl2,
50 mMDTT), 1 μL of M-MuLV reverse transcriptase enzyme (Invitrogen) and ultrapure water
to 20 μL final volume. These samples were incubated for 1 hour at 37°C, following enzyme
inactivation at 72°C for 15 minutes. The cDNA obtained was quantified in a spectrophotome-
ter NanoDrop Lite.

Real Time qPCR (RT-qPCR)
The genes tested were Atg1 and Atg8 for autophagy, Aqp4 for aquaporin, V-ATPase type for
membrane ion transport, and the rp7S ribosomal protein as reference from their primers
(Table 1) [20].

For the determination of gene expression, cDNA samples from the midgut of A. aegypti lar-
vae treated at different concentrations and times of acetogenin and control were submitted to
RT-qPCR (Eco Real-Time PCR System- Illumina) in quadruplicate using the quantitation fluo-
rescence kit GoTaq1Master Mix (Promega). The final primer concentration was 0.1 μM.

The relative expression of the genes was obtained using the Cycle Threshold method. The
Ct values were subjected to 2-ΔΔCt to determine the gene expression [21].
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Statistical analysis
The gene expression data for Atg1, Atg8, Aqp4 and V-ATPase were subjected to one-way analy-
sis of variance, considering as factors the lethal concentration, and the exposition time followed
by a post-hoc Tukey HSD test at 5% significance level.

Results
Squamocin at sublethal concentrations LC20 and LC50 showed cytotoxic effect in the midgut cells
of A. aegypti larvae exposed for 6 and 12 hours, although these changes were not dose dependent.

In the control insects, the midgut digestive cells were columnar, with homogenous cyto-
plasm, median spherical nucleus with nucleoli (Fig 1A), and with a well-developed apical
brush border (Fig 1B).

All larvae exposed to squamocin, independently of doses and exposure times, showed dam-
aged digestive cells (Fig 2A), with presence of vacuoles in the apical and basal cytoplasm (Fig
2B and 2C), and disorganized brush border (Fig 2B and 2D).

Table 1. Primers used in the bioassay of gene expression by real-time quantitative PCR.

Gene Forward primer Reverse primer

Atg1 5’CCTGACTGGTAAGGCACCAT 3’ 5’GTTGTTGCTGCTGGAGTTGA3’

Atg8 5’GGAAGAACACCCATTCGAGA3’ 5’AGCCGATGTGGTGGAAT3’

V-ATPase 5’GTTGTTCTGGCTCTGCTGTTA3’ 5’GAGTGTTCTCGATAAGCCATAATC 3’

Aqp4 5’ATGCCACTGCTTGTCCCTAC 3’ 5’TTTCCGAAATGACCTTGGAG 3’

rp7S 5’TCAGTGTACAAGAAGCTGACCGGA 3’ 5’TTCCGCGCGCGCTCACTTATTAGATT 3’

doi:10.1371/journal.pone.0160928.t001

Fig 1. Photomicrographs of the midgut of Aedes aegypti third instar larvae (control). (A) Epithelium with a
single layer of columnar digestive cells (DC), with spherical nucleus (N) containing nucleolus (arrow). (B)
Epithelium showing well-developed apical brush border (arrowhead). L = lumen. Bar = 5μm.

doi:10.1371/journal.pone.0160928.g001
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Ultrastructural analyses of the midgut cells in the A. aegypti larvae showed that control ones
had digestive cells with well-developed mitochondria and microvilli (Fig 3A), whereas those

Fig 2. Photomicrographs of the midgut in Aedes aegypti third instar larvae exposed to sublethal doses
LC20 and LC50 of squamocin. (A) Disorganized midgut epithelium (EP) (LC20). (B) Digestive cells (DC) with
vacuoles (*) in the apical cytoplasm and disorganized brush border (arrowhead) (LC50). (C) Digestive cells with
vacuoles (v) in the basal cytoplasm (LC20). (D) Digestive cells with damaged striated border (arrowhead) and
vacuoles (v) (LC20). N = nucleus, L = lumen. Bars = 5μm.

doi:10.1371/journal.pone.0160928.g002
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Fig 3. Transmission electron micrographs of the digestive cells in the midgut of Aedes aegypti third instar larvae. (A) Midgut cell with long
microvilli (arrows) associated with mitochondria (M) in the control larvae. (B) Midgut cell showing disorganized microvilli (arrows) in larvae exposed to
LC50 acetogenin. (C) Middle-basal cell region showing mitochondria (M) and large vacuoles (V) in the larvae exposed to LC20 acetogenin. (D) Middle-
basal cell region showing presence of large vacuoles (V) with lamellar content (arrowhead) in larvae exposed to LC20 acetogenin. bl–basal lamina.

doi:10.1371/journal.pone.0160928.g003
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exposed to LC20 and LC50, independently of exposure times, showed damages in the cell sur-
face with microvilli loses (Fig 3B) and cytoplasm containing many large vacuoles with lamellar
content (Fig 3C and 3D).

