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12-Month peak alpha frequency is a correlate but not a longitudinal 
predictor of non-verbal cognitive abilities in infants at low and high risk for 
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A B S T R A C T   

Although studies of PAF in individuals with autism spectrum disorder (ASD) report group differences and as-
sociations with non-verbal cognitive ability, it is not known how PAF relates to familial risk for ASD, and whether 
similar associations with cognition in are present in infancy. Using a large multi-site prospective longitudinal 
dataset of infants with low and high familial risk for ASD, metrics of PAF at 12 months were extracted and 
growth curves estimated for cognitive development between 12–36 months. Analyses tested whether PAF 1) 
differs between low and high risk infants, 2) is associated with concurrent non-verbal/verbal cognitive ability 
and 3) predicts developmental change in non-verbal/verbal ability. Moderation of associations between PAF and 
cognitive ability by familial risk status was also tested. No differences in 12-month PAF were found between low 
and high risk infants. PAF was associated with concurrent non-verbal cognitive ability, but did not predict 
change in non-verbal cognitive over development. No associations were found between PAF and verbal ability, 
along with no evidence of moderation. PAF is not related to familial risk for ASD, and is a neural marker of 
concurrent non-verbal cognitive ability, but not verbal ability, in young infants at low and high risk for ASD   

1. Introduction 

Oscillations in the alpha frequency band (typically 8− 12 Hz in 
adults) are the dominant rhythm captured by scalp recorded electro-
encephalography (EEG), and thus often studied in relation to psychiatric 
disorders, including autism spectrum disorder (ASD) (Newson and 
Thiagarajan, 2019). Alpha rhythms are thought to play an important 
role in cognitive functioning by modulating the degree and timing of 
cortical inhibition and communication (Chapeton et al., 2019; Klimesch, 
1999; Klimesch et al., 2007). However, findings with regard to differ-
ences in alpha power in autistic individuals are mixed. Research into the 
neurobiological basis of ASD has reported decreases (Cantor et al., 1986; 
G. Dawson et al., 1995; Shephard et al., 2018), increases (Cornew et al., 
2012) and no difference (Coben et al., 2008; Lefebvre et al., 2018) in 

alpha power in autistic individuals as compared to typically developing 
individuals. In addition to the more general sources of variation between 
samples and methodological approaches (see O’Reilly et al., 2017 for 
details), the lack of precision of in averaging across the alpha band may 
explain the lack of agreement among previous studies. 

In adults, alpha power is measured as the amount of power (μV2/Hz) 
between the boundaries of 8− 12 Hz. Prior work suggests that “alpha” is 
represented by a lower frequency range in early development and 
doesn’t become adult like until around age 11 (Samson-Dollfus et al., 
1997). 

