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TRPA1 sensitization during diabetic
vascular impairment contributes to
cold hypersensitivity in a mouse model
of painful diabetic peripheral neuropathy

Haruka Hiyama1, Yuichi Yano1, Kanako So1,2, Satoshi Imai3,
Kazuki Nagayasu1, Hisashi Shirakawa1, Takayuki Nakagawa3, and
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Abstract

Background: Diabetic peripheral neuropathy is a common long-term complication of diabetes. Accumulating evidence

suggests that vascular impairment plays important roles in the pathogenesis of diabetic peripheral neuropathy, while the

mechanism remains unclear. We recently reported that transient receptor potential ankyrin 1 (TRPA1) is sensitized by

hypoxia, which can contribute to cold hypersensitivity. In this study, we investigated the involvement of TRPA1 and vascular

impairment in painful diabetic peripheral neuropathy using streptozotocin-induced diabetic model mice.

Results: Streptozotocin-induced diabetic model mice showed mechanical and cold hypersensitivity with a peak at two

weeks after the streptozotocin administration, which were likely to be paralleled with the decrease in the skin blood flow

of the hindpaw. Streptozotocin-induced cold hypersensitivity was significantly inhibited by an antagonist HC-030031

(100 mg/kg) or deficiency for TRPA1, whereas mechanical hypersensitivity was unaltered. Consistent with these results,

the nocifensive behaviors evoked by an intraplantar injection of the TRPA1 agonist allyl isothiocyanate (AITC) were

enhanced two weeks after the streptozotocin administration. Both streptozotocin-induced cold hypersensitivity and the

enhanced AITC-evoked nocifensive behaviors were significantly inhibited by a vasodilator, tadalafil (10 mg/kg), with recovery

of the decreased skin blood flow. Similarly, in a mouse model of hindlimb ischemia induced by the ligation of the external iliac

artery, AITC-evoked nocifensive behaviors were significantly enhanced three and seven days after the ischemic operation,

whereas mechanical hypersensitivity was unaltered in TRPA1-knockout mice. However, no difference was observed between

wild-type and TRPA1-knockout mice in the hyposensitivity for current or mechanical stimulation or the deceased density of

intraepidermal nerve fibers eight weeks after the streptozotocin administration.

Conclusion: These results suggest that TRPA1 sensitization during diabetic vascular impairment causes cold, but not

mechanical, hypersensitivity in the early painful phase of diabetic peripheral neuropathy. However, TRPA1 may play little

or no role in the progression of diabetic peripheral neuropathy.
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Introduction

Diabetic peripheral neuropathy (DPN) is a common

long-term complication of diabetes that affects up to

50% of patients with diabetes.1 Bilateral and symmetri-

cal damage to peripheral nerves progresses with a distal

to proximal gradient. The early phase of DPN is char-

acterized by positive sensory symptoms, such as pares-

thesia, dysesthesia, and pain. The prevalence of painful
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DPN is estimated to be 10% to 25% of patients
with diabetes.2,3 Further DPN progression leads to neg-
ative sensory symptoms, including loss of sensation,
proprioception, temperature discrimination, and pain.4

The recommended clinical treatment is control of blood
glucose and improved lifestyle, which only delay the
onset and slow the progression.4 For painful DPN, treat-
ment with anticonvulsants, antidepressants, opioids,
and topical agents is recommended; however, these
analgesic approaches are only partially successful or
often ineffective.2,5

The development and progression of DPN is caused
by hyperglycemia-induced damage to peripheral nerves
through the polyol pathway, hexosamine pathway, inap-
propriate activation of protein kinase C, and accumula-
tion of advanced glycation end products in peripheral
nerves, which collectively lead to mitochondrial dysfunc-
tion, oxidative stress, and inflammation.6 Accumulating
evidence from human and animal DPN studies suggests
that vascular impairment and resultant nerve ischemia
are closely related to the pathogenesis of DPN.7,8

Endothelial dysfunction induced by decreased vasodila-
tors, such as nitric oxide and prostacyclin, and increased
vasoconstrictors, such as endothelin-1, in diabetes
results in both macrovascular and microvascular dam-
ages.7,9 Endoneurial hypoxia caused by decreased nerve
blood flow alters nerve function10,11 and leads to nerve
degeneration and loss of nerve fibers, especially in dia-
betic nerves with increased vulnerability to ischemia.7,12

In patients with diabetes, microvascular dysfunction is
regarded as one of the pathologic hallmarks of DPN13

and is related to the severity of painful DPN.14

Furthermore, in experimental diabetic animal models,
a variety of vasodilator agents ameliorate vascular
impairment, neural dysfunction, nerve degeneration,
loss of sensitivity, and neuropathic pain.15–19