To verify whether morphological changes in the digestive cells of A. aegypti larvae exposed
to sublethal concentrations of squamocin results from the action of this molecule in cell death
processes and/or membrane transporters, some gene expressions were evaluated.

The Atg1 expression in the midgut of A. aegypti larvae in LC20 was higher after 1 hour of
exposure to squamocin when compared to the other times and the control (F5,12 = 11.16;
p = 0.0004) (Fig 4A) in the same manner as in LC50 (F5,12 = 4.571; p = 0.0145) (Fig 4B).

The expression of Atg8 in the midgut of A. aegypti larvae in LC20 was similar to control in
all exposure times (F4,15 = 0.7548, p = 0.5704) (Fig 5A). In the LC50, after 15 hours of exposure
to squamocin there was higher Atg8 expression in comparison with other periods and control
(F4,15 = 3.900; p = 0.0230) (Fig 5B).

The expression of the gene for V-ATPase in the midgut of A. aegypti larvae in the LC20 was
lower than in control at all periods tested (F4,15 = 7.581, p = 0.0015) (Fig 6A). Larvae treated
with LC50 for 17 hours had lower expression than other animals (F4,15 = 3.736, p = 0.0266)
(Fig 6B).

The expression of aquaporin gene Aqp4 decreased when larvae were treated with LC20 squa-
mocin in all periods in comparison with control (F5,12 = 6.204; p = 0.0046) (Fig 7). However,
when subjected to LC50 expression was inhibited in the midgut of A. aegypti third instar larvae

Discussion
Our results show that squamocin from A.mucosa seed affect cell morphology and physiology
of A. aegypti third instar larvae in sublethal doses, and these effects may negatively affect the fit-
ness of this vector. In the midgut digestive cells, squamocin causes loss of microvilli and intense
cytoplasm vacuolization with lamellar bodies. Similar to that found for squamocin, other
chemical compounds have been reported to have toxic effects against larvae of A. aegypti and
other mosquitoes, with damages in the gut cells, mitochondrial cristae, brush border

Fig 4. Relative mRNA levels of Atg1 in the midgut of Aedes aegypti third instar larvae exposed to sublethal doses of squamocin and at different
times. (A) Lethal concentration of 20% of population (LC20). (B) Lethal concentration of 50% of population (LC50). The y-axis indicate the relative gene
expression, corresponding to the Atg1mRNA levels relative to ribosomal protein rp7S (reference) gene mRNA level (mean ± se). * p < 0.05.

doi:10.1371/journal.pone.0160928.g004
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alterations, increase in autophagic vacuoles, membrane cell rupture, cell detachment from
basal membrane, and presence of large cytoplasm vacuoles [22–27].

The presence of many vacuoles with lamellar content in the digestive cells of A. aegypti lar-
vae treated with acetogenin, suggests a possible occurrence of cell death [25, 28]. Although the
presence of vacuoles with lamellar content occurs in the midgut cells of some insects [26,27],
the intense cytoplasm vacuolization has been characterized as cell death process by autophagy
[29–31]. Cell death by autophagy in the digestive cells of A. egypti larvae after exposure to squa-
mocin is supported by the increase in the Atg1 and Atg8 expression in these insects. There was
a higher expression of Atg1 after 1 hour of exposure to squamocin in both LC20 as the LC50,
suggesting that after this short period, cells undergo autophagy. Atg1 is a gene regulatory of
autophagy induction and its is sufficient to induce hight leves of autophagy [32]. The putative
complex ATG1 (serine/threonine kinase) is a protein involved in the autophagy induction
[28], and its activation promotes the recruitment of other ATG proteins forming preautopha-
gosomes [33]. The protein, ATG8, is an ubiquitin involved in the expansion of autophagosome
vesicle used as a molecular marker for the autophagy [29], and the increase of Atg8mRNA
level in the midgut of A. aegypti larvae exposed to LC50 squamocin indicates the occurrence of
autophagy in these cells.

Neither cytotoxic effect nor changes in the Atg8 expression are dose dependent in the mid-
gut of A. aegypti larvae. The main function of ATG8 in the autophagy is to bind regulatory
and/or autophagy-regulated proteins and guide them to their site of action in the autophago-
some membrane[33,34]. This process may occur in A. aegypti larvae in the first 5 hours of
squamocin exposure, or, in this period, may occur in the formation of larger autophagosome,
because the amount of ATG8 determines the size of an autophagosome vacuole [35]. ATG8 is
the unique structural protein known to remain in autophagosome membrane after its forma-
tion [29,35], which may explain the expression of this gene in the digestive cells of A. aegypti
larvae even 17 hours after exposure to squamocin. Anyway, the presence of ATG8 occurs only
after ATG1 synthesis[34–38]. Kamada et al. [36] supports that in the midgut digestive cells of
A. aegypti larvae, squamocin promotes an increase in autophagy rate.