In addition to the impact of developmental maturation on where 
exactly “alpha” is located, studies of alpha power in adults find large 
inter- and modest intra-individual differences in the peak of alpha os-
cillations (Haegens et al., 2014). This variability may lead neighboring 
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frequency band oscillations (e.g., theta, beta) to be included, and rele-
vant alpha oscillations to not be included, in the calculation of summed 
alpha power. Peak alpha frequency (PAF), the frequency at which os-
cillations in the alpha range demonstrate maximum power, may be a 
more sensitive and reliable measure of alpha band oscillatory develop-
ment (Levin et al., 2020) and has been argued to be a more precise 
measure of the magnitude of alpha oscillatory activity (Haegens et al., 
2014). PAF is not a static phenomenon over development – it has been 
shown to increase from infancy through childhood (Marshall et al., 
2002; Miskovic et al., 2015), likely a reflection of the increasing 
complexity of cortical organisation over time. In addition, in typically 
developing individuals, higher PAF is associated with better perfor-
mance on a range of cognitive tasks (for a review see Klimesch, 1999) 
and higher standardized IQ tests (Anokhin and Vogel, 1996). PAF is also 
related to neurodevelopmental delay (Dickinson et al., 2018; Edgar 
et al., 2019). One study reported higher PAF in autistic individuals 
(Edgar et al., 2019), but this effect appeared to be isolated to only the 
younger participants (<10 years old). Others report lower PAF in 
autistic vs. typically developing children (mean age 5 years) (Dickinson 
et al., 2018), or no differences (mean age 9 years) (Lefebvre et al., 2018). 
PAF at 12 and 24-month old in infants with tuberous sclerosis complex 
(TSC) did not differ on the basis of an additional diagnosis of ASD 
(Dickinson et al., 2019). Extant literature also suggests a link between 
PAF and cognitive functioning in autistic populations (Dickinson et al., 
2018, 2019; Edgar et al., 2019), similar to that found in typically 
developing groups (Klimesch, 1999). Given the cross-sectional associa-
tions between PAF and non-verbal ability in autistic individuals, PAF has 
been suggested as a potential predictor of later outcomes. This would be 
advantageous as it could be used to delineate autistic children who may 
be more likely to have later difficulties in cognitive functioning, thus 
allowing interventions to be offered to those most in need early in the 
developmental pathway (Kaaresen et al., 2008; Infant Health and 
Development Program, 1990). Thus, it is key to understand whether 
associations between PAF and relevant aspects of the autistic phenotype 
(e.g., cognitive ability) reported in autistic children and adults are also 
present in infancy. The viability of PAF as a predictor of future cognitive 
functioning also depends on whether it is associated with prospective 
change in non-verbal cognitive ability, which has yet to be established. 
In addition to the clear benefits of identifying markers of later outcomes 
in autistic individuals, establishing longitudinal associations is a key 
step in building a mechanistic model of the heterogeneity in cognitive 
outcomes in autistic individuals. Finally, although limited, there is evi-
dence to suggest associations between PAF and non-verbal ability might 
be group specific. Dickinson et al. (2018) found a positive association 
between PAF and non-verbal IQ in autistic individuals, but no associa-
tion in typically developing individuals. In the typically developing 
group PAF was predicted instead by age. Similarly, Edgar et al. (2019) 
found the association between PAF and non-verbal IQ was only present 
in the older (>10 years old) autistic individuals in their study. Although 
three studies have looked at how PAF relates to ASD diagnosis, none 
have yet tested how PAF relates to heritable risk for ASD (typically 
studied in infants who have an older sibling with a diagnosis). Knowl-
edge of how PAF relates to familial ASD risk is required to determine if it 
could be a marker of aberrant cortical development before the behav-
ioural symptoms of ASD emerge. This is especially relevant to PAF given 
its high heritability (Smit et al., 2005), making it a potential candidate to 
explore one mechanism by which heritable risk translates to differences 
in early neural and cognitive functioning. 

1.1. Current study 

We use a pooled repository of EEG and cognitive data to give 
adequate statistical power, and take advantage of repeated measure-
ments of cognitive functioning to estimate developmental trajectories of 
non-verbal/verbal cognitive ability over infancy. We test 1) whether 
differences in PAF are found between infants at low vs. high familial risk 

for developing ASD 2) whether PAF predicts both concurrent and/or 
developmental change in non-verbal ability and 3) whether associations 
between PAF and non-verbal ability are moderated by familial risk 
status. We also test the same associations with verbal ability as the 
outcome to assess specificity of findings. 

2. Method 

2.1. Sample 

We used data from the International Infant EEG Platform (EEG-IP; 
van Noordt et al., 2020). This data integration platform combines data 
from previous longitudinal infant sibling studies run by Birkbeck Uni-
versity London and the University of Washington in Seattle (for more 
details on sample breakdown and inclusion criteria see Huberty et al., 
under review). All samples within the repository were collected in 
accordance with the ethical standards of the institutional and/or na-
tional research committee and with the 1964 Helsinki Declaration and 
its later amendments or comparable ethical standards. Parents The full 
sample comprised 196 infants (n = 106 from London, n = 90 from 
Seattle). Infants were designated as being at low or high familial risk for 
ASD by virtue of either having an older sibling diagnosed with ASD or no 
family history of ASD; 49 % (n = 95) were at low risk and 51 % (n = 97) 
were at high risk (4 were missing information about risk status). ASD 
outcome (present/absent) was assessed by gold-standard diagnostic in-
struments (e.g., the Autism Diagnostic Observation Schedule (ADOS); 
Lord et al., 2000), administered at 24 and/or 36 months, along with 
clinical judgement; 17 % (n = 32) of the sample met diagnostic criteria 
for ASD. There were no site differences in the proportion at low/high 
risk (χ2 = .18, p = .67) or who did/did not receive a diagnosis of ASD (χ2 

= .16, p = .69). We present information on data points available for the 
measures used in the current analyses in Table 1. Of the full 196, 151 
had available phenotypic data and usable 12-month EEG data (see below 
for pre-processing steps). 