Transient receptor potential ankyrin 1 (TRPA1), a
nonselective cation channel, is highly expressed in a
subset of nociceptive C fibers and acts as a polymodal
nociceptor.20 TRPA1 is activated by a large number of
irritants and oxidative stimuli, such as reactive oxygen
species (ROS) and hyperoxia, through reversible cova-
lent or oxidative modification of cysteine residues in the
N-terminal region.21–23 We previously reported that
TRPA1 is also activated or sensitized by hypoxia
through another mechanism: a decrease in oxygen con-
centration inhibits the activity of prolyl hydroxylases
(PHDs) and relieves TRPA1 from the PHD-dependent
hydroxylation of a proline residue located within the N-
terminal ankyrin repeat domain.23,24 PHD inhibition
increases the sensitivity of TRPA1 to ROS, which
endows or enhances the cold sensitivity of TRPA1 by
detecting cold-evoked ROS production.25,26 Given
these findings, we propose that hypoxia-induced
TRPA1 sensitization contributes to the painful aspect

of peripheral neuropathy, especially to cold hypersensi-

tivity.24–28

A body of evidence suggests that TRPA1 is involved

in painful DPN.29,30 Methylglyoxal, a reactive dicar-

bonyl compound that is an intermediate of glycolysis,

mediates diabetic neuropathic pain by stimulating

TRPA1 in primary afferent sensory neurons.31,32 In the

present study, we examined the roles of TRPA1 in DPN

by focusing on the vascular impairment in a streptozo-

tocin (STZ)-induced diabetic mouse model, which exerts

mechanical and cold hypersensitivity33,34 like patients

with painful DPN.3 We show that TRPA1 sensitized

by vascular impairment is responsible for the cold hyper-

sensitivity observed in the early painful phase of DPN.

Materials and methods

Animals

This study was carried out in strict accordance with the

ethical guidelines recommended by the Kyoto University

Animal Research Committee. The protocol was

approved by the Kyoto University Animal Research

Committee (permit number, 13–38). All efforts were

made to minimize the number of animals used and to

limit experimentation that was necessary to produce reli-

able scientific information. The C57BL/6J mice aged six

to eight weeks were purchased from Japan SLC

(Shizuoka, Japan). The Trpa1þ/þ (wild-type (WT)) and

Trpa1�/� (TRPA1-knockout (KO)) mouse lines were

bred from heterozygous mice with a C57BL/6� 129 S1

background that were obtained from Jackson

Laboratory (Bar Harbor, ME, USA). Mouse lines

were backcrossed to C57BL/6J mice for at least 10 gen-

erations and genotyped by genomic polymerase chain

reaction (PCR) using primers 50-TCATCTGGGCAAC

AATGTCACCTGCT-30 and 50-TCCTGCAAGGGTG

ATTGCGTTGTCTA-30. Male WT and TRPA1-KO

mice aged six to eight weeks were used for experiments.

All mice were housed under constant ambient tempera-

ture (24� 1�C) and humidity (55%� 10%), with alter-

nate 12 h light/dark cycles from 8.00 a.m. to 8.00 p.m.

Food and water were freely available.

Drugs and reagents

STZ (Wako Pure Chemical Industries, Osaka, Japan)

was dissolved in sterile saline. HC-030031 (Haoyuan

Chemexpress, Shanghai, China) was freshly suspended

in 0.5% methylcellulose (Wako) and injected intraperi-

toneally 30 min before behavioral testing. Allyl

isothiocyanate (AITC; Wako) was dissolved in corn oil

(Sigma-Aldrich, St. Louis, MO, USA). Tadalafil (Sigma-

Aldrich) was dissolved in 10% dimethyl sulfoxide/20%
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polyethylene glycol 400 in distilled water and injected

intraperitoneally 1 h before behavioral testing.

STZ-induced diabetic mouse model

Diabetes was induced in mice by injecting them with

STZ (50 mg/kg, intraperitoneal (i.p.)) for seven consec-

utive days. Blood was sampled from the tail vein, and

the blood glucose level was measured using an Accu-

Check ST meter (Roche Diagnostics, Indianapolis, IN,

USA). Mice were deemed diabetic when the casual blood

glucose concentration exceeded 250 mg/dL.

Mouse model of hindlimb ischemia

Mice were anesthetized with pentobarbital (64.8 mg/kg,

i.p.), and the bilateral lower abdomen area was shaved.

An incision was made along the thigh, extending from

the inguinal ligament to the abdomen. The external iliac

artery and vein were exposed and tightly ligated with 7–0

silk thread (Alfresa Pharma Corporation, Osaka,

Japan), which resulted in complete occlusion of the

lumen of the blood vessel. The wound was closed by

suturing the skin layer. Sham-operated mice received

an identical surgery, except that their external iliac

artery and vein were not ligated.

Measurement of skin blood flow in the hindpaw

The endoneurial blood flow within the sciatic nerve has

often been investigated to resolve the relationship

between diabetes-induced vascular impairment and

neural dysfunction or degeneration.8 However, because

the aim of the present study was to examine the effects of

hypoxia around TRPA1 expressed on the peripheral

nerve terminal of primary sensory neurons, we measured

the decrease in the hindpaw skin blood flow of diabetic

mice.14,35 Mice were anesthetized with pentobarbital

(64.8 mg/kg, i.p.). Each animal was placed in the

prone position on a heating pad maintained at 36.5�C
by an animal blanket controller (Nihon-Koden, Tokyo,

Japan), and the right hindpaw was secured in the desired

position. The skin blood flow of the plantar surface of

the hindpaw was measured by scanning the region of

interest using a laser speckle blood flow analyzing

system (OMEGA ZONE, Omega Wave Co., Tokyo,

Japan). The values were normalized to that in the con-

trol in each experiment.