Fig 5. Relative mRNA levels of Atg8 in the midgut of Aedes aegypti third instar larvae exposed to sublethal doses (LC20 and LC50) of squamocin
and control at different times. (A) Lethal concentration of 20% of population (LC20). (B) Lethal concentration of 50% of population (LC50). The y axis
indicates the relative gene expression corresponding to the Atg8mRNA levels relative to ribosomal protein rp7S (reference) gene mRNA level (mean ± se). *
p < 0.05.

doi:10.1371/journal.pone.0160928.g005
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Fig 6. Relative mRNA levels of V-ATPase in the midgut of Aedes aegypti third instar larvae exposed to sublethal doses (LC20 and LC50) of
squamocin and control at different times. (A) Lethal concentration of 20% of population (LC20). (B) Lethal concentration of 50% of population (LC50). The
y axis indicates the relative gene expression, corresponding to the V-ATPasemRNA levels relative to ribosomal protein rp7S (reference) gene mRNA level
(mean ± se). * p < 0.05.

doi:10.1371/journal.pone.0160928.g006

Fig 7. Relative mRNA levels of Aqp4 in the midgut of Aedes aegypti third instar larvae exposed to sublethal
dose (LC20) of squamocin and control at different times. The y-axis indicates the relative gene expression
corresponding to the Aqp4mRNA levels relative to ribosomal protein rp7S (reference) gene mRNA level
(mean ± se). * p < 0.05.

doi:10.1371/journal.pone.0160928.g007
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Changes in the brush border, and the vacuolization of apical cytoplasm of digestive cells in
A. aegypti larvae exposed to sublethal doses of squamocin, may be due to changes in the water
balance, as suggested for some neurotoxic insecticides in nontarget organs such as the gut
[26,39–41]. The squamocin decreases the expression of V-ATPase gene in the midgut of A.
aegypti larvae compared with the control. ATPases are cell membrane enzymes, especially in
the gut epithelium, which mediate absorption and transport of metabolites and nutrients, as
well as ions and nonelectrolytes [42]. In A. aegypti larvae, the V-ATPase is located in the baso-
lateral membrane of the anterior midgut and in the apical cell membrane of the posterior mid-
gut region [43, 44]. Thus, the decrease in the expression of V-ATPasemay be also associated
with autophagy in the midgut of larvae studied here. The relationship between autophagy and
V-ATPase inhibition observed in A. aegypti larvae exposed to squamocin has been found in
cancer cells exposed to the V-ATPase inhibitor archazolid [45].

Another effect of squamocin in the midgut in A. aegypti larvae is in the expression of aqua-
porin gene Aqp4. When treated with a low squamocin concentration (LC20) of the Aqp4
expression decreased in the first hour of treatment, whereas after high concentration (LC50)
the gene is inhibited. AQP4 is highly produced in the midgut of A. aegypti, and it is an aquagli-
ceroporin of the aquaporin superfamily [46] playing an important role in water transport and
in the absorption of polyols, urea and trehalose, which shows that AQP4 is a multifunctional
membrane transporter [47]. Together, decrease and inhibition of Aqp4 and decrease of
V-ATPase expression in the midgut of A. aegypti larvae exposed to squamocin, suggest that
this molecule may affect water and ion transport, which are important for the maintenance of
cell osmotic balance, resulting in digestive cell injuries. The block of substances transported
across the midgut plasma membrane may activate autophagy in these cells, which, despite its
essential role for the maintenance of cell homeostasis, when activated in excess, may destroy
cellular proteins and organelles, resulting in cell collapse [48]. Our findings show that squamo-
cin increases the cytoplasm vacuolization in the digestive cells probably due to the action of
Atg8 that is increased and triggered by inhibition of V-ATPase and Aqp4 genes responsible for
coding two important membrane carriers.

Our study shows that squamocin in sublethal doses causes severe reactions in the midgut
digestive cells of A. aegypti larvae, linked with dowregulation of V-ATPase and Aqp4 genes for
osmoregulatory proteins resulting in cytological abnormalities and cell death by autophagy.
Thus, the squamocin from A.mucosa herein studied in sublethal doses affects physiological
processes essential to the insect’s development. Generally, sublethal residues of insecticides
cause effects on insect development, because for its survival it is essential that many physiologi-
cal events are accurately coordinated [49].

This is the first report that an acetogenin induces autophagy, decreases V-ATPase, and
inhibits Aqp4 genes expression in insects. Overall, this finding is important because squamocin
has multiple modes of action in the midgut of an insect larva, which may reduce the possibility
of resistance of A. aegypti larvae exposed to this molecule.
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