2.2. Measures 

2.2.1. Verbal and non-verbal ability 
The Mullen Scales of Early Learning (MSEL; Mullen, 1995) is a 

standardized assessment that is commonly used to measure cognitive 
development in young infants. The MSEL is organized into 5 subscales: 
(a) gross motor, (b) fine motor, (c) visual reception (or non-verbal 
problem solving), (d) receptive language, and (e) expressive language. 
Each subscale is standardized to calculate a t-score, standard score, 
percentile and age-equivalent score. Non-verbal ability was estimated 
using the average of the age-equivalent scores from the visual reception 
and fine motor subscales, verbal ability using the average of the 
age-equivalent scores from the receptive and expressive language 
subscales. 

2.2.2. EEG 

2.2.2.1. EEG data collection. At both sites in EEG-IP, high-density scalp 
EEG was recorded continuously using a 128-channel HydroCel Geodesic 
Sensor Net system (Electrical Geodesics, Eugene, OR). EEG data were 
collected while infants watched videos on a monitor sitting on their 
caregiver’s lap in a dark room. The Seattle sample videos consisted of a 
set of moving toys with sound, and a set of an adult woman facing the 
camera and singing nursery rhymes. The London sample consisted of the 
same videos, and there was an additional third set of videos of moving 
toys being activated by a human hand. The two video sets in the Seattle 
sample lasted 60 s each and the three video sets in the London sample 
lasted 30− 40 s each. 

2.2.2.2. EEG pre-processing. In EEG-IP, raw data contributed by each 

V. Carter Leno et al.                                                                                                                                                                                                                           



Developmental Cognitive Neuroscience 48 (2021) 100938

3

site was harmonized and standardized in order to be maximally 
compatible. Several open source solutions were employed, including use 
of the Brain Imaging Data Structure extension to EEG (Pernet et al., 
2019) and standardized pre-processing using the Lossless Pipeline (htt 
ps://github.com/BUCANL/bids_lossless_eeg; Desjardins et al., under 
review). Briefly, the pre-processing involved a set of automated pro-
cedures to identify unreliable signals and non-stationarity in scalp 
channels and independent components and their time courses. 
Comprehensive data annotation was integrated with the raw EEG signals 
for expert quality control review. Further details of pre-processing and 
quality control procedures in EEG-IP are provided (Desjardins et al., 
under review; van Noordt et al., 2020). Although EEG data were avail-
able from 155 infants at 12-months, two participants had no data on 
non-verbal/verbal cognitive or risk status so were excluded prior to EEG 
pre-processing. Participants who had <8 epochs after data cleaning 
were excluded (n = 2), leaving a total of 151 participants with usable 
EEG data (n = 83 from London, n = 68 from Seattle). 

2.2.2.3. Spectral decomposition. EEG channels were interpolated to 
correspond to the 10–20 system (F7, Fpz, AF8, F3, Fz, F4, FT7, C3, Cz, 
C4, FT8, TP7, P3, Pz, P4, TP8, PO7, Oz, PO8). Data were segmented into 
4000 ms 50 % overlapping epochs. For each electrode, power spectral 
density (PSD) of the area under the curve (trapezoidal numerical inte-
gration) was computed with the Welch method using the pwelch function 
in MATLAB. A Hamming window was applied before estimating a 
modified periodogram with a 0.25hz frequency bin resolution (4 s) for 
each segment. Periodograms for all segments were averaged to produce 
a final spectral estimate. Electrode-level estimates of PSD were averaged 
to generate frontal (F3, F4, Fz), central (C3, C4, Cz), parietal (P3, P4, Pz) 
and occipital (PO7, PO8, Oz) ROIs. 

2.2.2.4. Extraction of PAF. The fitting oscillations and one over f 
(FOOOF) algorithm was used to parameterize neural power spectra and 
obtain individual PAF values (Donoghue et al., 2020). The FOOOF al-
gorithm first estimates and removes the aperiodic ‘background’ slope 
(the dotted background line in Fig. 1) from the absolute PSD. After 
removing the aperiodic slope component, the remaining periodic oscil-
latory peaks are modelled as individual Gaussian curves. Each oscilla-
tory peak is characterised by its own amplitude, centre frequency, and 
bandwidth. This algorithm has been shown to extract reliable estimates 

from populations of youth with ASD (Levin et al., 2020), and allows one 
to extract estimates of alpha oscillations that take account of variation in 
aperiodic background activity. Input parameters for the algorithm were 
set as: peak width limits: 1.0–10.0; max number of peaks: 3; minimum 
peak height: 0.4; peak threshold: 1.85; and aperiodic mode: fixed. These 
settings were chosen by visually inspecting model fit across a range of 
parameters (blind to risk group or outcome) and selecting those that 
gave a model that best matched the original raw PSDs without over-
fitting (see Fig. 1 for examples of FOOOF outputs with and without a 
clear alpha peak). 