Cold-plate test

Cold sensitivity was measured with a hot/cold-plate

analgesimeter (Ugo Basile, Milan, Italy) as previously

described.27 Mice were allowed to acclimate to the test-

ing apparatus for 1 h, after which they were individually

placed on the center of a cold plate maintained at 5�C in

a transparent Plexiglas cylinder. Escape behaviors were
observed for 60 s and graded using the following scoring
system: 0, no response; 1, moderate effort to avoid cold,
such as lifting a hindpaw or walking backward; or 2,
vigorous effort to escape cold, such as jumping.
The scores recorded within a 60 s period were summed.

von Frey filament test

Mechanical sensitivity was assessed by measuring the
paw withdrawal threshold using calibrated von Frey fil-
aments as previously described with slight modifica-
tions.36,37 Mice were acclimatized on a metal mesh
floor in small cylinders for 1 h. For the up-down
method, mechanical sensitivity was evaluated using
seven calibrated von Frey filaments (0.008, 0.02, 0.04,
0.07, 0.16, 0.4, and 1.0 g) that were applied to the plantar
surface of the hindpaw until the filament bent slightly for
a few seconds. The first applied stimulus was always the
0.16 g filament. When a mouse demonstrated a positive
response, such as flicking or lifting the paw, the next
lower weight filament was applied. When a mouse dem-
onstrated a negative response (i.e., no movement), the
next higher weight filament was applied. After the first
change in response, four additional responses were
observed, and the 50% paw withdrawal threshold was
calculated.37

TRPA1 agonist-evoked nocifensive behaviors

TRPA1 agonist-evoked nocifensive behaviors were mea-
sured as previously described.27 The mice were allowed
to acclimate in a clear acrylic cylinder for at least 40 min,
after which AITC (20 lL of 0.05%) was subcutaneously
injected into the plantar surface of the left hindpaw.
AITC-evoked nocifensive behaviors were measured for
5 min as the duration of consecutive licking behavior in
STZ-induced diabetic mice and licking or lifting behav-
ior in the mice subjected to the hindlimb ischemic model.

Measurement of current perception threshold

For measurement of paw withdrawal responses to trans-
cutaneous current stimuli, sine-wave pulses were pro-
duced by a Neurometer CPT/C (Neurotron Inc.,
Baltimore, MD, USA), a device clinically used for mea-
suring perception and pain thresholds.38,39 Each mouse
was kept in a Ballmann cage (Natsume, Tokyo, Japan),
and the hair of the hindpaw was shaved. An electrode
for stimulation was attached to the plantar surface, and
transcutaneous current stimuli comprising three types of
sine-wave pulses (5, 250, and 2000 Hz) were separately
applied. The intensity of each stimulation was gradually
increased, and the intensity (mA) eliciting a paw with-
drawal response was determined. Three consecutive
measurements were conducted at each frequency, and
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the average intensity was defined as the current percep-

tion threshold.

Real-time PCR

For assessing mRNA expression levels, real-time PCR
analyses were performed two weeks after STZ adminis-

tration. Total RNAs were extracted from the L4 dorsal

root ganglion (DRG) using NucleoSpin RNA (TaKaRa

Bio Inc., Shiga, Japan), and the extracted RNAs were

reverse transcribed (RT) using the ReverTra Ace qPCR

RT Kit (Toyobo, Osaka, Japan). Real-time quantitative

RT-PCR was performed using a StepOne Real-Time

PCR System (Life Technologies, Carlsbad, CA, USA)
and Thunderbird SYBR qPCR Mix (Toyobo). Each

PCR amplification consisted of heat activation for 10

min at 95�C, followed by 40 cycles at 95�C for 15 s

and 60�C for 1 min. The oligonucleotide primers used

for RT-PCR were as follows: 50-GCA ATT ATT CCC

CAT GAA CG-30 and 50-GGC CTC ACT AAA CCA

TCC AA-30 for the 18S ribosomal RNA gene (18S

rRNA); and 50-TCC GGT CGA TCT CAG CAA TG-

30 and 50-GGC AAT GTG GAG CAA TAG CG-30 for
TRPA1. The mRNA expression levels were normalized

to that of 18S rRNA, which was measured in parallel

with each sample. The mRNA expression level of each

gene was expressed relative to the vehicle-treated group.