Power spectra were parameterized across the frequency range 2–40 
Hz. Analyses focused on PAF extracted from the central ROI as it had the 
highest number of participants with an identifiable peak in the 6− 12 Hz 
range (127/151, 84 %); this corresponds with previous reports of reli-
able identification of the alpha rhythm across central ROIs in infancy 
(Marshall et al., 2002) and the topographic location of ASD case-control 
differences (Dickinson et al., 2018, 2019). Only those with an identifi-
able peak in the 6− 12 Hz range could be included in the analyses; we 
selected this frequency range based on previous developmental work 
suggesting 6 Hz is an appropriate lower bound for the alpha rhythm in 
infants from 5 months upwards (Marshall et al., 2002). Fig. 2 displays 
PSDs for the whole sample to illustrate there was a clear peak in the 
6− 12 Hz range. There were five participants where FOOOF identified 
two peaks in 6− 12 Hz range in the central ROI; in these participants the 
higher value was taken as their PAF. There were no significant differ-
ences in the proportion of participants who had an identifiable peak by 
site (χ2 = .28, p = .59) or risk status (χ2 = .62, p = .43). 

2.3. Statistical analysis 

All analyses were conducted in Stata 14. First, we used an analysis of 
variance (ANOVA) to test whether 12-month PAF differed by familial 
risk (low vs. high), whilst adjusting for age at 12-month assessment and 
site (London vs. Seattle). Next, a latent growth curve model (GCM) was 
fit to the non-verbal/verbal AE data using the sem command. Intercept 
(the estimated non-verbal/verbal ability at 12 months) and slope (the 
estimated change in non-verbal/verbal ability over time) were specified 
as latent variables, which varied across individuals. We then tested 
whether 12-month PAF significantly predicted concurrent non-verbal/ 
verbal ability (the intercept), and the rate of non-verbal/verbal ability 
development from 12 to 36 months (the slope), while controlling for age 

Table 1 
Data Availability and Sample Characteristics.   

Whole Sample Low Risk High Risk  

N (London/ 
Washington) 

Mean (SD; range) Mean (SD; range) Mean (SD; range) 

12 month visit 182 (100/82)    
Age at visit  13.03 (1.43; 11− 18) 13.08 (1.41; 11− 17) 12.98 (1.45; 11− 18) 
MSEL non-verbal AE  15.47 (1.98; 8.5− 23) 16.03 (1.79; 16− 24.5) 14.96 (2.01; 8.5− 23) 
MSEL verbal AE  12.51 (2.61; 7.5− 22) 12.97 (2.33; 9− 22) 12.08 (2.80; 7.5− 22) 
Peak alpha frequency (Hz)  7.45 (0.44; 6.35− 8.88) 7.44 (0.47; 6.35− 8.88) 7.46 (0.43; 6.61− 8.87)  

18 month visit 78 (0/78)    
Age at visit  18.10 (0.52; 17− 20) 18.10 (0.60; 17− 20) 18.10 (0.45; 17− 20) 
MSEL non-verbal AE  19.53 (1.88; 15.5− 24.5) 19.82 (1.75; 16− 24.5) 19.23 (1.98; 15.5− 24) 
MSEL verbal AE  17.89 (3.78; 7.5− 27) 18.14 (3.22; 10− 24) 17.64 (4.28; 7.5− 27)  

24 month visit 138 (95/43)    
Age at visit  24.04 (1.00; 21− 28) 23.88 (0.66; 23− 26) 24.13 (1.14; 21− 28) 
MSEL non-verbal AE  25.69 (3.45; 17.5− 36.5) 26.80 (3.61; 18.5− 36.5) 25.12 (3.23; 17.5− 34) 
MSEL verbal AE  25.86 (5.32; 11.5− 39.5) 28.09 (4.20; 17− 39.5) 24.70 (5.49; 11.5− 34.5)  

36 month visit 100 (100/0)    
Age at visit  37.93 (3.02; 32− 53) 38.23 (3.05; 25− 51) 37.66 (2.99; 32− 53) 
MSEL non-verbal AE  41.07 (6.65; 21− 59.5) 42.80 (5.06; 27.5− 55.5) 39.46 (7.54; 21− 59.5) 
MSEL verbal AE  41.44 (8.39; 8.5− 58.5) 44.11 (6.68; 31.5− 58.5) 39.02 (9.08; 8.5− 56.5) 

AE = age equivalent, MSEL = Mullen Scales of Early Learning, SD = standard deviation. 
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at 12-month assessment, familial risk and site (see Fig. 3 for a diagram of 
the model with non-verbal ability as the outcome). We tested whether 
there were any differences in the association between 12-month PAF and 
non-verbal/verbal ability intercept or slope by risk status by including a 
PAF-by-risk interaction term as an additional predictor. We also assessed 

the impact of infants who went onto receive a diagnosis of ASD in 
toddlerhood by excluding them and re-running longitudinal analyses 
(the group was not large enough to run robust moderation analyses in 
the same manner as with risk status). To assess the impact of the 11 
infants who were aged >40 months at their 36-month visit (7 low risk, 7 
high risk) upon results, analyses were re-run without these participants 
(Supplementary Materials). All models were estimated using method 
(mlmv) to account for missing data under the “missing at random” 
assumption, under which missingness is assumed to relate only to 
observed variables in the model. The inclusion of site accounts for the 
differing measurement schedules at each with data missing by design. 
Wald tests were used to assess the significance of paths. All reported path 
coefficients are unstandardized coefficients. 

3. Results 

3.1. Sample characteristics 

See Table 1 for sample means of PAF, age at 12-month visit and non- 
verbal/verbal ability age-equivalent scores between 12 and 36 months. 
In addition to the information displayed in Table 1, we assessed site 
differences before running growth curve models. The mean age at the 12 
month visit differed by site, with infants completing assessments at an 
older age in London compared to Seattle (13.79 months vs. 12.10 
months; t(181) = 9.86, p < .01). A trend was observed for site differ-
ences in PAF (t(125) = 1.85, p = .07), with an average PAF of 7.52 Hz in 
London as compared to 7.37 Hz in Washington. 

3.2. PAF and risk status 

Analyses did not show differences in 12-month PAF between infants 
with low vs. high familial risk for ASD (F(1, 125) = .01, p = .94) (see 
Fig. 4). The mean PAF in the low risk group was 7.44 Hz (range =
6.35− 8.88 Hz), and the mean PAF in the high risk group was =7.46 Hz 
(.43, range = 6.61− 8.87 Hz). 

3.3. PAF and non-verbal ability 

3.3.1. Predictors of 12-month PAF 
12-month PAF was significantly associated with age at the 12-month 

visit (b = .08, 95 % CIs = .02 − .14, p < .01), but not risk (b = .03, 95 % 
CIs = -.12 − .18, p = .68), nor site (b =-.01, 95 % CIs = -.19 − .18, p =
.96). 

3.3.2. Predictors of intercept 
Risk (b= -.95, 95 % CIs = − 1.39 to − .50, p < .01), age at the 12- 

month visit (b = .56, 95 % CIs = .36 − .76, p < .01) and 12-month 
PAF (b = .84, 95 % CIs = .22–1.46, p = .01), all predicted non-verbal 

Fig. 1. Illustration of the parameters extracted by the FOOOF algorithm. 
The figure on the left demonstrates an example of appropriate alpha peak identification, whereas the figure on the right demonstrates an example of a participant 
who had no clear alpha peak. Power values are log transformed. 

Fig. 2. 12-month power spectral density’s (PSD) at 0-40 Hz for all participants 
at central (C3, C4, Cz) region of interest. 
Peak alpha frequencies were extracted from the highlighted frequency range 
(6− 12 Hz). Power values are log transformed. 

Fig. 3. Growth Curve Model to Test Concurrent and Longitudinal Associations 
between Peak Alpha Frequency (PAF) and Cognitive Development. 

V. Carter Leno et al.                                                                                                                                                                                                                           



Developmental Cognitive Neuroscience 48 (2021) 100938

5

ability intercept, with being in the low risk group, being older and 
having a higher PAF all associated with higher non-verbal ability at the 
12-month visit (see Fig. 5 for individual trajectories of growth in non- 
verbal ability, split by risk group). Site was not a significant predictor 
of intercept (b= -.18, 95 % CIs = -.75 − .39, p = .54). 

3.3.3. Predictors of slope 
Age at 12-month visit predicted slope (b= -.20, 95 % CIs = − .35 to 

− .06, p < .01) such that participants who were older at the 12 month 
visit had less steep slopes of change in non-verbal ability between 12–36 
months. Neither 12-month PAF (b= -.22, 95 % CIs = -.73 − .30, p = .41) 
nor risk (b= -.24, 95 % CIs = -.64 − .16,p = .25) were significant pre-
dictors (see Fig. 5). 