Immunohistochemistry

Mice were deeply anesthetized with sodium pentobarbital

and perfused through the ascending aorta with
phosphate-buffered saline (PBS) followed by 4% (W/V)

paraformaldehyde in phosphate buffer. The right hind-

paw tissues, including the skin and underlying muscle,

were removed and embedded in paraffin. Paraffin-

embedded tissues were cut into 5 lm sections and treated

with 3% bovine serum albumin for 1 h at room temper-

ature. After washing with PBS, the sections were incubat-

ed with a rabbit polyclonal anti-protein gene product 9.5
(PGP9.5) antibody (1:600, Ultraclone Ltd, Cambridge,

UK) at 4�C overnight. The sections were washed three

times in PBS and incubated for 1 h with biotinylated anti-

rabbit IgG antibody (Vector Laboratories, Burlingame,

CA, USA). The sections were then incubated for 2 h

with avidin–biotin complex (Vectastain ABC Standard

Kit, Vector Laboratories) and processed in a standard

3,30-diaminobenzidine tetrahydrochloride (Nacalai

Tesque, Kyoto, Japan) reaction. The tissue sections
were then stained with hematoxylin (Wako) and cover-

slipped with EntellanVR new (Merck, Darmstadt,

Germany). Histopathological examination was performed

with a light microscope (BX-53F, Olympus, Tokyo,

Japan). For quantification of intraepidermal nerve fibers

(IENFs), the number of PGP9.5-immunopositive nerve

fibers in the plantar skin section was counted in at least

five slices per animal following the estimation of immu-

nolabeled nerve fiber profiles. The IENF density was cal-
culated as the number of PGP9.5-immunopositive nerve

fibers per length of epidermis (number/mm).

Statistical analysis

The data were analyzed using GraphPad Prism and are

presented as means�SEM. Differences between two
groups were compared using Student’s t test. Data with

more than two groups were compared using one-way or

two-way analysis of variance (ANOVA), followed by

Bonferroni or Sidak post hoc tests. Time-course data
were analyzed by two-way ANOVA for repeated measures,

followed by Bonferroni post hoc tests. In all cases, differ-

ences of P< 0.05 were considered statistically significant.

Results

Changes in blood glucose level, body weight, and skin

blood flow in STZ-induced diabetic mice

The i.p. administration of STZ (50 mg/kg) for seven con-

secutive days significantly increased casual blood glucose

levels in both WT (STZ� time interaction: F(8,

304)¼ 71.50, P< 0.001) and TRPA1-KO mice

(STZ� time interaction: F(8, 208)¼ 44.73, P< 0.001) and

significantly decreased body weight in both WT

(STZ� time interaction: F(8, 304)¼ 18.66, P< 0.001) and

TRPA1-KO mice (STZ� time interaction: F(8, 208)¼ 14.4,
P< 0.001), compared with the saline-treated nondiabetic

groups. There were no differences in the increased blood

glucose level (genotype: F(1, 34)¼ 0.01, P¼ 0.92) and the

decreased body weight (genotype: F(1, 34)¼ 2.60, P¼ 0.12)
between WT-STZ and TRPA1-KO-STZ mice (Figure 1a

and b).
To detect STZ-induced peripheral vascular impair-

ment, we measured skin blood flow in the hindpaw.
The STZ administration significantly reduced skin blood

flow in both WT (STZ� time interaction: F(8, 304)¼ 5.103,

P< 0.001) and TRPA1-KO mice (STZ� time interaction:

F(8, 208)¼ 1.99, P< 0.05), compared with saline-treated

nondiabetic mice. A peak reduction was observed two
weeks after STZ administration. However, there was no

significant difference in the reduced skin blood flow

between the WT-STZ and TRPA1-KO-STZ groups

(genotype: F(1, 34)¼ 0.90, P¼ 0.35; Figure 1c).

Involvement of TRPA1 in the early painful phase

of DPN

We assessed behavioral sensitivity to mechanical and

cold stimuli using von Frey filament and cold-plate

tests, respectively. Compared with the saline-treated
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nondiabetic groups, STZ administration significantly
decreased the 50% withdrawal threshold to mechanical
stimulation with von Frey filaments at one to two weeks
in WT mice and at two weeks in TRPA1-KO mice, with
no difference between these two genotypes (genotype:

F(1, 28) =0.05, P¼ 0.82). The STZ-induced mechanical
hypersensitivity returned to control levels within three
weeks after STZ administration in both genotypes
(Figure 2a).

Escape behavior scores in response to cold stimula-
tion in STZ-treated mice were significantly increased
and peaked two weeks after STZ administration
(Figure 2b). These increased cold-escape behavior
scores returned to controls level within six to eight
weeks. In TRPA1-KO mice, increased cold-escape
behavior scores two weeks after STZ administration
were significantly attenuated compared with those in WT
mice (genotype: F(1, 32)¼ 6.86, P< 0.05; Figure 2c).
Consistent with this result, administration of the selective
TRPA1 antagonist HC-030031 (100 mg/kg, i.p.) 30 min
before the cold-plate test significantly attenuated increased
cold-escape behavior scores two weeks after STZ adminis-
tration (HC-030031: F(1, 20)¼ 5.56, P< 0.05; Figure 2d).
However, neither TRPA1-KO nor HC-030031 changed
cold-escape behavior scores in the saline-treated nondia-
betic mice.