3.3.4. Moderation by risk 
The 12-month PAF-by-risk interaction term was not significant in the 

prediction of non-verbal ability intercept (b = 1.12, 95 % CIs = -.16 – 
2.40, p = .09) or slope (b= -.04, 95 % CIs = -.98 − .89, p = .93), sug-
gesting associations between 12-month PAF and non-verbal ability were 
comparable between low and high risk infants (see Fig. 6). When infants 
who went on to receive an ASD diagnosis in toddlerhood were excluded 
from the analyses (n = 22), risk and age at 12-month visit remained 
predictors of non-verbal ability intercept (b= -.71, 95 % CIs = − 1.17 to 
− .24, b = .60, 95 % CIs = .39 − .82, respectively, both ps<.01) but the 
association between 12-month PAF and non-verbal ability intercept 
became non-significant (b = .45, 95 % CIs = -.21 – 1.11, p = .18). 

3.4. PAF and verbal ability 

3.4.1. Predictors of intercept 
Similar to the non-verbal ability models, risk (b= -.82, 95 % CIs =

− 1.49 to − .16, p = .02) and age at the 12-month visit (b = .70, 95 % CIs 
= .40 − 1.00, p < .01) both predicted verbal ability intercept, such that 
high-risk and younger participants had lower verbal ability scores at 12 
months (see Fig. 5). Neither 12-month PAF (b = .69, 95 % CIs = -.28 – 
1.66, p = .16) nor site significantly predicted intercept (b= -.35, 95 % 
CIs = -1.18 − .47, p = .40). 

3.4.2. Predictors of slope 
Age at the 12-month visit (b= -.40, 95 % CIs = − .63 to − .18, p < .01), 

and risk predicted slope (b= -.92, 95 % CIs = − 1.53 to − .31, p < .01), such 
that infants who were older and those that were high risk had a less steep 
slope of verbal ability change between 12 and 36 months (see Fig. 5). PAF 
did not predict slope (b=-.16, 95 % CIs = -.96 − .65, p = .70). 

3.4.3. Moderation by risk 
The 12-month PAF-by-risk interaction term was not significant in the 

prediction of verbal ability intercept (b= -.63, 95 % CIs = -2.58 – 1.33, p 
= .53) or slope (b = .47, 95 % CIs = -1.04 – 1.98, p = .55), suggesting 
associations between 12-month PAF and verbal ability were comparable 
between low and high risk infants. 

When infants who went on to receive an ASD diagnosis in toddler-
hood were excluded, only age at the 12-month visit remained a predictor 
of verbal ability intercept (b = .89, 95 % CIs = .57–1.22, p < .01); 
however, both risk and age at the 12-month visit predicted verbal ability 
slope (b= -.82, 95 % CIs = -1.39 – -.25; b= -.45, 95 % CIs = -.66 – -.24, 
both p < .01) such that older participants and those with high risk had 
less steep slopes of change in verbal ability between 12–36 months. 

4. Discussion 

The current study had three aims. First, to test for differences in PAF 
between 12-month old infants at low vs. high familial risk for developing 

Fig. 4. No Difference in 12-Month Peak Alpha Frequency by Familial Risk Status. 
Although group comparisons were only made on the basis of risk, both risk and outcome groups are depicted in the figure to aid interpretation 

Fig. 5. Estimated Growth in Non-Verbal (top) and Verbal Ability (bottom) 
Between 12-36 Months in Infants at Low and High Familial Risk for ASD. 
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ASD. Second, to test whether PAF measured at 12 months was associated 
with non-verbal cognitive ability, both concurrently and longitudinally. 
Third, to test whether associations between PAF and non-verbal cogni-
tive ability were moderated by familial risk status, and to what extent 
infants that went onto receive a diagnosis of ASD in toddlerhood were 
contributing to any significant PAF- non-verbal cognitive ability asso-
ciations. We examined the same longitudinal relationships with verbal 
ability as the outcome to assess the specificity of associations between 
PAF and non-verbal vs. verbal abilities. Analyses showed there were no 
differences in 12-month PAF depending on familial risk status. As 
hypothesised, we found a positive association between PAF and con-
current non-verbal cognitive ability, replicating previous findings from 
typically developing infants and infants with TSC (Dickinson et al., 
2019). However, we did not find evidence that PAF predicted the 
development of non-verbal ability between 12–36 months. Results 
showed no strong evidence for moderation of the association between 
PAF and non-verbal cognitive ability by risk status, although we note 
that the interaction term for the association between PAF and concur-
rent non-verbal cognitive ability was marginal. We found no significant 
associations between PAF and verbal ability intercept or slope, sug-
gesting associations with concurrent PAF may be specific to non-verbal 
cognitive abilities. 