STZ-induced cold hypersensitivity and TRPA1
sensitization are reversed by tadalafil

To investigate the relationship between the STZ-induced
vascular impairment and cold hypersensitivity, we exam-
ined the effects of a phosphodiesterase-5 (PDE-5) inhib-
itor, tadalafil, which is a vasodilator. Administration of
tadalafil (10 mg/kg, i.p.) 1 h before the tests significantly
reversed the reduced skin blood flow at two weeks
after STZ administration compared with that in
vehicle-injected diabetic mice (tadalafil: F(1, 20)¼ 28,1,
P � 0.0001), whereas it had no effect on basal skin
blood flow in saline-treated nondiabetic mice (Figure
3a). Furthermore, administration of tadalafil reversed
the increased cold-escape behavior scores at two weeks
after STZ administration (Figure 3b). Although two-
way ANOVA analysis showed no significant difference
(tadalafil: F(1, 44)¼ 0.426, P¼ 0.517), Bonferroni’s mul-
tiple comparison test indicated that tadalafil significantly
inhibited it, compared with that in vehicle-injected
diabetic mice. On the other hand, tadalafil tended to
increase the cold-escape behaviors in saline-injected
control animals, while there is no significant difference
between vehicle and tadalafil injection.

To investigate the change in TRPA1 responsiveness in
STZ-induced diabetic mice, we measured the duration of
licking, a nocifensive behavior, evoked by intraplantar
injection of a TRPA1 agonist, AITC. In STZ-induced
diabetic mice, the duration of the AITC-evoked nocifen-
sive behavior was significantly prolonged at two weeks
after STZ administration, compared with that in saline-
treated nondiabetic mice. The administration of tadalafil
(10 mg/kg, i.p.) 1 h before the tests significantly inhibited

Figure 1. Changes in blood glucose level, body weight, and skin
blood flow in mice with STZ-induced diabetes. WTor TRPA1-KO
mice were administered with saline or STZ (50 mg/kg, i.p.) for
seven consecutive days. The casual blood glucose levels (a), body
weight (b), and skin blood flow (c) were measured before and
weekly after the administrations. The skin blood flow of the
hindpaw was measured using laser Doppler flowmetry and
expressed as the percentage of each saline-treated group on the
same day. Data are expressed as means� SEM. n¼ 14–22.
*P< 0.05, ***P< 0.001 compared with the WT saline group;
##P< 0.01, ###P< 0.001 compared with the TRPA1-KO
saline group.
KO: knockout; STZ: streptozotocin; TRPA1: transient receptor
potential ankyrin 1; WT: wild-type.
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the prolonged duration of AITC-evoked nocifensive behav-
ior (tadalafil: F(1, 44)¼ 5.93, P � 0.05; Figure 3c). However,
TRPA1 mRNA expression levels in the DRG were not
changed two weeks after STZ administration
(Supplementary Figure 1).

TRPA1 sensitization in a mouse model of
hindlimb ischemia

To further investigate the relationship between peripher-
al vascular impairment and TRPA1 sensitization, we
examined AITC-evoked paw licking and lifting in a
mouse model of hindlimb ischemia. Tight ligation of
the external iliac artery and vein significantly reduced
the ipsilateral hindpaw skin blood flow, which peaked
just after the ligation and gradually recovered (opera-
tion� time interaction: F(4, 148)¼ 26.3, P< 0.001).
Compared with that in sham-operated mice, significant
reductions in skin blood flow lasted at least 14 days after
the ligation (Figure 4a). In mice with hindlimb ischemia,
the duration of the AITC-evoked nocifensive behavior

was significantly prolonged three and seven days after
the ligation, compared with that in sham-operated mice
(Figure 4b).

Compared with that in sham-operated mice, the 50%
withdrawal threshold to mechanical stimulation in the
ipsilateral hindpaw was significantly decreased three
days after ligation in both WT and TRPA1-KO ischemic
mice. This decrease recovered within seven days after the
ligation. There was no difference in mechanical hyper-
sensitivity between the two genotypes (genotype: F(1,

7)¼ 0.63, P¼ 0.45). In the contralateral hindpaw, the
50% withdrawal threshold was not changed in either
group (Figure 4c).

TRPA1 is not involved in the late phase of
STZ-induced DPN

Eight weeks after the STZ administration, the duration
of the AITC-evoked nocifensive behaviors was not
changed from that in saline-treated nondiabetic mice
(Supplementary Figure 2).