In the current sample of 12-month old infants, the average PAF was 
7.45 Hz. This is in line with previous reports of infant alpha oscillations 
that also broadly find central PAF to be around 7 Hz in the first year of 
life (Marshall et al., 2002; Stroganova et al., 1999). Across both growth 
curve models, age at the 12-month visit predicted 12-month PAF. This 
was to be expected given the reported increase in PAF across develop-
ment, but it is of interest that increasing age was associated with 
increasing PAF in a relatively narrow window (11− 18 months). This 
finding also reinforces the importance of adjusting for age when testing 
associations between PAF and non-verbal/verbal cognitive ability, as it 
is associated with both variables. The lack of difference in PAF between 
infants at low vs. high familial risk for ASD is contrast to two studies that 
have found differences in PAF in autistic children as compared to a 
typically developing group; one reporting higher PAF (Edgar et al., 
2019) and the other reporting lower PAF (Dickinson et al., 2018) in the 
autistic group (although we highlight that only a small subgroup of the 
high risk infants will go onto receive a diagnosis of ASD). However, two 
studies have also found no group differences; one with infants with TSC, 

with and without an additional diagnosis of ASD (Dickinson et al., 
2019), and another case-control study in children (Lefebvre et al., 2018). 
Therefore, results suggest that disrupted PAF is not an early manifesta-
tion of familial autism risk. An alternative explanation is that PAF 
development may be slowed in infants who go on to receive a diagnosis 
such that clear group differences only become apparent as neural tra-
jectories diverge later in development. Clarification of these two pro-
posed hypotheses requires following large, well-characterised samples 
of autistic individuals with multiple measurements of neural functioning 
from early in childhood. 

In line with previous work in both autistic and typically developing 
samples (Dickinson et al., 2018; Doppelmayr et al., 2002; Klimesch, 
1999), we found a positive association between 12-month PAF and 
concurrent non-verbal cognitive ability, even when adjusting for age. 
Furthermore, results suggest this association is relatively specific; no 
associations were found between 12-month PAF and verbal ability 
(either concurrently or longitudinally). Given that PAF is associated 
with both functional and structural network connectivity (Jann et al., 
2012), and oscillations in the alpha band modulate cortical inhibition 
(Klimesch et al., 2007), this would suggest higher cognitive abilities at 
12 months are supported by more mature cortical organisation and more 
effective communication. This is of interest as it appears these associa-
tions between brain and cognition are present in some of the earliest 
stages of development; most existing literature has focused on associa-
tions with PAF in older children and adults. It may be that PAF is a stable 
marker of non-verbal cognitive ability across the lifespan, which sug-
gests it could be of use as an additional metric of cognitive functioning in 
samples with wide ranges of biological or developmental age, which 
traditionally use multiple instruments to measure IQ depending on 
participant age and ability. This would be advantageous, as it would 
provide a metric of cognitive ability that could easily be compared 
across participants in heterogeneous samples while at the same time 
minimise biases that come with face-to-face cognitive assessments. The 
use of in-person cognitive tests (such as that included in the present 
study) in autistic populations has been criticised for a variety of reasons, 
such as over-reliance on language, sustained attention and social 
compliance (Kenworthy et al., 2008). These domains are ones where 
autistic individuals may have particular difficulty, which may explain 
reports of underestimation of ability when traditional cognitive tests are 
used in autistic populations (M. Dawson et al., 2007). The proposal of 

Fig. 6. Positive Association Between 12-Month Peak Alpha Frequency and Estimated Non-Verbal Ability Intercept. 
Although the model was only run with risk, both risk and outcome groups are depicted in the figure to aid interpretation. Lines represents the best fitting regression 
line for each group, shaded areas represent 95 % confidence intervals. 
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PAF as a marker for non-verbal cognitive ability is further strengthened 
by the lack of association with verbal ability, suggesting it is a relatively 
specific marker of cognitive abilities that are independent from language 
or other verbal components of cognitive functioning. As a caveat to this 
last point, we acknowledge that the lack of association with verbal 
ability could also be due to increased measurement error in assessing 
VIQ as compared to non-verbal cognitive ability, especially in pop-
ulations known to have atypical styles of communication. Furthermore, 
it should be noted that we did not directly test for differential associa-
tions, but included verbal ability as an outcome to assess whether there 
was any evidence for specificity. 