Figure 2. Involvement of TRPA1 in the early painful phase of DPN. WTor TRPA1-KO mice were administered with saline or STZ (50 mg/
kg, i.p.) for seven consecutive days. (a) The 50% withdrawal thresholds to mechanical stimulation with von Frey filaments were measured
before and weekly after the administrations. n¼ 9–21. ***P< 0.001 compared with the WT saline group; ###P< 0.001 compared with the
TRPA1-KO saline group. (b to d) Cold sensitivities were measured using the cold-plate test (5�C). (b) Cold-escape behavior scores in
saline- or STZ-treated WT mice were measured before and biweekly after the administrations. n¼ 9. *P< 0.05 compared with the saline-
treated group. (c) Effect of TRPA1-KO on cold hypersensitivity in mice with STZ-induced diabetes. Cold-escape behavior scores in WTand
TRPA1-KO mice were determined two weeks after STZ administration. n¼ 9. *P< 0.05. (d) Effect of the selective TRPA1 antagonist HC-
030031 on cold hypersensitivity in mice with STZ-induced diabetes. Saline- or STZ-treated mice two weeks after the treatment were
administered vehicle or HC-030031 (100 mg/kg, i.p.) 30 min before the cold-plate test, and cold-escape behavior scores were determined.
n¼ 6. *P< 0.05. Data are expressed as means� SEM.
KO: knockout; STZ: streptozotocin; TRPA1: transient receptor potential ankyrin 1; WT: wild-type.
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To detect hyposensitivity in the late phase of STZ-
induced DPN, we measured current perception thresh-
olds to sine-wave pulses of various frequencies (5, 250,
and 2,000Hz) produced by a Neurometer, which primar-
ily stimulates C-, Ad-, and Ab-fibers, respectively, in
saline- or STZ-treated mice eight weeks after STZ
administration. The STZ administration significantly
increased the current perception thresholds for 5 Hz

and 250 Hz stimuli (STZ: 5 Hz, F(1, 50)¼ 36.74,
P< 0.001; 250 Hz, F(1, 50)¼ 14.86, P< 0.001), whereas
it had no effect on the threshold for 2,000 Hz stimulation
(STZ: 2,000 Hz, F(1, 50)¼ 2.54, P¼ 0.12) in both WT and
TRPA1-KO mice. There were no significant differences
in the current perception thresholds at each current stim-
ulation between the genotypes (genotype: 5 Hz, F(1,

50)¼ 2.70, P¼ 0.11; 250 Hz, F(1, 50)¼ 2.65, P¼ 0.11;
2,000 Hz, F(1, 50)¼ 2.76, P¼ 0.10; Figure 5a).

Because we were unable to detect STZ-induced hypo-
sensitivity to the von Frey filaments using the up-down
method (Figure 2a), we applied a calibrated von Frey
filament (0.4 g) to the STZ-induced diabetic mice eight
weeks after STZ administration and measured paw with-
drawal response scores to detect mechanical hyposensi-
tivity. The STZ administration significantly decreased
the scores for mechanical stimulation in both WT and
TRPA1-KO mice compared with those in saline-treated
nondiabetic mice (STZ: F(1, 66)¼ 16.46, P � 0.001).
However, there was no difference in mechanical hypo-
sensitivity between the two genotypes (genotype:
F(1, 66)¼ 0.13, P¼ 0.72; Supplementary Figure 3).

Assessment of IENF density in the skin is a reliable
method for measuring DPN in both humans with
diabetes and rodent diabetic models.40,41 We performed
an immunohistochemical analysis for PGP9.5-
immunoreactive IENFs in the hindpaw plantar skin of
saline- or STZ-treated mice eight weeks after the treat-
ment. STZ administration significantly decreased the
density of PGP9.5-immunoreactive IENFs (STZ: F(1,

30)¼ 13.36, P< 0.001) in both WT and TRPA1-KO
mice; however, there was no difference in the density
between the two genotypes (genotype: F(1, 30)¼ 1.21,
P¼ 0.28; Figure 5b and c).

Discussion

In the present study using a STZ-induced mouse model
of diabetes, we provide evidence that TRPA1 is sensi-
tized by diabetic vascular impairment, which contributes
to the cold hypersensitivity observed in the early painful
phase of DPN. However, the involvement of TRPA1 in
the hyposensitivity and in the reduced IENF density
observed in the late phase of DPN was limited.

The STZ-induced diabetic mouse model, which is an
often-used model of type 1 diabetes by damaging pan-
creatic b cells, shows various pathologies of DPN.42

TRPA1 is reported to be associated with glucose homeo-
stasis, such as secretion of insulin, glucagon-like peptide
1, and ghrelin.43 However, we showed that neither the
blood glucose increase nor the body weight loss differed
between WT and TRPA1-KO mice that were treated
with STZ, consistent with a previous report using
TRPA1-KO mice.44 This finding enabled us to investi-
gate the contribution of TRPA1 deficiency to DPN

Figure 3. Effects of tadalafil on STZ-induced cold hypersensitivity
and TRPA1 sensitization. Mice were administered with saline or
STZ (50 mg/kg, i.p.) for seven consecutive days. Two weeks after
the administrations, the PDE-5 inhibitor tadalafil (10 mg/kg, i.p.),
which is a vasodilator, or its vehicle was administered 1 h before
the behavioral tests. (a) Skin blood flow of the hindpaw was
measured and expressed as the percentage of the saline-treated
nondiabetic group injected with vehicle. n¼ 6. (b) Cold-escape
behavior scores for the cold-plate test. n¼ 12. (c) Duration(s) of
nocifensive behavior (licking) evoked by intraplantar injection of
0.05% AITC was measured for 5 min. n¼ 11–13. Data are
expressed as means� SEM. *P< 0.05, **P< 0.01, ***P< 0.001.
AITC: allyl isothiocyanate; STZ: streptozotocin.
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without affecting STZ-induced diabetes. In addition, the
present results showed that TRPA1 deficiency had no
effect on the decreased hindpaw skin blood flow in dia-
betic mice, suggesting little role for TRPA1 in diabetes-
induced vascular impairment. TRPA1 is responsible for
vascular responses to cold exposure, and TRPA1 stimu-
lation induces both vasoconstriction (by releasing nor-
adrenaline and increasing ROS) and subsequent
vasodilation (by releasing sensory nerve-derived neuro-
peptides and nitric oxide).45,46 In humans with diabetes
and in animal models of the disease, the skin rewarming
rate after cold exposure is commonly delayed, which is
useful for early diagnosis of DPN.41,47 Although this
phenomenon is considered to be associated with micro-
vascular dysfunction,41 the involvement of TRPA1 has
not been clarified.

Cold hypersensitivity is observed in STZ-induced dia-
betic rats48 and mice33,34 as well as in patients with
DPN.3 In the present study, cold hypersensitivity was
observed in the early phase (at two weeks) of STZ-
induced DPN, which shows a time course similar to
that previously reported.48 This time course is likely par-
alleled by peripheral vascular impairment, suggesting a

possible association between them. The present study
using TRPA1-KO mice and a TRPA1 antagonist
revealed that STZ-induced cold hypersensitivity is medi-
ated through TRPA1. Accumulating evidence suggests
that TRPA1 is responsible for cold hypersensitivity in
various rodent pain models.27,49–52 Although we
cannot fully exclude the possibility of the involvement
of TRP melastatin 8, a cold-sensitive TRP channel,53,54

the present results showed that cold hypersensitivity is
accompanied by TRPA1 sensitization in the early phase
of STZ-induced DPN. Consistent with a previous find-
ing,53 the TRPA1 mRNA expression level in the DRG
was not changed in STZ-induced diabetic mice in the
present study, suggesting that the enhanced responsive-
ness of TRPA1 is caused by functional sensitization
rather than by upregulation. It is noted that STZ directly
stimulates TRPA1.44 However, STZ administered sys-
temically is unstable; the half-life of STZ (200 mg/kg)
after an intravenous injection is approximately 5 min,
and it is completely eliminated from the blood by 2
h.55 In the present study, cold hypersensitivity was
observed one week after the last administration of a rel-
atively low dose (50 mg/kg) of STZ. Thus, direct

Figure 4. TRPA1 sensitization in mice subjected to hindlimb ischemia. To induce hindlimb ischemia in mice, the external iliac artery and
vein were tightly ligated. (a) Skin blood flow in the ipsilateral and contralateral hindpaws was measured in sham-operated or hindlimb
ischemic mice before (pre); just after (post); and 3, 7, and 14 days after the ligation. The values in the ipsilateral hindpaw are expressed as a
percentage of the contralateral hindpaw. n¼ 19–20. **P< 0.01, ***P< 0.001 compared with the sham-operated group. (b) The duration(s)
of nocifensive behavior (licking or lifting) evoked by intraplantar injection of 0.05% AITC was measured for 5 min at three (n¼ 4–8) and
seven days (n¼ 4–5) after the sham or hindlimb ischemic ligation. (c) Sham or hindlimb ischemic ligation was performed in WTor TRPA1-
KO mice. The 50% withdrawal thresholds to mechanical stimulation with von Frey filaments in the ipsilateral (left panel) and contralateral
(right panel) hindpaw were measured before (pre) and 3, 7, and 14 days after ligation. n¼ 3–5. *P< 0.05 compared with the sham-operated
WT group; ###P< 0.001 compared with the sham-operated TRPA1-KO group. Data are expressed as means� SEM.
AITC: allyl isothiocyanate; KO: knockout; TRPA1: transient receptor potential ankyrin 1; WT: wild-type.
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activation of TRPA1 by STZ is unlikely to be responsi-