The association between PAF and non-verbal cognitive ability 
appeared to be comparable between infants at low vs. high risk, however 
as noted above, the interaction term was at a marginal level of signifi-
cance in predicting the non-verbal ability intercept (p = .09), and the 
directionality of effect was the same as in previous work which has 
focused on individuals with an established diagnosis of ASD (Dickinson 
et al., 2018; Edgar et al., 2019), in that the association was significant in 
high but not low risk infants. When we excluded the subgroup of infants 
who went onto receive a diagnosis of ASD in toddlerhood, associations 
between PAF and concurrent non-verbal cognitive ability were no longer 
significant. This suggests that this subgroup of infants may have been 
making a substantial contribution to the association between PAF and 
concurrent non-verbal cognitive ability found in the whole sample. 
Comparing our results to samples of older individuals with an estab-
lished diagnosis (Dickinson et al., 2018; Edgar et al., 2019), one could 
conclude PAF is only a marker for non-verbal cognitive abilities in in-
dividuals who have or will have a diagnosis of ASD. A more prosaic 
explanation is that there is simply less variability in cognitive ability in 
typically developing infants and children, meaning significant associa-
tions with PAF are less likely to be detected in typically developing 
populations. 

Contrary to extant literature (Dickinson et al., 2019), current results 
suggest PAF may not be a suitable prognostic marker for future trajec-
tories of cognitive development. There are several possible in-
terpretations of our finding of no prospective association between PAF 
and non-verbal cognitive ability. The most obvious is that PAF is a 
marker of current cognitive functioning, but does not predict change in 
cognitive development. It may be that a more direct measure of cortical 
maturation (e.g., connectivity; Xie et al., 2019) is needed to predict 
change in cognitive development over time, rather than proxy markers 
such as PAF. Two counter arguments should be considered. First, is that 
our current tools to assess cognitive functioning in infants do not 
adequately capture subtle developmental changes in cognitive ability. 
This may be especially the case in infants who are more likely to have 
atypical behaviours due to increased familial risk. Second, that the 
sample included at present may not be population-representative; 
indeed the sample had an average non-verbal AE at 12 months of 
15.5, suggesting the sample as a whole was scoring above what is to be 
expected at their age. Therefore, it is possible the sample (especially the 
low risk group) had less variability in their cognitive development due to 
unaccounted for sampling biases, which in turn would decrease power to 
detect associations between PAF and slope of change. We note this issue 
of “super-healthy controls” is not specific to infant-sibling studies, but 
psychiatric research in general (Lee et al., 2007). 

The present study has many strengths. We take advantage of the 
newly developed EEG-IP repository, meaning our analyses were con-
ducted on a sample substantially larger than most studies in the field. We 
extracted PAF, which is thought to be a more sensitive marker of indi-
vidual differences in alpha band oscillatory activity than traditional 
power metrics. We also utilised data from infants followed longitudi-
nally over multiple visits, allowing us to model rates of cognitive 
development. This meant we could build on previous work by examining 
how PAF relates to rate of change in cognitive abilities rather than just 
ability at a specific time point. This gives a more nuanced understanding 
of how different trajectories of development may underpin atypical 

outcomes that are often associated with neurodevelopmental disorders. 
The current study also has limitations; by design all infants came from 
families with at least one existing autistic child, thus whether PAF 
functions in a similar manner in cases where no family history of ASD is 
present, and whether brain-behaviour associations depend on the level 
of familial risk (e.g., number of existing autistic siblings) requires further 
investigation. This issue is of particular importance given reports that 
autistic infants differ on cognitive ability depending on heritable genetic 
load (Dissanayake et al., 2019; McDonald et al., 2020). 

Current results support the suggestion that PAF is a robust marker of 
non-verbal cognitive ability, even in early infancy, and may be a useful 
metric of non-verbal cognitive ability to complement in-person stan-
dardized IQ tests. We found no associations with verbal ability, which 
can be interpreted two ways. Either PAF may be a fairly specific marker 
of non-verbal rather than verbal abilities (e.g., language), or that current 
measures to assess verbal abilities in infants (especially those at risk for 
ASD) have poor sensitivity. We did not find evidence that PAF predicts 
the development of non-verbal cognitive ability through infancy, sug-
gesting it may not be an appropriate predictor of outcomes. Given the 
heterogeneity in outcomes for infants who go onto receive a diagnosis of 
ASD, future work should test if more proximal metrics of cortical 
development predict outcomes across a variety of domains. This would 
allow identification of those who may need additional support, and 
promote positive long-term outcomes. 
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