ble for the cold hypersensitivity observed in the pre-

sent study.
The key finding of the present study is that both the

TRPA1-mediated cold hypersensitivity and the

enhanced AITC-evoked nocifensive behaviors were ame-

liorated along with the recovery of the decreased skin

blood flow by tadalafil. These data suggest that diabetic

vascular impairment induces TRPA1 sensitization,

resulting in cold hypersensitivity in the early phase of

DPN. This hypothesis is further supported by the pre-

sent findings using the hindlimb ischemia model, which

has been widely used to study peripheral arterial dis-

ease,56 and is reported to induce cold hypersensitivity.57

These results suggest that TRPA1 sensitization could be

induced by diabetic vascular impairment rather than by

other factors, such as metabolic changes or peripheral

nerve damage. We previously reported that hypoxia

induces TRPA1 sensitization through the inhibition

of PHD-dependent hydroxylation of a TRPA1 proline

residue, leading to transient hindlimb ischemic/

reperfusion-evoked spontaneous licking behavior through

ROS-evoked activation of TRPA1.24 Although the cold

sensitivity of TRPA1 is controversial,21,58 we recently

demonstrated that TRPA1 sensitization via PHD inhibi-

tion induces cold hypersensitivity by detecting cold-

evoked ROS production.25,26 Taken together with our

present results, it is conceivable that the same mechanism,

that is, PHD inhibition-mediated TRPA1 sensitization,

may underlie the cold hypersensitivity observed in the

Figure 5. Hyposensitivity and reduced IENFs in the late phase of STZ-induced DPN in TRPA1-KO mice. WTor TRPA1-KO mice were
injected with saline or STZ (50 mg/kg, i.p.) for seven consecutive days. (a) Eight weeks after the administrations, the current perception
thresholds (mA) to the sine-wave pulses of various frequencies at 5 (upper panel), 250 (middle panel), and 2000Hz (lower panel) were
measured. n¼ 13–14. *P< 0.05, **P< 0.01, ***P< 0.001. (b) Representative photographs of PGP9.5-immunoreactive staining of IENFs in
the plantar skin of the hindpaw of saline- or STZ-treated WTor TRPA1-KO mice eight weeks after STZ administration. Scale bar¼ 20 mm.
Arrows indicate PGP9.5-positive IENFs. (c) The densities of PGP9.5-immunoreactive IENFs (number/mm) were quantified. n¼ 8–9.
*P< 0.05. Data are expressed as means� SEM.
IENFs: intraepidermal nerve fibers; KO: knockout; PGP9.5: protein gene product 9.5; STZ: streptozotocin; TRPA1: transient receptor
potential ankyrin 1; WT: wild-type.
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early phase of DPN. However, we cannot exclude the
possibility that tadalafil directly acts on primary afferents
and suppresses TRPA1 sensitization. To obtain direct evi-
dence that TRPA1 sensitization is caused by diabetic vas-
cular impairment through inhibition of PHD and
hydroxylation of a TRPA1 proline residue, further inves-
tigations will be needed.

By contrast, TRPA1 deficiency had no effect on the
mechanical hypersensitivity observed in the early phase of
STZ-induced DPN or in the mouse model of hindlimb
ischemia. It is reported that the STZ-induced DPN rodent
model shows both hypersensitivity and hyposensitivity to
mechanical stimulation by von Frey filaments. However,
the time course of either mechanical hypersensitivity or
hyposensitivity is controversial and may depend on sev-
eral factors, including the STZ dose, rodent species and
strain, and method for detecting mechanical sensitivity.59

Typically, in mice, mechanical hypersensitivity is induced
one to four weeks after the STZ administration,60,61 but
then mechanical hyposensitivity is induced after longer
periods of DPN.62,63 Mechanical hypersensitivity in the
early phase of DPN appears to parallel the time course of
STZ-induced peripheral vascular impairment. Taken
together with the present finding that hindlimb ischemia
also induced transient mechanical hypersensitivity,
peripheral vascular impairment may play a role in
mechanical hypersensitivity through TRPA1-
independent mechanisms. However, further investigations
will be needed to determine the association between them.
In contrast to the present data, it was reported that
TRPA1 antagonists inhibit the mechanical hypersensitiv-
ity observed in the painful DPN models.29,30

Accumulating evidence suggests that TRPA1 plays roles
in mechanical hypersensitivity in other pain models,52,64,65

although the results of some studies are inconsistent with
this evidence.49,66 Although we cannot explain these dis-
crepant results, complex mechanisms through TRPA1-
independent pathways (e.g., TRPA1 nonexpressing large
myelinated fibers) may underlie the mechanical hypersen-
sitivity observed in painful DPN.

Consistent with previous findings,62,67 we observed a
current perception threshold increase, an IENF density
decrease and mechanical hyposensitivity in the late stage
of DPN (eight weeks after STZ administration).
However, TRPA1 deficiency had no effects on these phe-
nomena, suggesting little role for TRPA1 in the progres-
sion of DPN. By contrast, repeated injections of a
TRPA1 antagonist in a STZ-induced diabetic rat
model were shown to inhibit the decreased number of
IENFs observed four weeks after STZ administration.68

Although we cannot fully explain the discrepancy
between TRPA1 gene deficiency and TRPA1 antagonist,
sustained activation of TRPA1 by endogenous agonists,
such as methylglyoxal, generated in diabetes31,32 may
have little effect on the degeneration of primary afferent

nerves. However, accumulating evidence suggests that
vasodilators can prevent the progression of DPN,
including neural dysfunction, nerve degeneration, and
hyposensitivity.15–19 Thus, these effects are likely to be
caused by amelioration of the diabetic vascular impair-
ment, but probably not through inhibition of TRPA1
sensitization/activation.

In conclusion, the present study determined that cold
hypersensitivity in the early phase of DPN is mediated
through the TRPA1 sensitization during diabetic vascu-
lar impairment in the STZ-induced diabetic mouse
model. It is possible that diabetic-related endogenous
TRPA1 agonists, such as methylglyoxal,31,32 can activate
the sensitized TRPA1, which may then more potently
cause spontaneous pain. We propose that the therapeu-
tic strategy of targeting TRPA1 for treating some
aspects of painful DPN, as well as various peripheral
ischemic diseases, such as peripheral arterial occlusive
disease, may be warranted, although the involvement
of TRPA1 in the progression of DPN may be limited.
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